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A B S T R A C T   

Recently, automatic computer-aided detection (CAD) of COVID-19 using radiological images has received a great 
deal of attention from many researchers and medical practitioners, and consequently several CAD frameworks 
and methods have been presented in the literature to assist the radiologist physicians in performing diagnostic 
COVID-19 tests quickly, reliably and accurately. This paper presents an innovative framework for the automatic 
detection of COVID-19 from chest X-ray (CXR) images, in which a rich and effective representation of lung tissue 
patterns is generated from the gray level co-occurrence matrix (GLCM) based textural features. The input CXR 
image is first preprocessed by spatial filtering along with median filtering and contrast limited adaptive histo
gram equalization to improve the CXR image’s poor quality and reduce image noise. Automatic thresholding by 
the optimized formula of Otsu’s method is applied to find a proper threshold value to best segment lung regions 
of interest (ROIs) out from CXR images. Then, a concise set of GLCM-based texture features is extracted to 
accurately represent the segmented lung ROIs of each CXR image. Finally, the normalized features are fed into a 
trained discriminative latent-dynamic conditional random fields (LDCRFs) model for fine-grained classification 
to divide the cases into two categories: COVID-19 and non-COVID-19. The presented method has been experi
mentally tested and validated on a relatively large dataset of frontal CXR images, achieving an average accuracy, 
precision, recall, and F1-score of 95.88%, 96.17%, 94.45%, and 95.79%, respectively, which compare favorably 
with and occasionally exceed those previously reported in similar studies in the literature.   

1. Introduction 

The coronavirus disease 2019 (so-called COVID-19) is a serious and 
highly contagious disease caused by infection with a newly discovered 
virus, named severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), which has first emerged from Wuhan city, Hubei Province of 
China in December 2019, and since then it has rapidly spread to almost 
all countries and territories in the world, causing an unprecedented 
global pandemic in the history of mankind [1,2]. On January 30, 2020, 
the Director-General of the World Health Organization (WHO) has 
declared the Chinese outbreak of COVID-19 a public health emergency 
of international concern (PHEIC) posing a significant risk to countries 
with vulnerable fragile health systems, and subsequently the outbreak 
was officially recognized as a pandemic in March 2020 by the WHO [3]. 
As of March 2021, over 119 million global cases of COVID-19 have been 
reported worldwide, including above 2.6 million acknowledged deaths. 
Meanwhile, around 94 million people have recovered since the 

beginning of the epidemic, while there are almost 20 million active cases 
worldwide, and the pandemic is still escalating, with no signs of stop
ping or even throttling down. The United States, India, and Brazil are 
now among the countries facing the worst of the global outbreak of the 
pandemic. 

According to WHO, the new COVID-19 virus is primarily transmitted 
among people in the same vicinity, especially through contact routes 
with small respiratory droplets containing the pathogen, expelled by an 
infected person during expiratory events (e.g., coughing, sneezing, 
laughing, breathing, and talking). The droplets that carry the virus can 
normally travel only short distances through the air, before they fall 
onto surrounding surfaces or the ground. Virologist have now found that 
the virus can spread not only via aerosol droplets expelled by the patient 
while speaking, sneezing, or coughing, but also by touching contami
nated hands and inanimate surfaces or objects. For example, when an 
infected person sneezed or coughed, and a droplet landed on a surface, 
other people could become infected by touching that surface [4,5]. 
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Importantly, based on currently available credible evidence emerged 
from an analysis of thousands of cases recorded in China, airborne 
spread has not yet been reported for COVID-19, and thus it does not 
appear to be a major driver of transmission. Mounting evidence has 
indicated that the virus could spread even if people didn’t have symp
toms. However, infected people are highly contagious during the first 
three days after they develop symptoms [6]. 

Fever is usually referred to as the most common symptom of COVID- 
19 infection, though not everyone develops it. Other possible signs or 
symptoms well observed by physicians, may include dry cough, short
ness of breath, fatigue, body ache, loss of appetite, and distorted sense of 
smell or taste, which is often likely to indicate viral pneumonia [7]. 
According to the WHO, the intrinsic incubation period (i.e., the time 
from infection to the onset of symptoms) is currently believed to occur 
within 2–14 days [8], though symptoms typically appear within 4 or 5 
days after exposure. The WHO has earlier recommended masks for 
healthy people, including those who don’t exhibit COVID-19 symptoms, 
only if they take care of a person suspected of being infected or 
confirmed to be infected with COVID-19. Moreover, enough emphasis 
has been given by doctors, and health care experts are stressing on the 
importance of wearing face masks during the pandemic for protection 
from the airborne sneeze and cough. On December 11, 2020, the US 
Food and Drug Administration (FDA) has issued the first emergency use 
authorization (EUA) for emergency use of Pfizer/BioNTech COVID-19 
vaccine for the prevention of COVID-19 for individuals 16 years of age 
and older. Currently, other vaccines, different from Pfizer-BioNTech’s 
vaccine, have been authorized in the US and recommended to prevent 
COVID-19 such as Moderna’s vaccine and, most recently, Johnson & 
Johnson’s vaccine. According to the Centers for Disease Control (CDC), 
these vaccines are found to be not only safe and effective, but critical to 
protecting people from COVID-19. 

