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Abstract
Occlusion-based saliency maps (OBSMs) are one of the approaches for interpreting decision-making process of an artificial 
intelligence (AI) system. This study explores the agreement among text responses from a cohort of radiologists to describe 
diagnostically relevant areas on low-dose CT (LDCT) images. It also explores if radiologists’ descriptions of cases misclas-
sified by the AI provide a rationale for ruling out the AI’s output. The OBSM indicating the importance of different pixels 
on the final decision made by an AI were generated for 10 benign cases (3 misclassified by the AI tool as malignant) and 10 
malignant cases (2 misclassified by the AI tool as benign). Thirty-six radiologists were asked to use radiological vocabulary, 
typical to reporting LDCT scans, to describe the mapped regions of interest (ROI). The radiologists’ annotations were then 
grouped by using a clustering-based technique. Topics were extracted from the annotations and for each ROI, a percentage 
of annotations containing each topic were found. Radiologists annotated 17 and 24 unique ROIs on benign and malignant 
cases, respectively. Agreement on the main label (e.g., “vessel,” “nodule”) by radiologists was only seen in only in 12% 
of all areas (5/41 ROI). Topic analyses identified six descriptors which are commonly associated with a lower malignancy 
likelihood. Eight common topics related to a higher malignancy likelihood were also determined. Occlusion-based saliency 
maps were used to explain an AI decision-making process to radiologists, who in turn have provided insight into the level 
of agreement between the AI’s decision and radiological lexicon.

Keywords Artificial intelligence · Occlusion-based saliency maps · Lung computed tomography · Radiologists

Introduction

Lung cancer is one of the leading causes of cancer-related 
deaths [1]. Worldwide, trials for the effectiveness of low-
dose computed tomography (LDCT) scanning have been 
undertaken, with clear gains in cancer detection at earlier 
stages and subsequent improved treatment options and 
morality [2]. The cost-effectiveness of the lung cancer 
screening is one of the major implementation challenges, 
given its intensive visual task. Using artificial intelligence 

(AI) as a tool to aide radiologists might potentially increase 
the number of detected cancers and hence improve the 
cost–benefit balance of lung cancer screening [3, 4].

There have been many small studies incorporating AI into 
the screening process with very promising results [3–11]; 
however, no country is at the stage where guidelines for 
LDCT lung cancer screening incorporating AI have been 
produced and it is unknown how radiologists interact with 
AI at the level of decision-making. Different scenarios [12] 
for a radiologist-in-the-loop model could be envisaged and 
it is unknown how AI and radiologists can operate in a 
complementary way to produce the most efficient screening 
outcomes in the context of lung cancer screening. More effi-
cient use of AI tools requires an improved computer–human 
interface so that radiologists can understand AIs and place 
the appropriate level of trust.

There are different possible options to present the AI 
prompts to the radiologists and the optimal prompting strat-
egy is unknown. The output of the AI tools can be presented 
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in various forms to the radiologists; for example, all possible 
suspicious areas can be visually shown, or the radiologist 
can click on any area of interest on an image and get the AI 
feedback. Other options include allowing the user to click 
on the AI prompt to launch a pop-up menu to see confidence 
scores, AI generated text description of the identified lesions 
using radiological lexicon, etc. Moreover, interpretability 
of the model, which refers to providing an understanding of 
algorithm output to the end-user, could help the radiologist 
to garner trust in a deployed AI.

Most of the medical imaging studies, aiming at making 
an AI tool interpretable [13], have used a visualization tech-
nique to produce a map overlaid on the original medical 
image to indicate the areas on which AI relied for making 
the final diagnosis/decision [14]. To model interpretation, 
the most direct approach is visualizing the network’s hidden 
layers, through inspection of the learned filters and feature 
maps. As example, Molle et al. [15] used feature maps and 
suggested that the high-level convolutional layers activate 
on similar concepts as utilized by human experts, such as 
lesion margin, presence of darker regions within the lesion, 
or appearance of the surrounding skin. Another group of vis-
ualization algorithms are perturbation-based methods, which 
rely on altering a part of image (e.g., by occluding parts 
of an image or adding noise) and monitoring how strongly 
those perturbations affect the model’s output. Kermany et al. 
[16] performed an occlusion testing on a dataset of optical 
coherence tomography images to identify the areas contrib-
uting most to the AI’s diagnosis. When verified by human 
experts, it was shown that nearly in 95% of images, such 
testing successfully identified the most clinically significant 
areas of pathology. Uzunova et al. [17] used occlusion-based 
maps to show the diagnostically relevant areas on classi-
fication neural network on optical coherence tomography 
images. The usefulness of this approach with brain MRI [18] 
and histopathological images [19] was explored. Many other 
visualization techniques such as guided backpropagation 
[20] and class activation mapping [21] have been proposed 
in the past few years to interpret AI models.

