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Abstract: Objective: The Beijing strain of Mycobacterium tuberculosis (MTB) is controversially pre-
sented as the predominant genotype and is more drug resistant to rifampicin and isoniazid compared
to the non-Beijing strain. We aimed to compare the major gene mutations related to rifampicin and
isoniazid drug resistance between Beijing and non-Beijing genotypes, and to extract the best evidence
using the evidence-based methods for improving the service of TB control programs based on ge-
netics of MTB. Method: Literature was searched in Google Scholar, PubMed and CNKI Database.
Data analysis was conducted in R software. The conventional and Bayesian random-effects models
were employed for meta-analysis, combining the examinations of publication bias and sensitiv-
ity. Results: Of the 8785 strains in the pooled studies, 5225 were identified as Beijing strains and
3560 as non-Beijing strains. The maximum and minimum strain sizes were 876 and 55, respectively.
The mutations prevalence of rpoB, katG, inhA and oxyR-ahpC in Beijing strains was 52.40% (2738/5225),
57.88% (2781/4805), 12.75% (454/3562) and 6.26% (108/1724), respectively, and that in non-Beijing
strains was 26.12% (930/3560), 28.65% (834/2911), 10.67% (157/1472) and 7.21% (33/458), separately.
The pooled posterior value of OR for the mutations of rpoB was 2.72 ((95% confidence interval (CI):
1.90, 3.94) times higher in Beijing than in non-Beijing strains. That value for katG was 3.22 (95% CI:
2.12, 4.90) times. The estimate for inhA was 1.41 (95% CI: 0.97, 2.08) times higher in the non-Beijing
than in Beijing strains. That for oxyR-ahpC was 1.46 (95% CI: 0.87, 2.48) times. The principal patterns
of the variants for the mutations of the four genes were rpoB S531L, katG S315T, inhA-15C > T and
oxyR-ahpC intergenic region. Conclusion: The mutations in rpoB and katG genes in Beijing are signifi-
cantly more common than that in non-Beijing strains of MTB. We do not have sufficient evidence
to support that the prevalence of mutations of inhA and oxyR-ahpC is higher in non-Beijing than in
Beijing strains, which provides a reference basis for clinical medication selection.

Keywords: Mycobacterium tuberculosis; Beijing and non-Beijing strain; mutation of gene; MDR;
rifampicin and isoniazid

1. Introduction

Tuberculosis (TB) is one of the deadliest transmissible diseases that cause death world-
wide. However, only 10% of people infected with Mycobacterium tuberculosis (MTB) develop
TB disease [1], indicating that either the host or the pathogen’s genetic factors may play
a critical role in determining the occurrence of TB disease. The Beijing strain of MTB
is presented as the predominant strain. It plays a vital role in many countries, such as
Bangladesh [2], Upper Myanmar [3] and China [4,5], with the Beijing strain accounting for
26.8%, 71.4% and 81.7%, respectively. The latter country, China, holds the second highest
tuberculosis (TB) burden, presenting 8.5% of case notifications worldwide [6].
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The Beijing strain of MTB is reported to be more virulent, more pathogenic, and faster-
growing, with more histopathological changes and drug resistance, especially multidrug-
resistance TB (MDR-TB) tendencies, than other strains, leading to a higher mortality rate [7].
The rate of treatment success in MDR-TB remains low, reaching only 47–62.7% [2,8]. MDR
TB is not only a severe clinical and epidemiological problem but also entails substantial
economic costs of management.

Thus, treating patients with resistance to the main anti-TB agents, such as rifampicin
(RIF) and isoniazid (INH), may be many times more expensive compared to treatment costs
incurred by the management of TB susceptible to the main medication panel [9]. MDR-TB
poses a significant threat not only to the individual faced with diminished chances of cure
compared with non-MDR-TB, but also to the community, as outbreaks of MDR-TB have
been shown to have devastating consequences [10].

Furthermore, some studies have suggested an association between drug resistance
and some MTB genotypes [11–13]. Resistance to anti-TB drugs in MTB mainly arises from
genomic mutations in genes encoding either the drug target or enzymes involved in drug
activation [14,15]. Even some efflux pump genes, such as drrA, drrB, efpA, Rv2459, Rv1634,
and Rv1250 [16], were also reported to be related to the resistance of MDR; however, some
previous studies suggested the more common candidate genes’ mutations to be related to
MDR [10,17–19], such as the rpoB gene is associated with rifampicin, and katG, inhA, and
ahpC genes are related to isoniazid resistance [10]. Other genes mutations related to drug
resistance are also reported, such as rpsL K43R to streptomycin, embB M306V to Ethambutol,
pncA promoter T (-11) C to pyrazinamide, gyrA A90V to fluoroquinolones, RRS A1401G to
second-line injection drug, and fabGl_promoter C(-15) T to Ethionamide) [20].