As per the interim phase 3 trial data released on November 23, 2020 
by the University of Oxford, the Oxford-AstraZeneca COVID-19 vaccine 
has been first approved for emergency use in the UK’s vaccination 
programme, and the first vaccination outside of a trial has been 
administered on January 4, 2021. It is worth mentioning that the Pfizer- 
BioNTech’s, Moderna’s and Oxford-Astrozaneca’s vaccines all have a 
dual dose requirement, spaced out a few weeks apart. In several regions 
of the world, there are multiple candidate vaccines against COVID-19 
currently under investigation, with large-scale Phase 3 clinical trials. 
On February 27, 2021, large-scale clinical trials have been carried out 
for two COVID-19 vaccines (i.e., AstraZeneca and Novavax) in the U.S., 
demonstrating their consistent and robust high-level efficacy in pre
venting severe COVID-19 disease. Furthermore, Atrium Health as a part 
of the COVID-19 Prevention Network (CoVPN) is currently aiming at 
enrolling thousands of volunteers in large-scale clinical trials for testing 
a variety of investigational vaccines and monoclonal antibodies inten
ded to protect people from COVID-19. 

The primary laboratory diagnostic tool for SARS-CoV-2 (COVID-19) 
infection is the detection of the viral RNA (genetic material) in samples 
collected from nose or throat swabs. Today, real-time reverse-tran
scriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR, and 
nested RT-PCR are the most widely used techniques employed for the 
diagnosis of COVID-19 [9]. In other words, the COVID-19 RT-PCR test is 
a most accurate nucleic acid test that looks for replication of the viral 
RNA in the patient’s sample. Radiological imaging techniques such as 
digital CXR and thoracic computed tomography (CT) could potentially 
be used for early screening, diagnosis, and treatment of patients with 
suspected or confirmed COVID-19 infections [10,11]. 

Due to the low sensitivity of RT-PCR quantification, a highly-false 
negative rate is obtained. Therefore, it is difficult to confidently di
agnose COVID-19 infection that affects the timely treatment and 
disposition of infected patients. On the other hand, radiological imaging 
(CXR and CT) are capable of playing a crucial role in the evaluation of 
the clinical course of COVID-19 and then in the selection of appropriate 
management of infected patients. Although the CT scan is gold standard 

for diagnosis, digital CXR systems are still particularly useful in emer
gency diagnosis and treatment, because they are fast, easy, relatively 
inexpensive, widely available, and able to deliver lower radiation doses 
[11,12]. The significantly large number of individuals in the U.S. who 
tested positive for Covid-19 makes the use of regular screening on a daily 
basis enormously challenging for physicians. Hence, on March 2020, the 
U.S. federal administration has encouraged health experts and re
searchers to embrace artificial intelligence (AI), machine learning (ML), 
and other emerging technologies to combat the COVID-19 global 
pandemic [10]. 

In this paper, our main contribution is twofold: on one hand, an 
automated detection framework is developed to detect COVID-19 pre
cisely and quickly from CXR images. On the other hand, the presented 
CAD system is trained and optimized with five-fold validations using 
data from two different digital X-ray datasets, i.e., IEEE8023/Covid 
Chest X-Ray [13,14] and ChestX-ray8 [15]. In the proposed framework, 
a minimal set of GLCM based features is extracted to properly model the 
texture information in CXR images. The final reduced set of texture 
features is then fed into a discriminative LDCRF model to perform 
fine-grained classification for detection of COVID-19 from CXR images. 
The findings suggest that the use of a reduced set of features in the 
proposed framework not only significantly simplifies the work of the 
discriminative LDCRF classifier, but also could potentially improve the 
classification accuracy and the scalability of the approach. An additional 
advantage of diminishing the size of extracted features is that the time 
complexity of the system drops significantly. In addition, it is antici
pated that findings of this study are likely to be of interest and hopefully 
assistance to other researchers who are contemplating carrying out 
similar studies on automated CAD of COVID-19 from radiological im
ages. The rest of this paper is structured as follows: a brief overview of 
relevant literature is presented in Section 2. Section 3 describes the 
proposed automated CAD framework for COVID-19 from radiological 
images. Experimental results and performance evaluations are demon
strated in Section 4. Finally, in Section 5, conclusion and perspectives for 
future work are drawn. 

2. Related work 

Just after the emergence of COVID-19 epidemic in late 2019, a 
growing number of researchers in the fields of AI and medical image 
understanding have shown increasing interest in developing high per
formance automatic CAD systems for COVID-19 from chest radiographic 
images. Thanks to the efforts of these researchers, multiple AI studies 
using chest radiographic images have been emerging to aid physicians to 
manage patients with COVID-19 pneumonia [8,16–18]. In Ref. [19], a 
patch-based deep learning convolutional neural network (CNN) 
approach for COVID-19 diagnosis from CXR images, using a relatively 
small number of trainable parameters. In this approach, full lung regions 
are segmented from the CXR image, by using a fully connected DenseNet 
103 (FC-DenseNet 103) semantic segmentation network model built 
from 103 convolutional layers. In regard to classification, multiple 
random patches (i.e., ROIs) are extracted from the segmented lung re
gions to be then fed as inputs to the multimodal ML classification model. 
The CXR image samples used in this study were collected from both 
healthy persons and patients diagnosed with tuberculosis, bacterial 
pneumonia, and viral pneumonia caused by COVID-19 infection. The 
diagnostic model performed quite well, achieving an overall accuracy 
88.9% of and an F1-score of 84.40%. 