Although many visualization techniques are pseudo-
validated by expert human observers in a sense that they 
are primarily through the highlighted regions only that were 
considered were diagnostically relevant, it is unknown that 
if presenting these maps overlaid on the original medical 
images without further medical annotation or labeling of 
pathologies would facilitate effective trust calibration in AI 
by radiologists. It is also unknown what the level of agree-
ment by radiologists may be when that area is cued or high-
lighted by a method of visualization.

In this study, we explored whether only by showing the 
regions on which AI relied upon to make decisions, radiolo-
gists would agree on a high-level medical label of the area 
(e.g., differentiating a nodule from an artery/vein/vessel). 

We also explored if by only by pointing to the nodular areas, 
the radiologists would agree on radiological descriptors for 
explaining the nodule’s features. We categorized these radio-
logical features as “topics” suggestive of higher or lower 
likelihood of malignancy and investigated the level of agree-
ment among radiologists in selecting these two sets of top-
ics for benign and malignant nodules. We included nodules, 
both correctly classified and misclassified by the AI, and 
explored if the level of agreement differed between these 
two groups. As the focus of this study is the observer agree-
ment, we used a previously developed deep learning model 
for lung CT interpretation [3] and used the occlusion-based 
technique suggested in [22] to produce the saliency maps. 
No matter what visualizing technique is used, currently, the 
models show the areas significant to AI’s decision (some-
times with a confidence level presented in a format of text 
or in a format of colormap) to the radiologists. The tools 
usually do not provide any further labels describing what 
actually this area is. Lack of agreement among radiologists 
in recognizing or describing the areas would suggest radiolo-
gists may require further information about the highlighted 
areas to understand AI’s decision and only indicating diag-
nostically relevant areas are not sufficient to trust AI’s deci-
sions or rule out its output.

Materials and Methods

Experimental Design

This study was approved by the Human Research Ethics 
Committee of the University of Sydney (Project Number 
197/2019). We deployed a previously developed deep learn-
ing model for lung cancer detection [3]. A blinded test set 
of LDCT scans were fed into the trained model and using 
the occlusion-based technique suggested in [22], the sali-
ency maps were generated. The occlusion-based method for 
unboxing an AI tool is a form of perturbation-based visuali-
zation technique [23]. The occlusion-based saliency maps 
indicate the importance of different pixels on the final deci-
sion of AI. In medical imaging, studies on brain MRI [17, 
18, 24] and studies involving optical coherence tomography 
images, histopathological images [19], and chest X-rays [25] 
have shown the effectiveness of this approach to identify 
regions of importance. One of the main drawbacks of this 
approach is its computational burden; as for producing a 
high-resolution saliency map, the inference from the net-
work must be performed many times. In our case, since we 
did this experiment on 20 images derived from 20 cases, 
using this approach was feasible. OBSMs have been recently 
used by Venugopal et al. [26] to unbox AI tool for lung CT 
images as well. Briefly, to produce the occlusion-based sali-
ency, various regions of the image was systematically (i.e., 
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with a pre-defined with a stride) masked and the changes in 
the malignancy score were recorded. Here we used a patch 
size of 4 × 4 × 4 to block the image, as suggested in [26]. 
For example, for an input image of 128 × 128 × 128 and a 
patch size of 4 × 4 × 4 to block the image with a stride of 4 
steps per block, an output saliency map of 32 × 32 × 32 was 
acquired. The output saliency maps were then zoomed back 
to the original image resolution to form and create the final 
image, which was overlaid onto the original image. The test 
set included 10 benign cases (3 misclassified by the AI as 
malignant) and 10 malignant cases (2 misclassified by the 
AI as benign).