It is addressed that 95% of rifampicin resistance (RR) is associated with the mutation
in the 81 bp rifampicin resistance determining region (RRDR) [21]. Resistance mutations in
RRDR of the rpoB gene were found to be associated with phenotypic RIF resistance. [22].
The rpoB gene codes the β-subunit of DNA-dependent RNA-polymerase, which acts as a
major target for RIF, and up to 95–98% of RIF-resistance strains exhibit mutations in the
rpoB gene, whereas 90–95% of these mutations are located in RRDR [8,23].

INH resistance is associated with mutations in multiple loci, such as the catalase-
peroxidase gene (katG), the enoyl-ACP reductase gene (inhA) and its promoter, the alkyl
hydroperoxide reductase gene (ahpC), and the intergenic region between the oxyR and
ahpC (oxyR-ahpC) genes, which is distinguished from that of RIF [24–26]. One specific KatG
variant, S315T, is found in 94% of INH-resistance clinical isolates. Around 15 mutations in
inhA have been identified in INH-resistance clinical isolates, although two of them were
also found in INH-sensitive strains. In this regard, the analysis of gene expression profiling
of the Beijing strain of MTB can give us a snapshot of actively expressed genes under
various conditions, even though some other researchers hold the opposite issue [27].

Due to the discrepancies between studies possibly resulting from the small sample
sizes and variant detection methods of genes in different areas, pooled evidence is needed
to provide better evidence that inform policymakers’ decisions for controlling TB. Bayesian
meta-analysis (BMA) is reported that it harbors more robustness [28] than the conventional
meta-analysis (MA) and is not limited to the premise of classical statistical methods, which
can be combined with a priori information, sample information and general information,
can obtain the posterior distribution easily and is based on its effect quantity variance
between the mergers of the values, research, other parameters, and 95% CI, e.g., the
shrinkage estimation values with the consideration of the potential publication biases. It
is believed that Bayesian statistical methods will be more widely used in evidence-based
medicine/meta-analyses [28].

This systematic review focused on combining the results about genes relevant to
MDR with the concepts of the classifications of Beijing and non-Beijing using conventional
meta-analysis MA and BMA. We aimed to compare the major gene mutations related to
RIF and INH resistance between Beijing and non-Beijing genotypes and extract the best
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evidence using evidence-based methods for improving the TB control program’s service
based on the genetics of MTB.

2. Methods
2.1. Study Design

This systematic review and Bayesian meta-analysis were conducted according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA,
http://links.lww.com/SLA/C529, accessed on 5 September 2022) (Supplementary File S1
PRISMA checklist) [29] and the meta-analyses of observational studies in epidemiology
guidelines [30,31]. Bayesian meta-analysis is performed using Bayesian methods, which
provide a profitable opportunity for flexible modeling of inter-study heterogeneity by
mildly regularizing priors to obtain a stable estimation, which frequency models prove
impossible to calculate [32,33].

2.2. Literature Search Strategy

To ensure that a piece of relevant contemporary information was obtained [31], limits
were applied to years 1960 onward and MTB genetics or clinic research related to MDR,
or RIF/INH drug resistance. Eventually, a retrieval of literature relating the genetics from
1 January 1960 to the present was performed.

Search engines: Google Scholar, PubMed, ResearchGate, ResearchGate, Cochrane
Library and Chinese National Knowledge Infrastructure (CNKI) Database.

Search terms: MTB AND Beijing AND non-Beijing AND gene mutation AND MDR,
or RIF, or INH drug resistance; rpoB mutation AND Beijing AND non-Beijing AND MDR,
or RIF; katG mutation AND Beijing AND non-Beijing AND MDR, or INH; inhA mutation
AND Beijing AND non-Beijing AND MDR, or INH; oxyR-ahpC mutation AND Beijing AND
non-Beijing AND MDR, or INH.

2.3. Study Selection Criteria

Inclusion criteria: (1) Full article, abstract, letter presenting the major gene mutations
related to MDR of MTB classified as Beijing and non-Beijing strains written in English
or Chinese; and (2) Gray literature related to the first point above, which is a kind of
information produced outside of traditional publishing and distribution channels, and can
include reports, policy literature, working papers, newsletters, government documents,
speeches, white papers, urban plans, and so on, written in English or Chinese [34].