In a similar vein, Ozturk et al. [11] have suggested the deep learning 
DarkCovidNet model to automatically detect and diagnose COVID-19 
from digital CXR images. Their model consisted of a total of 17 con
volutional layers, and was potentially capable of handling both binary 
(COVID-19 vs. non COVID) and multinomial classification (COVID-19 
vs. bacterial pneumonia vs. non-COVID-19 viral pneumonia). Overall 
diagnostic accuracies of 98.08% and 87.02% were obtained for binary 
and multinomial classifications, respectively. Similarly, in. [20], Fan 
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et al. presented a deep learning network (Inf-Net) for COVID-19 lung 
infection segmentation to identify suspicious regions indicative of 
COVID-19 on chest CT images, based on randomly selected propagation. 
In their approach, a parallel partial decoder is utilized to yield the global 
representation of the final segmented maps. Then, implicit reverse 
attention and explicit edge attention are used to model the boundaries 
and enhance the representations. The model archived quite satisfactory 
segmentation results, with a Dice of 0.74 and an alignment index of 
0.89. 

In May 2020, in Ref. [18], the authors introduced a deep learning 
network model (COVID-Net) to distinguish patients with confirmed 
COVID-19 infection from healthy individuals and those with pneu
monia, based on CXR images. On the same CXR image dataset, the 
classification performance of the model was then compared with the 
those of VGG-19 and ResNet-50 models. The outcome of the comparison 
concluded that COVIDNet significantly outperformed both VGG-16 and 
ResNet-50 models, with positive predictive values (PPVs) of 0.90, 0.91, 
and 0.99 for healthy, pneumonia, and COVID-19, respectively. More
over, in Ref. [21], a deep learning COVIDXNet model was proposed to 
differentiate patients with COVID-19 from healthy persons, using 50 
CXR images. Seven well-established deep learning networks has suc
cessfully been employed as feature extractors. A concrete comparison, of 
the COVIDXNet modelling scheme to other two deep learning models (i. 
e., VGG-19 and DensNet201), has demonstrated that the COVIDXNet 
model results in better results, with a potential diagnostic performance 
rate of 90%. 

Additionally, in Ref. [22], Ahuja et al. developed a three-stage deep 
learning model for detecting COVID-19 from CT scan images, by con
ducting a binary classification task. In this approach, data augmenta
tion, abnormality localization, and transfer learning have been 
employed, with different backend deep networks (i.e., ResNet18, 
ResNet50, ResNet101, and SqueezeNet). Experiments showed that the 
pre-trained Resnet18 with the transfer learning strategy is able to give 
the best diagnostic performance, achieving 99.82%, 97.32%, and 
99.40% accuracies on the training, validation, and testing sets, respec
tively. In their study [23], the authors presented five pre-trained CNN 
based models (i.e., ResNet50, ResNet101, ResNet152, InceptionV3, and 
Inception-ResNetV2) as a screening tool for the early detection of 
COVID-19 pneumonia infected patients using CXR radiographs. Three 
binary classifications with four classes (COVID-19, healthy, viral pneu
monia, and bacterial pneumonia) were preformed over 5-fold 
cross-validation. Regarding the classification performance results ob
tained, the prediction capability of the three models to differentiate 
COVID-19 positive patients from those without COVID-19 was assessed, 
and interestingly they found that the pre-trained ResNet-50 has best 
performance as compared to the other models, achieving an overall 
accuracy of 98%. 

Ardakani et al. [24] presented a rapid diagnostic AI approach for 
COVID-19 using 1020 chest CT slices from 108 patients with laboratory 
proven COVID-19 (COVID-19 set) and 86 patients with other atypical 
and viral pneumonia diseases (non-COVID-19 set). Ten CNNs were uti
lized to accurately discriminate COVID-19 patients from other diseases 
in CT images, i.e., AlexNet, SqueezeNet, VGG-16, VGG-19, 
MobileNet-V2, GoogleNet, ResNet-18, ResNet-50, ResNet-101, and 
Xception. The authors have reported that among all networks, 
ResNet-101 and Xception achieved the best diagnostic performance; 
ResNet-101 could distinguish patients with COVID-19 from 
non-COVID-19 patients, with an AUC of 0.99 (and 100%, 99.02% and 
99.51% of sensitivity, specificity and accuracy, respectively), whereas 
Xception presented an AUC of 0.994 (with 98.04%, 100%, 99.02% of 
sensitivity, specificity and accuracy, respectively). However, this study 
revealed that the diagnostic performance of the radiologist was gener
ally moderate in differentiating COVID-19 from other viral pneumonias 
on chest CT, with an AUC of 0.873 (and 89.21%, 83.33% and 86.27% of 
sensitivity, specificity and accuracy, respectively). Furthermore, it was 
concluded that not only ResNet-101 is best considered as a high 

sensitivity model to screen and diagnose COVID-19 cases, it can also best 
serve as an assistance diagnostic tool in radiology departments. 

In [25], Hassanien et al. introduced a totally methodology for 
detecting COVID-19 cases using CXR images, where an assist vector 
gadget (i.e., a support vector machine (SVM)) is used to classify the 
COVID-19 affected CXR images from others, using deep features. This 
technique is intended as an auspicious computer-aided diagnostic tool to 
assist the clinical practitioners and radiologists in early detection of 
COVID-19 infected cases. The diagnostic system has shown promising 
results in terms of high accuracy in classification of the infected lung 
with COVID-19 infection, where average sensitivity, specificity and ac
curacy of 95.76%, 99.7%, and 97.48% have been achieved, respectively. 

