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Abstract

Introduction

Multimodality monitoring is regularly employed in adult traumatic brain injury (TBI) patients
where it provides physiologic and therapeutic insight into this heterogeneous condition.
Pediatric studies are less frequent.

Methods

An analysis of data collected prospectively from 12 pediatric TBI patients admitted to
Addenbrooke’s Hospital, Pediatric Intensive Care Unit (PICU) between August 2012 and
December 2014 was performed. Patients’ intracranial pressure (ICP), mean arterial pres-
sure (MAP), and cerebral perfusion pressure (CPP) were monitored continuously using
brain monitoring software ICM+® ) Pressure reactivity index (PRx) and ‘Optimal CPP’
(CPPopt) were calculated. Patient outcome was dichotomized into survivors and non-
survivors.

Results

At 6 months 8/12 (66%) of the cohort survived the TBI. The median (£IQR) ICP was signifi-
cantly lower in survivors 13.1+£3.2 mm Hg compared to non-survivors 21.6+42.9 mm Hg (p =
0.003). The median time spent with ICP over 20 mm Hg was lower in survivors (9.7+9.8%
vs 60.5+67.4% in non-survivors; p = 0.003). Although there was no evidence that CPP was
different between survival groups, the time spent with a CPP close (within 10 mm Hg) to the
optimal CPP was significantly longer in survivors (90.7+12.6%) compared with non-survi-
vors (70.6+21.8%; p = 0.02). PRx provided significant outcome separation with median PRx
in survivors being 0.02+0.19 compared to 0.39£0.62 in non-survivors (p = 0.02).
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Conclusion

Our observations provide evidence that multi-modality monitoring may be useful in pediatric
TBI with ICP, deviation of CPP from CPPopt, and PRx correlating with patient outcome.

Introduction

Traumatic brain injury (TBI) remains a major public health problem, particularly in children.
Epidemiological studies demonstrate that the incidence of hospitalisation and fatal TBI is dis-
proportionately high in children. The Centre for Disease Control and Prevention report over
1.4 million incidents of TBI in children and in excess of 50,000 deaths in the US alone [1].
Despite this, little is known about the pathophysiology of acute brain injury in children [2].

Multi-modal brain monitoring has been advised to guide management of severe TBI in
adults [3] however, there is limited experience with advanced brain monitoring in pediatrics,
although some pioneering studies have been published [4,5]. Multi-modal monitoring affords
clinicians an early indication of secondary insults to the recovering brain by identifying fea-
tures such as raised intracranial pressure (ICP) and decreased cerebral perfusion pressure
(CPP; defined as mean arterial pressure minus ICP). Although there is some consensus as to
what value of ICP is unacceptably high, the optimal level of CPP is more contentious [6]. This
is particularly pertinent in the pediatric population where the ‘normal’ mean arterial pressure
(MAP) is age dependent and critical levels of ICP are not well characterized.

Cerebrovascular pressure reactivity indicates how ICP changes in relation to changes in
MAP and can be assessed using the pressure reactivity index (PRx). PRx is calculated as a mov-
ing, linear correlation between slow waves of MAP and ICP, and can be considered an estima-
tor of cerebral autoregulation [7]. A negative PRx indicates intact pressure reactivity, whereas a
positive PRx indicates impaired pressure reactivity. Using PRx, a method for finding the CPP
at which the vasculature is most reactive has been proposed [8,9]. By plotting the average PRx
across different ranges of CPP, the CPP with the most negative (or best) PRx can be depicted
automatically as a continuous time-dependent variable—the ‘optimal’ CPP (CPPopt) [10].

In pediatric TBI, patients with a lower PRx have a greater chance for survival [5]. In that
cohort, PRx was dependent on the CPP level; a finding that raises the possibility of defining
CPPopt targets for children. Here, we describe multimodality monitoring of children who have
sustained a severe traumatic brain injury.