Exclusion criteria: (1) Studies only related to the genes of MTB produced by the
contacts of the studied subjects or produced by the same subject but obtained through
follow-up; (2) studies with drug susceptibility test (DST) involving rifampicin and/or
isoniazid only related to children analyzed; and (3) studies conducted in unique sites, such
as prisons and asylums.

2.4. Data Extraction

Screening of studies and all essential data from the included studies meeting the inclu-
sion criteria were extracted by the investigators (S.G. and V.C.). The principal mutations of
the four genes, rpoB, katG, inhA and oxyR-ahpC, of MTB related to RIF and INH were input
into a predesigned Excel sheet. The results were compared electronically according to the
two classification variables, Beijing and not-Beijing strains. The place with a supposed gene
absence was labeled with “NA” in the Excel sheet.

The study content recorded the data related to the surname of the first author, country
of the subjects, date of publication, study design, sample size, and frequency in the relevant
sheet (Supplementary File S2).

Any records with discrepancies were resolved by referring to the source articles.
Discrepancies between the two reviewers were resolved by consensus involving all the
authors. The R package metagear [35,36] was performed for the initial screening articles for
the literature review.

http://links.lww.com/SLA/C529
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2.5. Data Synthesis and Statistical Analysis

All analyses were conducted using R software (version 3.6.3) with the following
packages, epicalc, medorator and Bayesmeta [28]. The Bayesian random-effects model
was used for Bayesian meta-analysis [28,37]. Significant heterogeneity between studies
would be considered the presence of heterogeneity when the p value is less than 0.05 or I2

is greater than 50%.
The leave-one-out [38] and influence sensitivity analyses were also employed by

iteratively removing one study at a time while recalculating the odds ratio (OR) to assess
the robustness of the pooled values to explore potential sources of inter-study heterogeneity
and to further determine the influence of each study, from which the preprint studies had
been excluded.

Subgroup analysis was employed for the three groups according to the regions, East
Asia, South/Southeast/West/Central Asia and East/North/Central Europe. Potential
publication bias was also assessed by the funnel plot, tests of Egger’s liner weighted
regression [39] and Begg [40]. Asymmetry of the collected studies’ distribution by visual in-
spection or p value is less than 0.05 was considered as statistically significant [41], indicating
the presence of a publication bias evaluated by weight-function. Duval and Tweedie’s trim
and fill method’s assumption was considered to reduce the bias in the pooled estimates [42].
To make it more profitable to interpret, logarithms were converted into corresponding
constants where appropriate.

3. Results
3.1. Literature Search Results

In the initial literature search, 1733 relevant articles were identified. After removing
871 duplicates and 573 articles from primary screening, 198 full-text articles were assessed
for eligibility in the meta-analysis. Of these, 91 were excluded due to a paucity of sufficient
data. Eventually, a total of 134 articles published between 1 January 1960 and 5 March
2022 were included in the quality review part and 31 in the Bayesian meta-analysis part
(Figure 1).
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3.2. Characteristics of Studies Included

As described in Table 1, a total of 31 studies were included in the final Bayesian
meta-analysis. The literature has a relatively wide global range covering Asia (China,
Korea, Japan, Thailand, Indonesia, Kyrgyzstan, Bangladesh, India, Iran and Turkey) and
Europe (Germany, Latvia, Russia, Ukraine and Sweden). Notably, the proportion of studies
conducted in China accounted for the majority.

Table 1. Characteristics of studies included in the systematic review and Bayesian meta-analysis.

Sample Size by
Genotypes rpoB-Rif katG-INH inhA-INH oxyR-ahpC-INH

No. Author Country Year
Isolate
Sample

Size Beijing Non-
Beijing Beijing Non-

Beijing Beijing Non-
Beijing Beijing Non-

Beijing Beijing Non-
Beijing

1 Qian Asian
Countries 2002 66 50 16 45 14 NA NA NA NA NA NA

2 Tracevska Latvia 2003 109 63 46 61 41 63 46 NA NA NA NA
3 Toungoussova Russia 2004 55 24 31 16 20 NA NA NA NA NA NA
4 Park Korea 2005 743 569 174 214 50 250 48 62 26 8 6
5 Hillemann Germany 2005 103 62 41 62 41 59 31 1 2 0 2