3. Proposed methodology 

In this section, we present proposed methodology for automatic 
detection of COVID-19 pneumonia. The overall conceptual block dia
gram depicting the main steps of the proposed CAD system of COVID-19 
is shown in Fig. 1. 

The general structure of the proposed CAD framework works as 
follows: as an initial step, each lung region suspected of having COVID- 
19 infection is first segmented by applying iterative automatic thresh
olding and morphological operations. Then, an optimized set of second- 
order statistical texture features is extracted from gray level co- 
occurrence matrix (GLCM) of both COVID-19 and normal healthy CXR 
image samples. A 1D vector representation is obtained from the 
extracted GLCM-based texture features and then fed into a CRF model 
for COVID-19 classification. In the following subsections, the workflow 
steps of the proposed methodology are explained in detail. 

3.1. Image preprocessing 

The image preprocessing step is basically responsible for detecting 
and reducing the amount of artifacts from the image. In CXR images, this 
step is necessary, since many CXR images contain some noise and un
wanted artifacts such as patient cloths and wire that have to be removed 
to diagnose COVID-19 accurately. In the proposed methodology, the 
preprocessing step involves three main processes: (i) image resizing, (ii) 
noise removal by applying a simple 2D smoothing filter, (iii) image 
contrast enhancement [26] by pixel adjustment and histogram equal
ization (see Fig. 2). 

The ultimate aim of lung segmentation is to isolate lung regions in 
CXR images and Computed Tomography (CT) scans. The automated 

Fig. 1. Functional block diagram of the main steps in the presented CAD system 
for COVID-19. 
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lung segmentation is mostly performed as a pre-processing step of lung 
CXR image analysis and plays a pivotal role in all lung disease diagnosis. 
For the segmentation of lung regions in a CXR image, the proposed 
method involves iterative automatic thresholding and masking opera
tions applied to contrast-enhanced CXR images. The lung segmentation 
procedure begins with applying automatic thresholding in each CXR 
image plane, based on Otsu discrimination criterion [27]. Binary masks 
are then crated and combined to generate a mask that achieves 
improved lung boundary segmentation accuracy. The segmented lung 
image may additionally include over-segmented areas (tiny blobs) 
which are too small to be part of lung tissues. To tackle this problem, a 
straightforward solution is to apply a morphological-area opening filter 
on the binary image. In addition, a finer segmented image which in
cludes only the lung tissues can be obtained by smoothing the binary 
image with an iterative median filter of adjustable size. 

In order to solve the problem of detecting extremely small non-lung 
tissues and to avoid confusion between isolated artifacts and lung tis
sues, an adaptive morphological open-close filter is iteratively applied to 
the resulting binary image to remove objects that are too small from the 
binary image, while maintaining larger objects in shape and size. This 
filter is best realized as a cascade of erosion and dilation operations 
using locally adaptive structuring elements. The morphological opera
tions (opening and closing) for filling holes and boundary smoothing of 
the segmented lung regions are defined as follows: 

γE(f ) = (δE∘ϵE)(f ), (1)  

ψE(f ) = (ϵE∘δE)(f ) (2)  

where ϵE and δE denote the two basic morphological operations erosion 

and dilation, of an image f(x), respectively, which are defined using flat 
structuring elements (SEs) E(x) as follows: 

ϵE = ∧{f (u), x ∈ E(u)}, (3)  

δE = ∨{f (u), u ∈ E(x)} (4)  

where ∧ and ∨ denotes the minimum and maximum operators, respec
tively. Finally, a modified canny edge detector [28] is applied to perform 
robust lung boundary detection. A sample of lung segmentation along 
with boundary detection can be seen in Fig. 3. 

3.2. Haralick feature extraction 

Generally speaking, feature extraction is a key step in various image 
classification and pattern recognition applications, which aims to 
retrieve discriminative features from image data (or ROIs), and later 
these features are fed as input vectors to the machine learning models, 
from which a visual description, interpretation or understanding of 
image contents can be automatically provided by the machine. Specif
ically, in the proposed CAD system for COVID-19, an adaptive GLCM- 
based feature extraction technique is employed to obtain a compact 
set of discriminative texture features [29] (e.g., contrast, entropy, ho
mogeneity, etc.) from chest X-ray images. Here, a second-order meth
odology is adopted to extract second-order statistical texture features, 
which considers the connectivity of cluster pixels in an input chest X-ray 
image I. To significantly facilitate the computation of GLCM, the gray 
level of the pixels of each preprocessed CXR image is quantized to a 
reduced number ℓ of gray levels (ℓ is experimentally set to 4). Moreover, 
this quantization was found to dramatically reduce the computational 

Fig. 2. Contrast-image enhancement:(a) original image and (b) enhanced image via pixel adjustment and histogram equalization.  

Fig. 3. Sample lung segmentation:(a) pre-processed image, (b) Otsu’s thresholding, (c) a cascade of dilation, hole filling and erosion morphological operations, and 
(d) detected lung boundary. 