Methodology
Patients

The data in this study were collected prospectively from 12 pediatric TBI patients admitted to
Addenbrooke’s Hospital, Cambridge, Pediatric Intensive Care Unit (PICU) between August
2012 and December 2014. Consecutive TBI patients with a clinical need for ICP monitoring
were included for analysis. The insertion of an intracranial monitoring device is part of routine
clinical practice and as such did not require ethical approval. The data is routinely collected for
clinical purposes and guides the management of patients. The analysis of data within this study
for the purposes of service evaluation was approved by the Cambridge University Hospital
NHS Trust, Audit and Service Evaluation Department (Ref:2143) and did not require ethical
approval or patient consent. The treatment of patients was guided purely based on ICP and
CPP measurements, the indices of PRx and CPPopt were observed only and did not determine
the management of the cohort.
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Fig 1. Flow chart demonstrating the recruitment of pediatric traumatic brain injury patients.

doi:10.1371/journal.pone.0148817.g001

Inclusion criteria were as follows: 1) TBI -related pathology, confirmed on CT or MRI, 2)
severe injury (GCS <8) failing to demonstrate significant early clinical improvement (i.e. poor
neurology on sedation hold) and 3) requiring invasive monitoring of ICP and MAP. Patients
were excluded if they were unlikely to survive for over 24 hours or there was any suspicion of
non-accidental injury (NAI Fig 1). Patients were managed according to current pediatric TBI
guidelines [11] and followed the local protocol established in the pediatric intensive care unit
(PICU; S1 Appendix). Patients were initially sedated, intubated, ventilated, and paralyzed.
Interventions were aimed at keeping ICP < 20 mm Hg using a stepwise approach of head-up
positioning, sedation/analgesia, muscle paralysis, moderate hyperventilation, ventriculostomy
and osmotic agents. All patients were sedated and paralysed in the cohort however no patients
received induced hypothermia or barbiturate coma. Only two patients received vasopressor
support to maintain CPP (neither of which survived). No patients underwent decompressive
hemicraniectomy.

Data Acquisition and Analysis

ICP was monitored with an intraparenchymal microsensor inserted into the right frontal cor-
tex (Codman ICP Micro- Sensor, Codman & Shurtleff, Raynham, MA) and mean arterial pres-
sure (MAP) was monitored in the radial or femoral artery with a zero calibration at the level of
the right atrium (Baxter Healthcare CA, USA; Sidcup, UK). All signals were digitized using an
A/D converter (DT9801, Data Translation, Marlboro, MA), sampled at a frequency of 100 Hz,
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Fig 2. Example of a 4 hour epoch of multimodality monitoring signals in pediatric TBI. In this screenshot, CPP is shown in the top panel and the
pressure reactivity index in the second panel over a 4 hour period from 06:00 to 10:00. In the third panel is a risk chart whereby a negative PRx (good
autoregulation) is denoted by a grey colour, and a disturbed PRx (>0.3) is denoted in black. In two instances, CPP drops below 60 mm Hg. During these
drops in CPP, PRx is deranged (black on the risk chart). On the bottom panel, CPP is plotted against PRx and a polynomial curve is fitted. The minimum of
this curve is around 65 mm Hg, which would therefore indicate the optimal CPP at time point 10:00.

doi:10.1371/journal.pone.0148817.9002

and recorded using a laptop computer with ICM+ software (University of Cambridge, Cam-
bridge Enterprise, Cambridge, UK, http://www.neurosurg.cam.ac.uk/icmplus). The same soft-
ware was later used for the retrospective analysis of all stored signals (Figs 2 and 3). Time-
averaged values of ICP, MAP, and CPP (CPP = MAP-ICP) were calculated using waveform
time integration over 60-sec intervals. Cerebrovascular PRx was calculated as a moving Pear-
son correlation coefficient between 30 consecutive, 10-second averaged values of MAP and cor-
responding ICP signals (with 80% overlap of data) [7]. Averages over 10 seconds were used to
suppress the influence of the pulse- and respiratory frequency wave components. A positive
correlation between MAP and ICP in this frequency range is indicative of a passive cerebral
vasculature and impaired autoregulation. Negative correlation between MAP and ICP at the
same frequency is indicative of reactive vasculature and intact autoregulation [12,13,14]. PRx
values greater than 0.2 indicate severely disturbed autoregulation and are associated with a
poorer outcome in adults [7]. Artefacts were manually identified after data collection and
excluded from further analysis.