6 Nikolayevskyy southern
Ukraine 2007 225 89 136 43 31 52 47 9 22 NA NA

7 Cheunoy Thailand 2009 76 50 26 21 11 32 17 4 3 NA NA
8 Parwati Indonesia 2009 818 273 545 29 48 NA NA NA NA NA NA
9 Hu China 2010 351 243 108 54 9 71 10 NA NA NA NA

10 Mäkinen Russia 2011 439 184 255 83 22 91 21 NA NA NA NA
11 Li China 2016 176 156 20 132 6 131 7 38 2 21 1
12 Ma China 2011 351 243 108 42 9 46 19 NA NA NA NA
13 Yu China 2013 85 78 7 51 4 42 3 1 0 4 0
14 Mokrousov Kyrgyzstan 2013 103 62 41 17 3 17 8 2 4 NA NA
15 Zhang China 2015 376 261 115 258 98 173 58 45 22 32 16
16 Zhao China 2015 58 44 14 44 13 31 6 17 2 3 3
17 Vyazovaya Russia 2015 107 80 27 60 3 71 7 13 5 NA NA
18 Kisa Turkey 2012 95 6 89 4 36 4 36 NA NA NA NA
19 Hong China 2020 447 378 69 216 41 301 41 23 4 NA NA
20 Wang China 2018 276 256 20 132 6 131 7 38 2 21 1
21 Figueroa Russia 2018 179 130 49 90 22 99 23 27 19 NA NA
22 Liu China 2020 173 157 16 138 16 98 9 33 3 NA NA
23 Uddin Bangladesh 2020 205 84 121 84 121 72 88 NA NA NA NA
24 Wan China 2020 183 141 42 141 10 139 7 2 18 2 0
25 Gupta India 2020 381 76 305 29 49 43 73 NA NA NA NA
26 Vyazovaya Russia 2020 130 73 57 40 5 NA NA 3 3 NA NA
27 Gao China 2020 876 749 127 437 72 560 82 104 15 NA NA
28 Luo China 2021 721 409 312 55 33 65 51 NA NA NA NA
29 Luo China 2019 182 157 25 120 21 90 18 24 5 17 4
30 Ghebremichael Sweden 2010 536 70 466 16 59 44 59 8 NA NA NA
31 Khosravi Iran 2014 160 8 152 4 16 6 12 NA NA NA NA

All included studies described critical elements of study design, including study
setting, data source, inclusion criteria, participant selection and statistical methods. No
studies explained the solution to the missing values, mentioned sample size calculation, or
conducted subgroup analysis based on region (Table 1).

3.3. Mutations Prevalence for Mutations of Genes

Globally, 8785 pooled MTB isolates were tested to identify MDR-TB, RIF and INH
resistance patterns, with 5225 identified as Beijing strains and 3560 as non-Beijing strains.
The maximum sample size was 876 strains, and the minimum one was 55 isolates. The
prevalence of mutations for rpoB, katG, inhA and oxyR-ahpC in Beijing strains was 52.40%
(2738/5225), 57.88% (2781/4805), 12.75% (454/3562) and 6.26% (108/1724), respectively;
and that in non-Beijing strains was 26.12% (930/3560), 28.65% (834/2911), 10.67% (157/1472)
and 7.21% (33/458), separately. The principal variants for the four genes were rpoB
Ser531Leu, katG S315T, inhA-15C > T and oxyR-ahpC intergenic region, respectively (Table 2).
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Table 2. Mutations prevalence for mutations of rpoB, katG, inhA and oxyR-ahpC.

Sample Size Mutation Isolates Mutation Rates
Genes Total Beijing Non-Beijing Beijing Non-Beijing Beijing Non-Beijing

Principal Mutations
Pattern

rpoB 8785 5225 3560 2738 930 52.40 26.12 rpoB Ser531Leu
katG 7716 4805 2911 2781 834 57.88 28.65 katG S315T

inhA 5034 3562 1472 454 157 12.75 10.67 inhA -15 C > T, promoter
region of inhA

oxyR-ahpC 2182 1724 458 108 33 6.26 7.21 oxyR-ahpC intergenic region

3.4. Publication Bias and Sensitivity Analyses

The symmetrical distributions of the funnel plots were detected when the publication
biases were evaluated for all the mutations of rpoB, katG, inhA and oxyR-ahpC among Beijing
and non-Beijing strains, paralleled with the p > 0.05 of both Egger and Begg tests, indicating
the absence of the publication biases. The robustness was detected after sensitivity analysis
using leave-one-out and influence tests (Figure 2A–D).
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3.5. Mutations of Major Genes in Beijing and Non-Beijing Strains