S. Bakheet and A. Al-Hamadi                                                                                                                                                                                                                



Computers in Biology and Medicine 137 (2021) 104781

5

costs of GLCM, as it is computationally very costly to compute the GLCM 
form all 256 gray levels. The GLCM, P ∈ NN×N can be constructed as a 
matrix of frequencies, by simply counting the number of times each pair 
of quantized gray-levels occurs as neighbors in the quantized image, Ǐ. 
More formally, each element, P(i, j), in the GLCM can be readily 
computed as follows, 

Pij =
∑M

m=1

∑K

k=1

{

1, if ​ Ǐ (m, k) = i, Ǐ(m + Δx, k + Δy) = j, 0, otherwise

(5)  

where δ = (Δx, Δy) is the displacement vector expressed in pixel units 
along x- and y-directions. Fig. 4 below shows an illustrative example of 
how the GLCM is created from the quantized input image. 

It should be noted that it is possible for a GLCM to be created with 
several displacement vectors, e.g., 

δ0◦ = (1, 0) δ180◦ = (− 1, 0)
δ45◦ = (1, 1) δ225◦ = (− 1, − 1)
δ90◦ = (0, 1) δ270◦ = (0, − 1)
δ135◦ = (− 1, − 1) δ315◦ = (1, − 1)

(6)  

for the 8 immediate neighbors of a pixel. Then, a normalized GLCM, P̃ 
representing the estimated probability of the combinations of pairs of 
neighboring gray-levels in the image can be computed as follows, 

P̃ =
P

∑N− 1

i,j=0
Pij

(7) 

Note that the above normalized GLCM can be thought of as a prob
ability mass function of the gray-level pairs in the image, form which the 
following set of optimized texture features can be quantitatively 
calculated. 

Contrast–measurement of the local variations: This feature measures 
the local variations in intensity present in an image (or ROIs). More 
specifically, the contrast measure returns the value of the intensity 
contrast between a pixel and its neighbor pixel over the entire image. 
Hence, it has been argued that a low-contrast image includes a smooth 
range of grays, whereas a high-contrast image contains more tones at 
either end of the spectrum (black and white). This implies that a low- 
contrast image is not characterized by low gray levels, but rather by 
low spatial frequencies. Therefore, the GLCM contrast is highly associ
ated with spatial frequencies, which can be efficiently computed as 
follows: 

Contrast =
∑N− 1

i,j=0
P̃ij(i − j)2 (8)  

where N represents the total number of gray levels used (i.e., the 
dimension of the GLCM). 

Energy, also called uniformity or angular second moment (ASM), 
represents the degree of homogeneity of gray distribution and the 
thickness of texture, which always provides a stabilising measure of 
greyscale patterns; thus, for a lager value on the Energy feature, a more 
stable regulation is obtained. Formally speaking, Energy is quadratic 
sum of GLCM elements and measures the gray level concentration of 
intensity in GLCM, which is calculated from the GLCM using the 
expression given as: 

ASM =
∑N− 1

i,j=0
(P̃ij)

2 (9) 

Inverse difference moment (IDM): measures the local homogeneity of 
an image that reflects the intensity variation within the image. When the 
homogeneity value is increased, the variation intensity in image is 
decreased. Moreover, it is the inverse of contrast; thus, the higher the 

Fig. 4. An illustration example of the computation of the GLCM, where δ = (1, 0).  
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contrast, the lower the homogeneity and vice versa. More specifically, 
Homogeneity is a measure of the closeness of the distribution of GLCM 
elements to its diagonal, which defines the uniformity of a texture, and it 
is derived from the GLCM using the following formula: 

IDM =
∑N− 1

i,j=0

P̃ij

1 + (i − j)2 (10) 

Entropy– a standard measure of randomness is another important 
GLCM feature to distinguish an image texture, which is commonly 
classified as a first degree measure of the amount of disorder in an 
image. The GLCM derived entropy is inversely proportional to GLCM 
energy, and it can be easily calculated from the GLCM elements using 
the following formula: 

Entropy = −
∑N− 1

i,j=0
Pijlg Pij (11)  

where lg denotes the base 2 logarithm. 
Mean: It appears to be the optimal GLCM texture measure, and thus it 

is much more useful than other GLCM textural features. The GLCM Mean 
is not simply the average of all the original pixel values in the image 
window; rather it is mathematically equivalent to GLCM dissimilarity, 
where each pixel value is weighted by the frequency of its occurrence 
and a specific neighbor pixel value. The GLCM Mean, μ = (μi, μj), is 
defined as: 

μi =
∑N− 1

i,j=0
iP̃ij, μj =

∑N− 1

i,j=0
jP̃ij (12)  

where μi and μj are the GLCM means in the horizontal and vertical di
rections, respectively. 

Standard Deviation, also called the square root of GLCM variance, is a 
measure of the variance of the gray levels in the GLCM and should not be 
confused with the marginal variance. GLCM variance in texture per
forms the same task as does the popular descriptive statistic called 
variance. However, the GLCM variance makes use of GLCM, thus it deals 
exclusively with the dispersion around the mean of combinations of 
reference and neighbor amplitudes, so that it is not the same as the 
variance of input amplitudes that can be derived by the ‘Volume Sta
tistics’ attribute. Formally, the GLCM variance is computed as follows: 

σi =
∑N− 1

i,j=0
(i − μi)

2P̃ij, σj =
∑N− 1

i,j=0
(j − μj)

2P̃ij (13)  

where σi and σj are the GLCM standard deviations in the horizontal and 
vertical directions, respectively. 