The original images and the corresponding saliency maps 
were presented to the radiologists using a MATLAB-based 
application. In the software application for annotating, the 
participants could draw rectangular areas. To draw one 
rectangular area, the participant had to start by clicking in 

the location to set a starting point (upper left corner of the 
rectangle). Then, they had to keep their mouse button held 
down and drag diagonally to draw the rest of the rectangle. 
As they dragged, they would have seen a thin outline of what 
the enclosed area would look like. The participants were 
asked to use their radiological vocabulary (such as terms 
they would use in a general radiology report when view-
ing LDCT for cancer screening) to describe the anatomical 
saliency mapped regions of interest (ROI). We deliberately 
zoomed on the ROI that contained the activated area on the 
OBSM, selecting the CT slice with the highest intensity 
level on the saliency map. Zooming and panning options 
were available on the original, zoomed, and OBSM images. 
An example of image with annotations provided by two 
radiologists is shown in Fig. 1. As shown, the radiologists 
were allowed to annotate the ROI on any of the image they 
preferred or considered important in classifying the image. 

Fig. 1  The environment for annotating the images. The case pre-
sented in (a) and (b) is a malignant case, correctly classified as malig-
nant by the AI. Examples of the annotations provided by two radiolo-
gists to the same case are shown. Radiologists were asked to provide 
descriptors using the lexicon they usually use to report on lung CT 
images. In some cases (similar to a), only a few descriptors were 

assigned to a case while in other cases (similar to b), more compre-
hensive set of textual descriptors were provided. An example of mis-
classified benign and textual descriptors provided by two radiologists 
is shown in (c) and (d). In (e), one of the cases with annotations from 
all participants and the clustering results is shown
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We provided instructions to the radiologists to interpret 
the colors (ranging from blue to red, showing the low to 
high probability of abnormality). On the left side panel, the 
textual descriptors provided by the radiologists are shown. 
As shown in Fig. 1a, a participant might assign only a few 
descriptors to a case while in other occasions, as indicated in 
Fig. 1b, more comprehensive set of textual descriptors could 
be provided. An example of a misclassified benign image, 
and the corresponding textual descriptor provided by two 
radiologists, is also shown in Fig. 1c, d. Radiologists were 
allowed to annotate the areas shown in the heat-mapped ROI 
either on the OBSM or on the original image. Therefore, 
saliency maps and original images were registered on each 
other and clusters corresponding to similar image areas were 
combined. In Fig. 1e, correspondence between the areas for 
white and yellow clusters on three images is shown.

Participants

Radiologists were recruited at the Radiological Society of 
North America (RSNA) Perception Lab event in December 
2019, a dedicated area of the scientific meeting that offers 
delegates the opportunity to participate in research experi-
ments that can be conducted within short timeframes. Based 
on their responses to our questionnaire, recruited partici-
pants were all registered radiologists in their home nations 
and had on average 11.5 ± 10.4 years of experience as a 
radiologist (range: 1 to 42 years) and 10.2 ± 9.8 years of 
experience in reading lung CT images (range: 1 to 42 years). 
On average, the participants spent 9.6 ± 10.2 h (range: > 1 to 
20 h) interpreting lung CT images per week. Informed con-
sent was obtained from all individual participants included 
in the study.

Analysis of the Annotations

For each annotated area across the 20 scans, a free text 
response entered by the radiologist and the coordinates of a 
rectangular area selected by the radiologist were saved. As 
shown in Fig. 2, to analyze the entered text, first an array of 
tokenized documents was created for each entry. Then, using 
MATLAB’s correctSpelling function, the spelling of the 
entry was corrected. Stop words were then removed from the 
array of documents using removeStopWords function. This 
was followed by lemmatization to normalize the text and 
reduce words to their dictionary forms, known as lemma. For 
each word, the occurrence was found. All uncommon words 
were manually checked and words with identical meanings 
(e.g., small, tiny, < 5 mm) were combined. Finally, all topics 
from the annotations were identified. Figure 2 shows a flow 
chart for the process of analyzing the recorded annotations 
from the radiologists.