Multi-modality monitoring was commenced at the nearest possible opportunity after the
patient had been transferred to the tertiary setting and was terminated when sedation was lifted
and the child either began to waken or died. The average time of data collection for the cohort
was 3.5 days.

CPP optimal was continuously calculated as described previously [10]. Using the preceding
4 hours of data, PRx values were averaged into different observed CPP ranges spanning 5 mm
Hg. An automatic curve fitting method (see Aries et al., [10] for details) was then applied to the
CPP-PRx data to determine the CPP value with the lowest associated PRx value- CPPopt. This
CPPopt value was updated every minute using a moving 4-hour time window. The algorithm
was set so a CPPopt could be generated if at least 50% of the data points in the 4-hour window
were available (i.e., with a minimum of 2 hrs of monitoring). An illustrative example from an
individual patient is shown in Fig 3.
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Fig 3. Real-time calculation of CPPoptimal in-vivo. Fig 3A is an example of a pediatric TBI patient. ICP is displayed in the top panel, followed by CPP

(both the absolute CPP (line) and the calculated CPPopt (circles)), a risk chart of PRx and finally a histogram indicating the time spent at various distances
from the calculated optimal CPP. Although this patients CPP was above 60 mm Hg for the whole of this recording, CPP was consistently below the calculated
optimal CPP. This is depicted in the histogram which indicates that over this 2 day period, the patient spent almost 20% of time (expressed as a percentage of
the total time CPPopt available) > 10 mm Hg below the instantaneous CPPopt. In the second day of this recording we see persistently disturbed PRx. This
patient died three days after admission. Fig 3B shows an analogous example in another pediatric TBI patient. This patient demonstrated multiple plateau
waves of ICP and a CPP between 60 and 70 mm Hg. Autoregulation as indicated by the PRx risk chart was mainly good. CPP was mainly close to the
calculated optimal CPP as seen in both in the time series view (panel 2) and in the CPP-CPPopt time-histogram (bottom panel). This patient survived.

doi:10.1371/journal.pone.0148817.9003

Values of measured variables from each patient were averaged (mean) over the whole moni-
toring period, so every patient was represented by one set of data containing MAP, ICP, CPP,
and PRx. In individual patients, the differences between CPPopt and median CPP for the mov-
ing-window periods were calculated continuously (ACPP = median CPP-CPPopt). The per-
centage time each patient spent within different 5 mm Hg wide ranges of ACPP was calculated.
The percentage time spent with a CPP more than 10 mm Hg below (ACPP< -10 mm Hg),
more than 10 mm Hg above (ACPP> 10 mm Hg), or within 10 mm Hg (ACPP = -10 to 10 mm
Hg) of CPPopt was calculated for each patient.

Clinical outcome was assessed by a clinician at discharge from ICU and at an outpatient
clinic 6 months after the time of injury. The primary outcome measure was survival.
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Statistical Analysis

All physiological data are summarized as the medians with their associated interquartile range
(IQR). Differences in physiological values between survivors and non-survivors were interro-
gated with the Mann-Whitney U-test. The significance level was set to 0.05, and all tests were
two-tailed and unadjusted for multiple comparisons. All data analyses were performed on
SPSS version 21.0 software (SPSS Inc., Chicago, IL).

Results

The mean age at presentation was 6.25 years (range 3 months-13 years); the cohort was split
equally between sexes (Table 1). 92% of patients were involved in a road traffic collision; 75%
of which were car vs patient and 25% car vs car. One patient sustained a fall from a significant
height. The Modified Marshall scores ranged from 1-5 with a mode of 2. Survival was identical
at ICU discharge and at 6 months 8/12 (66%) of the cohort surviving the acute brain injury. Six
survivors had a GOS of 5 with the remaining two children having a score of 4 and 3
respectively.