Correlation: The correlation feature obtained from GLCM exhibits 
similar discriminative capability as the Contrast feature, and it gives a 
quantitative measure of how a pixel is closely connected or correlated 
with its neighbor over the image. In other words, Correlation figures out 
the linear gray-level dependency between the pixels at the specified 
positions relative to each other. The range of correlation property lies 
between [− 1, 1]. The strength of the association between images is 
quantified by a correlation score, e.g., a correlation value close to +1 or 
− 1 implies that two images are highly associated (positively or nega
tively, respectively). The correlation of the GLCM can be derived as 
follows, 

Correlation =

∑N− 1

i,j=0
P̃ij(i − μi)(j − μj)

σiσj
(14)  

where μi, σi, μj, σj denote the mean and standard deviation values for the 
normalized GLCM elements computed in horizontal and vertical di
rections, respectively. 

RMS: This feature is statistically expressed as the square root of the 

arithmetic mean of the square of the ordinates of a given sample of n 
values. Formally, RMS can be stated as follows, 

RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Y2
1 + Y2

2 + ⋯ + Y2
n

n

√

(15)  

where Y1, Y2, …, Y1 denote the ordinates of the sample. 
Smoothness: The goal of image smoothing is to reduce image noise 

and reduce detail. Smoothing is a common statistical technique to 
handle image data by creating approximating functions that attempt to 
capture important patterns in the image data. The smoothness feature 
concerns the image texture which would be either smooth or coarse. In 
texture analysis, a smooth texture is typically characterized as having 
few pixels in a relatively constant gray-level run, and a coarse texture as 
having many pixels in such a run. Moreover, image contrast mainly 
reflects the smoothness degree of the image texture structure; if the 
GLCM has small off-diagonal elements, the image has low contrast, and 
then the texture is smooth. Formally, this provides a contribution to the 
GLCM as follows, 

St = αxt + (1 − α)St− 1 = St− 1 + α(xt − St− 1) (16) 

Skewness: This texture feature is a measure of asymmetry of a his
togram distribution, which reflects gray level histogram properties of a 
given image (or ROI), with a value of zero for a normal distribution. For 
univariate data Y1, Y2, …, YN, the skewness is given by the following 
formula: 

Skewness =

∑N
i=1(Yi − Y)3

/
N

σ3 (17)  

where Y, σ, and N are the mean, the standard deviation, and the size of 
data points. Note that in Skewness computation, σ is calculated with N in 
the denominator rather than N − 1. 

Kurtosis This feature is a statistically second-order parameter that 
quantifies the amount of histogram deviating from the characteristic bell 
shape of a normal distribution. More specifically, kurtosis can well 
describe the distribution tails. There are two types of kurtosis; a positive 
Kurtosis indicates a sharper distribution than the normal, whereas a 
negative Kurtosis indicates a flatter distribution than the normal. Note 
that a Gaussian distribution has a kurtosis of 0. Similar to Skewness, 
Kurtosis can be calculated, as follows, 

Kurtosis =

∑N
i=1(Yi − Y)4

/
N

σ4 (18)  

where Y, σ, and N are the mean, the standard deviation, and the size of 
data points, respectively. Fig. 5 displays a sample CXR image of a 
confirmed COVID-19 case along with plots of its GLCM-based texture 
features. At this point, it is pertinent to emphasize that before starting 
the feature concatenation process, each attribute of the GLCM based 
texture features is normalized into [0,1] to allow for equal weighting 
among each type of feature. The resulting features are then fed into a 
CRF model for finer-grained classification. Furthermore, it could be 
argued that the normalized GLCM based features have immense po
tential for more accurate and robust feature classification that in turn 
has a significantly positive influence on the performance of the proposed 
CAD system for COVID-19. 

3.3. Feature classification 

In this section, we give details of the feature classification module in 
our CAD system for distinguishing COVID-19 from non-COVID-19 cases. 
Broadly speaking, the key purpose of the classification module in the 
current CAD system is to classify each CXR image on the collected 
dataset into one of two diagnostic categories (COVID-19 and non- 
COVID-19), based on the extracted texture features. The classification 
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module depends to a large extent on the availability of a set of clinical 
diagnostic cases. This set of previously diagnostic (or diagnostically 
labeled) cases is conventionally referred to as the “training set”, and thus 
the utilized learning strategy is termed as “supervised learning”. For the 
current task of COVID-19 classification, there are several classification 
techniques available in the existing literature, such as Artificial Neural 
Network (ANN), Support Vector Machines (SVMs), Bayesian Network 
(BN), k-Nearest Neighbor (k-NN), Conditional Random Fields (CRFs), 
etc. In the present work, we opt to adopt the latent-dynamic CRF 
(LDCRF) model for the feature classification task. Due to its inherent 
dependence on CRFs, the LDCRF model is characterized as a typical 
discriminative probabilistic latent variable model that could potentially 
describe the sub-structure of a class label and successfully and reliably 
learn dynamics between class labels. Additionally, it has been shown 
that the LDCRF model could perform significantly well in many large- 
scale object detection problems [30,31], and also it demonstrates 

superior performance in learning relevant context and integrating it 
with visual observations, when compared with other machine learning 
methods such as hidden Markov models, hidden Semi-Markov models, 
and Naive Bayes. 

The LDCRF models have historically emerged as a potential exten
sion to the original CRFs to learn the hidden interaction between fea
tures, and they could be interpreted as undirected probabilistic 
graphical models that provide powerful tools for segmenting and la
beling sequential data. Consequently, they are directly applicable to 
sequential data, eliminating the need for windowing the signal. In this 
manner, each label (or state) suggests a specific diagnostic case. As 
LDCRF models have a class label for each observation, they could learn 
and accurately classify lung patterns in unsegmented CXR images. 
Moreover, the LDCRF models could perfectly infer the lung patterns in 
both training and testing stages. 