For each case, the coordinates for the upper left side of 
the rectangles were spatially clustered based on the distance 
between the points. As the left upper point of the rectangle 
was the first place selected by the radiologists, we found 
clustering the annotations based on this method (instead 
of center of the rectangles) resulted in clusters with the 
most similarity in the provided descriptions. Each point is 
clustered with the closest neighboring point if the distance 
between two points is less than 50 pixels. The threshold of 
50 pixels was found empirically. We swept all threshold 
values ranging from 10 to 100 pixels with a step of 10 and 
found that total number of clusters reduces up to 50 pixels 
and after that remained unchanged. From 20 cases, 13 cases 
had 2 more clusters. We manually checked these clusters 
ensured they represented various areas within the image 
(e.g., one showing a nodule while the other one is corre-
sponding to an area labeled as vein by more than half of the 
readers). Geometric median was used to calculate distance 
to add new points to an existing cluster.

Data Analysis

Areas on the axial slice were annotated by the radiologists 
using a range of radiological lexicon, distinguishing pathol-
ogy (nodules, opacities) and normal structures (such as 
arteries and veins). We first investigated the percentage of 
participants who agreed on these high-level labels.

For each extracted clusters, the topics of the annotations 
were analyzed and the percentage of text entries referring 
to each topic were found. Topics referring to the nodule 
characteristics were categorized in two sets [27–30]. The 
first set contained descriptors associated with a lower like-
lihood of a nodule being malignant, while the second set 
were suggestive of a higher malignancy likelihood. Using 
the Mann–Whitney U-test, the percentage of annotations for 
each set of these topics were compared between benign cases 
correctly classified as benign by the AI tool, and benign 
cases misclassified as malignant by the AI tool. Similar 
analysis was conducted to compare the topics assigned to 
the malignant cases correctly classified as malignant by the 
AI tool and malignant cases misclassified as benign by the 
tool. Finally, the descriptors assigned to the benign cases 
were compared with the descriptors assigned to the malig-
nant cases.

Results

In total, 1009 annotations were collected from 36 radiolo-
gists. The breakdown of the annotations per case is shown 
in Fig. 3. In total, radiologists annotated 17 and 24 unique 
areas on benign and malignant cases, respectively.
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Analysis of Benign Cases

The results for eight extracted topics (or radiological labels) 
are shown in Fig. 4. The y-axis shows the annotations while 
the x-axis shows the percentage of the annotations men-
tioned that topic. Overall, the agreement rate among all 
radiologists was higher for correctly identified benign cases 
(72% vs 66%, p = 0.36). Almost perfect agreement was found 

for the diaphragmatic/rib area and two vessel/vein areas. The 
majority of the radiologists annotated misclassified benign 
cases as nodules (n = 20 for label 15, n = 19 for label 16, and 
n = 27 for label 17).

Table 1 shows the first and second set of the topics used 
for describing the areas annotated as nodule by at least one 
radiologist. The terms in the first set (left sided column) 
are associated with a lower likelihood of being malignant. 

Fig. 2  The process of analyzing 
the recorded annotations from 
radiologists

Fig. 3  Total number (No.) of 
annotations, recorded for each 
case (each point on x-axis) and 
corresponding clustering result. 
“C” represents the cases, cor-
rectly classified by the AI tool 
while “I” shows the incorrect 
classification. “M” and “B” 
represent the malignant and 
benign cases
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Three last items belong to the misclassified cases. For each 
topic the p-value for comparing the correctly classified 
cases versus misclassified cases are also shown. None of the 
comparisons yielded a significant p-value. The second set 
of topics used for labeling the areas is also shown in Table 1 
in the right column. As stated, these topics are associated 
with a higher likelihood of being malignant. As shown, the 
percentages for adenocarcinoma, satellite/spiculated, inde-
terminate, or lobulated differed significantly among areas 
correctly classified and misclassified benign cases. This 
highlights the inherent difficulty of benign case. It implies 
that only by presenting the areas, significantly important for 
the decision made by the AI, some of these FPs (misclassi-
fied benign cases) cannot be ruled out by radiologist as our 
as readers more often used terms associated with a higher 
likelihood of being malignant for these cases.

Analysis of Malignant Cases

Similar to the abovementioned analysis for the benign 
cases, 24 areas on the malignant cases were identified 
(Fig. 5). Overall, the agreement rate among all radiologists 
was higher for correctly identified cases (70% vs 50%) but, 
similar to the benign cases, the difference was not signifi-
cant (p = 0.16). Almost perfect agreement was found for 
three vessel/vein areas.