The median ICP was significantly lower in those who survived 13.1+3.2 mm Hg
(median + IQR) compared to those who did not 21.6+42.9 mm Hg (p = 0.003; Table 2).

Table 1. Table of demographics of patients with traumatic brain injury included in the study. The statistical tests are all univariate and uncorrected for

multiple comparisons.

Age, mean * SD

Male (%)

Admission GCS, median (range)
Motor Score

Mechanism of injury

Car vs Patient

Car vs Car

Fall from height

Pupils

Reactive (%)

Fixed Unilaterally (%)

Fixed Bilaterally (%)

Hypoxia

Hypotension

Modified Marshall Score, (median)
SAH on CT (%)

Epidural Mass (%)

Petechial Haemorrhages (%)
Obilteration of Basal Cisterns (%)
Mid-line shift (%)

Surgical Intervention

External Ventricular Drain
Haematoma Evacuation
Decompression

Haemoglobin, mean * SD
Glucose, mean * SD

Glasgow Outcome Score, median (range)

doi:10.1371/journal.pone.0148817.t001

Survived (n = 7) Non-surviors (n = 5) p value
59+3.9 82+6.5 0.45
3 (43) 3 (60) 0.62
9 (3-13) 3(3-9) 0.26
4 (1-6) 1(1-4) 0.21
3 (43) 5 (100) 0.07
3 (43) 0 (0) 0.03
1(14) 0 (0) 0.24
5 (72) 2 (40) 0.1
1(14) 2 (40) 0.45
1(14) 1 (20) 1
1(14) 2 (40) 0.45
2 (28) 0 (0) 0.15
2 3 NA
5(72) 4 (80) 0.8
4 (58) 1 (20) 0.09
3 (42) 1 (20) 0.6
2 (28) 3 (60) 0.3
4 (58) 1 (20) 0.09
2 (28) 1 (20) 0.3
2 (28) 0 (0) 0.15
1(14) 1 (20) 1
79+1.9 11.6 + 3.1 0.01
11.4+1.6 11.1+£3.9 0.9
5 (3-5) 1(1) 0.001
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Table 2. Multimodality monitoring parameters in brain injured patients stratified by outcome at completion of brain monitoring. |ICP—intracranial
pressure, MAP—mean arterial pressure, CPP—cerebral perfusion pressure, CPPopt—optimal cerebral perfusion pressure, PRx—pressure reactivity index,
RAP—cerebrospinal compensatory reserve.

Survivors (n =7) Non-survivors (n = 5) P-value
Median IQR Median IQR Mann-Whitney

ICP (mm Hg) 13.07 3.23 21.64 42.90 0.003
%time ICP > 20 mm Hg 9.73 9.84 60.47 67.40 0.003
MAP (mm Hg) 77.07 17.69 93.00 24.23 0.11

CPP (mm Hg) 63.42 8.10 61.11 38.62 0.91

CPPopt (mm Hg) 63.68 8.94 66.45 18.70 0.48
PRx (a.u.) 0.02 0.19 0.39 0.62 0.02
RAP (a.u.) 0.64 0.27 0.46 0.43 0.11

%time CPPopt available 55.96 13.84 43.48 28.32 0.02
Duration (hours) 75.3 223 82.3 61.8 0.87
%time CPPopt available 55.96 13.84 43.48 28.32 0.02
%time CPP-CPPopt < -10 mm Hg 4.70 5.68 15.17 30.74 0.04
%time CPP-CPPopt -10 to 10 mm Hg 90.68 12.64 70.61 21.78 0.02
%time CPP-CPPopt > 10 mm Hg 5.09 10.03 11.62 16.9 0.76

The statistical tests are all univariate and uncorrected for multiple comparisons.

doi:10.1371/journal.pone.0148817.1002

Additionally, in the survivor group patients had a raised ICP (> 20 mmHg) for only 9.7+9.8%
of the time compared to 60.5+£67.4% in non survivors (p = 0.003). There was a trend towards a
lower arterial blood pressure (MAP) in those who survived 77.1+17.7 mm Hg compared to
those who did not 93.0+24.2 mm Hg (p = 0.11). The pressure reactivity index (PRx) also pro-
vided significant outcome separation, with survivors having a median of 0.02+0.19 as com-
pared to 0.39+0.62 in deceased patients (p = 0.02; Fig 4).