Formally speaking, the primary task of the LDCRF model, as 

Fig. 5. A sample of a CXR image of a confirmed COVID-19 case along with plots of its GLCM-based texture features: (a) Original image and (b) a sample of four 
GLCM-based texture features. 
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described by Morency et al. [32], aims to learn a direct mapping be
tween a sequence of raw observations (or features) x = 〈x1, x2, …, xm〉 
and a sequence of labels y = 〈y1, y2, …, ym〉, where each yj is a label for 
the j-th observation in a sequence, which represents a member of a set Y 
of possible class labels. A feature vector φ(xj) ∈ Rd represents an image 
observation xj. For each sequence, suppose h = 〈h1, h2, …, hm〉 be a set of 
latent substructure variables, which are not observed in the training data 
and will therefore form a set of ‘hidden’ variables in the established 
model, as depicted in Fig. 6 below. 

Given the above definitions, we can thus formulate a latent- 
conditional model as follows: 

p(y|x, θ) =
∑

h
p(y|h, x, θ)p(h|x, θ) (19)  

where θ is a set representing the optimal model parameters. Now, given 
a collection of training examples, each labeled with its correct class 
value 

{(
xi, yi), i = 1…n

}
, the goal of the training procedure is to learn 

the optimal model parameters θ from the objective function [33] given 
by 

L(θ)=
∑n

i=1
log p(yi|xi, θ) −

1
2σ2‖θ‖2 (20)  

where n denotes the number of training samples. It is worthwhile 
pointing out that in Eq. (20) above, there are two terms on the right- 
hand side: the first one is the log-likelihood of the training data, while 
the second one corresponds to the log of a Gaussian prior with variance 
σ2, i.e., 

p(θ) ∼ exp
(

1
2σ2

⃦
⃦
⃦
⃦θ‖2

)

(21) 

To estimate the optimal model parameters, we apply an iterative 
gradient ascent algorithm for maximizing the objective function: 

θ∗ = argmaxθL(θ). (22) 

Once the parameters θ* are learned, the trained model can then make 
predictions about unseen (test) data via inductive inference: 

y∗ = argmaxyp(y|x, θ
∗) (23)  

where y* denotes the predicted class label for an unseen sample x. For a 
more detailed discussion of LDCRF training and inference, the interested 
reader is encouraged to refer to Ref. [32]. 

4. Experimental results 

In this section, we present and discuss in detail the results obtained 
from a series of extensive experiments conducted to corroborate the 
success of the proposed CAD model for automated identification of 
COVID-19 through demonstrating or confirming its superior 

performance characteristics. 

4.1. Datasets 

To evaluate the performance of the proposed CAD system, we created 
a mixed dataset generated by the fusion of multiple publicly available 
datasets. Firstly, a set of 500 CXR images representing confirmed 
COVID-19 cases was randomly selected from Github repository devel
oped by Cohen et al. [34], where the CXR images were collected from 
different open sources and hospitals, and 83 female and 175 male were 
diagnosed or tested positive for COVID-19, with an average age of 
around 55 years among the infected patients. Though, the full metadata 
are not provided for all patients in this dataset. Additional 1800 repre
sentative images for COVID-19 positive cases were taken from various 
sources and repositories such as another Github source [35], SIRM 
database [36], TCIA [37], radiopaedia.org [38], and Mendeley [39]. 
Thus, the dataset used here consists of a total of 2,300 CXR images for 
COVID-19 positive cases. The normal (no finding) CXR images were 
obtained from the Chest X-ray8 database developed by Wang et al. [15] 
that comprises a total of 108,948 frontal view images from 32,717 pa
tients. For this study, 2,300 normal CXR images were randomly selected 
to be used in the experiments. Hence, the prepared dataset used to train 
and evaluate the proposed CAD system has a total of 4,600 CXR images 
for COVID-19 positive cases and normal patients. A sample of the dataset 
images can be seen in Fig. 7 above. 

4.2. Performance evaluation and analysis 

For computational efficiency, the dataset images are first converted 
from color to 8-bit grayscale format and down-sampled to a fixed res
olution of 128 × 128 pixels, as a preprocessing step prior to the feature 
extraction phase. Due to the absence of independent dataset, a train-test 
split is randomly applied to the dataset images, with a ratio of 80% and 
20% for training and test set, respectively. In order to obtain reliable and 
robust results independent from the training and test datasets, a k-fold 
cross-validation procedure (with k = 5) has been used throughout the 
evaluation experiments. More specifically, out of the entire dataset im
ages, in each fold, 3,680 images are randomly assigned for training, and 
the remaining 920 images are used for testing. Thus, the classification 
performance measurements are averaged over k splits. To quantitatively 
assess the performance of the present CAD system, several evaluation 
metrics including accuracy, precision, recall, and F1-score are utilized, 
which can be conveniently expressed as follows. 

Accuracy: Accuracy is one of the most intuitive and widely used 
performance measure, and it simply is the probability that a randomly 
chosen instance (positive or negative) will be correct. More specifically, 
it is the probability that the diagnostic test yields the correct determi
nation, i.e., 

Accuracy =
TP + TN

TP + TN + FP + FN
(24) 

Precision: Precision concerns the ability to correctly detect positive 
classes from all predicted positive, which is then defined as a ratio of 
correctly predicted positive classes to the total predicted positive classes: 

Precision =
TP

TP + FP
(25) 

From the equation above, it is pretty obvious that high precision 
always relates to a low false positive rate. 