Of the 31 studies, 31 studies were evaluated for the mutations of rpoB, 27 studies for
the mutations of katG, 18 studies for the mutations of inhA and 9 studies for that of oxyR-
ahpC [5,10,15,17,20–22,24,43–69]. The subgroup analysis was conducted for the mutations
of rpoB, katG and inhA instead of the mutations of oxyR-ahpC because only a few studies
were included to be analyzed for the latter. All the ORs were assessed using the Bayesian
meta-analysis as well.
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The pooled posterior value of OR for the mutations of rpoB (100% mutated in locus
rpoB S531L) was [exp (log1.00)] = 2.72 ((95% confidence interval (CI): 1.90, 3.94) times
higher in Beijing than in non-Beijing strains for all 31 studies included that evaluated
the mutations of rpoB, analogous with the value of the conventional pooled OR (2.76),
with a statistical significance being found in east subgroup analysis. Meanwhile, the
combined heterogeneity was detected (I2 = 83.5%), and a prediction interval for the effect
as [exp (log1.00)] = 2.72 (95% CI: 0.50, 15.03), meaning there would be an OR of 2.72 for the
same indicators for the 32nd (θk+1) study in the future [28] (Figures 3 and 4).
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Figure 3. BMA for the mutations of rpoB in Beijing and Non-Beijing Strains (CI: confidence interval;
BJ: Beijing strain; Non-BJ: non-Beijing strain).

The converged posterior value of OR for the mutations of katG (100% mutated in locus
katG S531T) was [exp (log1.17)] = 3.22 (95% CI: 2.12, 4.90) times higher in Beijing than in
non-Beijing strains for all the 27 studies included. The mutations of katG, comparable to
the value of the pooled OR (3.26) obtained through the traditional meta-analysis, with a
significant difference were found in each subgroup analysis. Simultaneously, the combined
heterogeneity was detected (I2 = 90.8%), and a prediction interval for effect as [exp (log1.17)]
= 3.22 (95% CI: 0.42, 24.53) was found for the 28th study in the future (Figures 5 and 6).
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The summarized posterior value of OR for the mutations of inhA (100% mutated
in inhA -15 C > T) was [1/exp (log-0.34)] = 1.41 (95% CI: 1/exp (log0.03) = 0.97, 1/exp
(log-0.73) = 2.08; the following algorithm is the same) times higher in the non-Beijing than
in the Beijing strains for all 18 studies included that evaluated the mutations of inhA, with a
significant difference found in the East/North/Central Europe group. Although the pooled
posterior value of the OR between BMA and MA are close (1/0.71 vs. 1/0.70), the values
of the 95% CIs of both diverted with the marginal significance, which was more obvious
rather in the BMA compared to that of the MA (OR = 1.43 (95% CI: 0.95, 2.13)). Furthermore,
a combined heterogeneity was detected (I2 = 63.3%), and a prediction interval for effect as
1.41 (95% CI: 0.41, 4.90) was found for the 19th study in the future (Figures 7 and 8).
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The pooled posterior value of OR for the mutations of oxyR-ahpC (100% mutated in
oxyR-ahpC intergenic region) was [1/exp (log-0.38)] = 1.46 (95% CI: 1/exp (log0.14) = 0.87,
1/exp (log-0.91) = 2.48) times higher in the non-Beijing than in the Beijing strains for all
nine studies included that evaluated the mutations of oxyR-ahpC, without any statistical
significances found, neither in BMA nor in MA (OR = 1.45, 95% CI: 0.94, 2.22). A homo-
geneity (I2 = 0.0%) and a prediction interval for the effect as 1.46 (95% CI: 0.59, 3.71) were
found for the seventh in a future study were identified (Figures 9 and 10).
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4. Discussion

Heterogeneities were identified by both BMA and MA in most mutations of the genes,
and no publication biases were detected. Mutations of rpoB and katG related to RIF and
INH were significantly more common in Beijing than in non-Beijing strains, which were
not identified in the mutations of inhA and oxyR-ahpC. There was not enough evidence to
demonstrate that the mutations of inhA and oxyR-ahpC were higher in the non-Beijing than
in the Beijing strains.