=
z
ABP |} CPP
=)
z
} PRx
z
>
14
o

18/7 00:00 18/7 12:00 19/7 00:00 1947 12:00 20/7 00:00 20/7 12:00

Fig 4. Severely impaired pressure reactivity index during refractory intracranial hypertension. High intracranial pressure was associated with
persistently impaired pressure reactivity index as indicated by the solid red line (coded as black in this figure) on the PRx risk chart. In this situation,
fluctuations in MAP are transmitted to ICP.

doi:10.1371/journal.pone.0148817.9004
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Fig 5. Time spent at different distances from CPPopt in non survivors (light grey) and survivors (dark
grey). In those that survived the distribution of time spent across the various CPP-CPPopt (ACPP) ranges
approximated a normal distribution. Most time was spent in the range between -10 and positive 10 mm Hg,
while only a small proportion of time was spent less than -10 mm Hg or greater than 10 mm Hg from CPPopt.
In non-survivors (light grey), more time is spent in the extreme CPP-CPPopt (ACPP) ranges. This is reflected
in Table 2, those who did not survive spent significantly more time with their with their CPP more than 10 mm
Hg below CPPopt (Mann-Whitney p = 0.04) and less time with their CPP within 10 mm Hg of the CPPopt
(Mann-Whitney U test p = 0.02).

doi:10.1371/journal.pone.0148817.g005

Although there was no evidence that mean cerebral perfusion pressure (CPP) over the
whole monitoring period was different between those patients who survived versus those who
died (p = 0.91) there were significant differences with regards to deviation from CPPopt
(ACPP). Specifically, the duration for which the CPP deviated from CPPopt was significantly
different in survivors (Example data Fig 3 and Results Fig 5). Also, in survivors, time spent
with CPP lower than CPPopt by more than 10 mm Hg was as low as 4.7 + 5.7% of the total
time compared to 15.12 + 30.74% in non-survivors (p = 0.04). Notably, the time spent with
CPP greater than CPPopt by more than 10 mm Hg was also lower for survivors, 5.1 + 10.0%,
than in non-survivors, 11.6 + 16.9% though the difference was not significant (p = 0.76). On
the whole, the total time spent in the +10mmHg zone around CPPopt was 90.7 + 12.6% in sur-
vivors compared to 70.6 + 21.8% in non-survivors (p = 0.02).

Discussion

Our results support the argument proposed by Brady et al.,[5] that PRx can be used to delineate
optimal ranges in CPP on an individual basis. Importantly, we have shown that CPPopt can be
calculated in the pediatric population and may have a prognostic value. Moreover, we have
identified that high ICP, high PRx and longer time spent with a sub-optimal CPP are all associ-
ated with higher mortality when analysed with a univariate model mirroring similar findings
in adults [10].

Multi-modal monitoring has been used extensively in adult TBI to observe haemodynamic
stability, limit secondary insults, obtain accurate neurological assessment and appropriately
select patients for further investigation after acute brain injury [3,15]. But even though patient
population studies have demonstrated that the incidence of hospitalisation and fatal brain
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injury is disproportionately high in children, little has been published on application of multi-
modal monitoring in children [4,5].

The data presented here provides an important insight into the neurophysiology following
acute brain injury in the pre-teenage years. The cohort has similar demographics to that
reported by Brady et al., [5] and there are a number of important similarities to be observed in
the two studies. The modified Marshall score was included in the demographics to demonstrate
both the severity of injury and how likely the patients were to survive based on predictive
scores in adults [16,17].