Recall: Recall, also referred to as sensitivity, hit rate, or true positive 
rate, can be generally thought as a model’s ability to identify all the 
positive cases, and it can thus be expressed as follows: 

Recall =
TP

TP + FN
(26) 

One should notice that the above equation suggests that high recall is 

Fig. 6. Graphical representation of LDCRF model, where hj denotes the hidden 
state assigned to the j-th observation xj, and yj is the class label of xj. The filled 
gray nodes correspond to the observed model variables. 
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certainly associated with a low false negative rate. 
F1-score: Although this score is not as intuitive as accuracy, it is 

particularly advantageous in measuring how precise and robust the 
classifier is. F1 score, which serves as a single measure of test perfor
mance that takes into account both precision and recall, is commonly 
calculated as a weighted average of the precision and recall, 

F1 − score = 2⋅
Precision × Recall
Precision + Recall

× 100% (27)  

where TP (true positive) and TN (true negative) are correctly predicted 
positive and negative COVID-19 cases, respectively, while FP (false 
positive) and FN (false negative) are incorrectly predicted positive and 
negative COVID-19 cases, respectively. Table 1 presents the cross- 
classification table: standard-of-reference COVID-19/non-COVID-19 
vs. model’s prediction COVID-19/non-COVID-19. 

The figures in Table 1 suggest that the proposed CAD model has 
significant potential to deliver a competitive performance in terms of 
average accuracy, precision, recall and F1-score, achieving scores 
95.88%, 96.17%, 94.45%, and 95.79% respectively, in light of the 
equations given above and based on 5-fold cross-validation. In regard to 
the confidence, the proposed diagnostic model has achieved an average 
ROC area under the curve (AUC) of 0.956 (95% confidence interval: 
0.92–0.97). Moreover, the approximated 95% confidence intervals of 
the positive predictive value (PPV) and negative predictive value (NPV) 
of the diagnostic model are 96% (95% CI: 0.947 to 0.984) and 95% (95% 
CI: 0.937 to 0.972), respectively. In order to demonstrate the superior 
performance of the proposed CAD framework over existing state-of-the- 

art in terms of various assessment metrics, a comprehensive perfor
mance comparison with other similar works [40, 41, 42, 43, 44] in the 
literature has been performed. The results of the quantitative compari
son are presented in Table 2. 

The average computation time of the presented CAD system for 
COVID-19 is approximately 3.4 s from image pre-processing to the final 
stage of automatic CAD of COVID-19 pneumonia, so that it can operate 
sufficiently fast for real-time processing, due to its relatively low 
computational costs for lung and lung-lesion segmentation task, as well 
as the real-time GLCM based texture feature extraction and classifica
tion. The proposed automated CAD system has been designed and 
implemented for much of its framework in C++ under Microsoft Visual 
Studio 2016 using OpenCV Vision Library as an ideal implementation 
solution for real-time digital image processing and object detection 
written in optimized C/C++ and designed for multi-core processors. All 
experiments, including tests and evaluations, have been carried out on a 
desktop PC with an Intel(R) Core(TM) i7 CPU 2.60 GHz processor and 8 
GB of RAM running Microsoft Windows 10 Professional x64 edition. 

5. Conclusion 

This paper has presented a CAD method for the identification of 
COVID-19 cases from CXR images, where a rich representation is 

Fig. 7. A sample of CXR images from the used dataset: normal (Row 1) and COVID-19 cases (Row 2).  

Table 1 
Cross-classification: model’s prediction COVID-19/non-COVID-19 cases.   

COVID-19 non-COVID-19 

Test (+) 453 23 
Test (− ) 37 467  

Table 2 
Quantitative performance comparison of the proposed CAD system with those 
presented in previous works.  

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Our method 95.88 96.17 94.46 95.79 
Podder et al. [40] 94.06 94.00 94.00 94.00 
Echtioui et al. [41] 94.14 96.00 86.00 91.07 
Shukla et al. [42] 87.79 92.43 90.16 91.28 
Panwar et al. [43] 88.10 97.62 82.00 89.13 
Konar et al. [44] 93.1 89.0 83.5 82.6  
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constructed from an optimized set of GLCM based texture features to 
accurately represent the segmented lung tissue ROIs of each CXR image. 
The extracted features are normalized and then fed into a discriminative 
LDCRF model for final COVID-19 classification. On a large publicly 
available dataset of frontal CXR images, the method has been rigorously 
tested and validated, achieving an average accuracy of 95.88%, with 
precision, recall and F1-score of 96.17%, 94.45%, and 95.79%, respec
tively, using 5-fold cross-validation. These results provide evidence that 
the proposed CAD methodology can help guide radiologists and medical 
physicists in obtaining a robust diagnosis model to distinguish COVID- 
19 for non COVID-19 cases confidently and achieve rapid and accu
rate infection detection tests. As prospects for future work, our aim is 
twofold. On the one hand, we intend develop an improved approach for 
lung tissue feature extraction, based on the integration of extensive 
texture features (e.g., GLCM, HOG, LBP, etc.) to construct a hybrid 
feature descriptor. On the other hand, we plan to extend our experi
mentations to additional public CXR datasets from patients who are 
positive or suspected of COVID-19 or other viral and bacterial 
pneumonias. 
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