RRDR, the so-called “hot” locus of the rpoB gene (81-b.p., codon 507–533) harbors
around 98% of gene mutations related to RIF drug resistance [8,23]. Compared to the
mutations of katG, which were more prevalent in European countries, combined with the
evidence exhibited in the Beijing and non-Beijing strains in this study, the mutations of rpoB
were more common in Asian countries. This is equivalent to the finding of Anwaiejiang
(isolates collected in China). Despite such miscellaneous mutation locations, most of them
are harbored in three rpoB codons: 531, 526 and 516 [9]. In this current meta-analysis, 100%
of the mutations of rpoB were presented in the pattern of S531L. This is slightly different
from a survey with isolates collected from Japan, Korea, and China [43], in which although
the most prevalent mutations were similar, only Asp-516 was found with a higher mutation
rate in Beijing than in non-Beijing isolates, different from the study results in the Kyrgyz
Republic [9] and Korea [10] that displayed a lower rate in rpoB mutation in Beijing vs. in
non-Beijing [8,65,66].

However, it might not be comprehensive to use the rpoB gene mutation to represent
genes with mutation-conferred resistance to RIF to illustrate the drug resistance of the
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Beijing strain since some new variants have been found in Beijing strains. According to
a previous study, the functional consequence of nonsynonymous Rv2629 as one of the
members of the dosR dormancy regulons was found to be upregulated under dormancy
conditions in Beijing genotype strains and in a phenotype that might confer a selective
advantage under microaerophilic and anaerobic conditions in Beijing strains [70].

The current review demonstrated a prevalence of 100% for the katG315 mutation
related to INH-resistance, higher than in some previous studies [10,43,71]. The katG muta-
tions in Beijing strains of MTB manifested a significantly higher rate than that in non-Beijing
isolates (57.88% vs. 28.65%). The rate was higher than that of a study in Southern Xinjiang,
China (30.6%; 95% CI, 25.8–35.5%, unclassified by lineages). The prevalence of the inhA
promoter region mutation in MTB relevant to INH-resistance in Beijing was lower than
that of non-Beijing strains in the East/North/Central Europe group, with a significance
detected. It might be because the strains of Beijing family strains are not the predominant
ones currently [22]. Notably, according to the previous study, some mutations of inhA
are also found in drug pan-susceptible strains [71]. The drug resistance rate of oxyR-ahpC
of Beijing strains was lower than that of non-Beijing strains (6.26% vs. 7.21%) without
significance in MTB relevant to INH-resistance, although both were higher than that in
a study of Isakova et al. (1.7%). Similar to the way of the katG gene mutation presented
as katG S315T, almost all the mutations related to oxyR-ahpC happened in the oxyR-ahpC
intergenic region (100%) [9].

This systematic review and Bayesian meta-analysis focused on combining the results
of the principal gene mutations of MTB relevant to RIF/INH with the concepts of the
classifications of Beijing and non-Beijing strains. It provides a snapshot of the active genes’
mutations of the circulating MTB and informs policymakers to make feasible decisions
for TB control programs. Furthermore, the pooled data harbors a kind of comprehensive
information that the individual study lacks, releasing the clinical practitioners with MTB
genetics information for reasonable selections of the anti-TB drugs.

However, entirely relying on genetic methods is not that comprehensive and unrea-
sonable since some potential genes’ mutations might have been discovered. Combining
considerations based on the merging data of genetics, clinical and epidemiological concerns
might be a promising exploration.

5. Limitations

There are several limitations in our study. First, due to the local practical conditions,
not all the methods used in the included studies followed the World Health Organization
criteria, leading to some potential heterogeneities, although corrected technically, which
was not as good as it never happening. Second, although the high concern concentrations
are focused on the gene mutations of anti-MTB drug resistance, not so many studies are
available with the forms meeting the requirements of both the four names of gene mutation
related to and the lineages of MTB as well [72], which might lead to some selection biases on
the original studies interpretable for the geographical distribution. Third, we included only
the major common mutations of MTB genes related to RIF and INH instead of all genes’
mutations because of the length limitation of the paper, which might not well interpret the
difference in the gene mutations of the anti-TB drug resistance and the polymorphisms
relevant to the two lineages of MTB.

6. Conclusions

The mutations in rpoB and katG genes in Beijing are significantly more common than
those in non-Beijing strains of MTB. We do not have sufficient evidence to support that
the prevalence of mutations of inhA and oxyR-ahpC is higher in non-Beijing than in Beijing
strains, which provides a reference basis for clinical medication selection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101849/s1. File S2 Data of Studies included.
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