The assertion that ICP and CPP affect outcome in adults has been well established for over
60 years [18]. The rigidity of the cranium determines a limited ability to perfuse neural tissue
when ICP is raised [19]. In adults, common practice is to augment arterial blood pressure in
instances of raised ICP. However, not only marked elevations of CPP accelerate oedema lead-
ing to secondary intracranial hypertension [20, 21] but they can frequently contribute to sys-
temic insult [22]. This is more frequently observed in patients who present with a reduced GCS
as was the case in our cohort [10]. Although there is insufficient level I & II evidence to support
the notion that uncontrolled ICP and CPP effects outcome in children after brain trauma, joint
management of ICP and CPP is considered standard practice for managing pediatric patients
with severe TBI [11].

Reassuringly, we confirmed in our cohort that high ICP is strongly associated with morbid-
ity. But while Brady et al. [5] found a significant correlation between CPP and outcome this
was not observed here. Instead, there was a significant relationship between outcome and the
deviation from optimal CPP. This seems to be an important finding in this study. The concept
of individualised CPP in adult population has been around for over a decade [8], and has
recently been quoted as an optional strategy in the current TBI guidelines [3], however its
applicability in children is still debated. While there have been no large studies to determine
CPPopt in children Chambers et al., [23] proposed a critical CPP for age stratified populations
in children. Specifically, in the age groups 2-6, 7-10 and 11-16 years of age good outcomes
were associated with CPP values of 43, 54 and 58 mm Hg respectively [21]. Using ACPP values
it was observed that when values of CPP deviate from optimum there is a relationship with
regards to outcome and pressure difference. In particular, those who spent more time with
CPP lower than CPPopt had a poorer outcome.

The findings here stress the importance of guiding TBI treatment using autoregulation indi-
ces in clinical practice. It may be interpreted that any difference between real and target CPP
greater than 10 mmHg must be avoided. These preliminary observations support the need fur-
ther investigation into the feasibility of CPPopt oriented therapy.

Additionally, it is of interest that the haemoglobin was significantly lower in patients who
survived. Whilst the mechanism or interpretation of this is unclear, particularly with the low
numbers involved this could potentially be linked to pre-hospital resuscitation with intrave-
nous fluids, which if performed correctly can improve outcome [24].

In a similar fashion to previous reports, we have observed that cerebrovascular pressure
reactivity provides a strong association with outcome. These findings are particularly interest-
ing because unlike in adults, children are unlikely to have any pre-existing systemic vascular
pathology that could result in impaired cerebrovascular pressure reactivity [16]. Therefore, it
likely that in these children, that the impaired PRx was a consequence of the trauma.

Limitations

An important limitation of this preliminary report is the small sample size. which precludes
multivariate analysis, and in particular relationship between age, ICP and CPP optimal.

PLOS ONE | DOI:10.1371/journal.pone.0148817 March 15,2016 9/11
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Nevertheless, the principal finding of intracranial pressure, pressure reactivity status and devia-
tion from CPPopt being important predictors of outcome is consistent with existing evidence
in adults.

Further, CPPopt could only be calculated less than 60% of the monitoring period. This low
yield is a consequence of the rigid criteria inherent in the curve fitting algorithm (See appendix
of Aries et al., [10]), and may also be influenced by clinical or physiological events such as low
ABP variability [24]. Techniques to improve the availability of CPPopt targets are essential if
the CPPopt concept is to provide real-time clinical support and such techniques should be
investigated in further studies. Finally, the study was a preliminary feasibility study and was
not designed to measure the effects of critical care interventions such as surgical interventions,
medication exposure (eg, barbiturates, hypertonic saline solution, or vasoactive agents).

Conclusion

Our observations provide further evidence that multi-modality monitoring is useful in children
with acute brain injury. ICP, PRx and ACPP appear to provide significant correlations with
outcome. As such, a large multicenter, prospective study is required

Supporting Information

S1 Appendix. Local ICP protocol for Cambridge University Hospitals head injury manage-
ment.
(PDF)
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