For each nodule area on the malignant cases, the per-
centage of annotations containing the topic, associated 
with a lower (first set) and higher (second set) likelihood 
of being malignant, are shown in Table 2. As shown, none 
of the p-values for comparing the correctly classified cases 
to the misclassified was significant.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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Diaphragm/Rib Vein/Vessel/Artery Scar Infection Pleural  thickening Atelectasis Lymph node Nodule

Fig. 4  Seventeen areas obtained after clustering the annotations on the benign cases. The last three areas (boxed) were annotated on the benign 
cases where the AI had misclassified the case as malignant
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Benign Versus Malignant

We also compared the topic of the annotations, provided 
to the benign cases with the annotations provided to the 
malignant cases (Table 3). For annotations on benign cases, 
radiologists used “solid,” “single,” “small,” “benign,” “cir-
cumscribed” labels more often when compared to a similar 
mapped area of a malignant case. On the other hand, “ade-
nocarcinoma,” “malignant,” “irregular/ill-defined,” “satel-
lite/spiculated,” “consolidation,” and “lobulated” were used 
more on malignant cases. The difference was significant 
for “single,” “benign,” “malignant,” “irregular/ill-defined,” 

and “satellite/spiculated” labels. We also compared the top-
ics between misclassified malignant cases with correctly 
classified benign cases. These two categories of cases were 
labeled as benign by the AI. We explored if radiologists’ 
descriptors could hint of AI errors for these cases. Three of 
the descriptors differed in these two categories. For misclas-
sified benign cases and correctly classified malignant cases, 
five topics yielded significant or marginally significant 
p-values. Finally, between the misclassified benign cases 
and the correctly classified malignant cases (i.e., all cases 
marked as abnormal by AI), the frequency of using “solid,” 
“circumscribed,” and “indeterminate” differed significantly.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Percentage of reports mentioned each one of the considered eight topics 

Diaphragm/Rib Vein/Vessel Ground-glass opacity Scar Pleural  thickening Lymph node Nodule

Fig. 5  Twenty-four areas obtained after clustering the annotations on the malignant cases. The last five areas were misclassified as benign by the 
tool
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Discussion

Deep learning–based AI models for diagnosing a medical 
image are usually trained to classify cases in two or more 
categories. To explain these models, various techniques such 
as class activation mapping and OBSMs can be used.

This study explored if OBSMs can be used to explain 
the AI decision-making process to radiologists. These maps 
have been used to identify the areas related to the deci-
sion made by the AI in various applications [11, 31, 32]. 
However, it is unknown whether highlighting an area as an 
important region without any further labels describing the 
radiological features of the area, is of any advantage to the 
radiologists when making their decisions. Considering the 
complexity of the medical images, there is a chance that 
different radiologists interpret the highlighted areas on the 
maps differently. Based on the data presented in this study, 
the level of agreement on the main radiological label (such 
as a vessel or nodule) between all radiologists who anno-
tated an OBSM area was very low (only in 12% of all areas 
(5 out of 41)). Therefore, studies that show how matching 
radiology descriptors to the mapped areas by an AI could 
maximize the benefit of that AI tool for the radiologist when 
thinking about how AI and radiologists can work together. 
One technique could be to use currently available radiology 
reports and natural language processing (NLP) techniques to 
match the saliency maps from AI to radiology descriptors.

Comparison of the topics given to the malignant cases 
and benign cases showed relevance between the topic and 
the actual label of the cases. Within the malignant category, 
the descriptors radiologists used for correctly classified 
malignant cases did not differ significantly from the descrip-
tors used for misclassified malignant cases. This was a prom-
ising result as it implies that based on the original image and 

presented OBSM, radiologists identified malignant features 
in misclassified malignant cases, and they might be capable 
of disregarding, or not being influenced, by an incorrect AI’s 
output when a true-positive finding is presented. We base 
this conclusion on the premise that even when radiologist 
knew the AI misclassified the case and presented an OBSM 
that may not represent a correct choice, the radiologists still 
labeled their chosen area with terms that are representative 
of a malignant diagnosis.

Within the benign category, radiologists used descrip-
tors suggestive of malignancy more often on the misclas-
sified benign cases compared to the correctly classified 
benign cases. This suggests that presence of the AI and the 
associated OBSM might influence radiologist towards false-
positive decisions for such cases. Despite this, the compari-
son of misclassified benign cases with real malignant cases 
indicated that on average radiologists used “solid” and “cir-
cumscribed” more often in describing misclassified benign 
cases compared to the correctly classified malignant cases. 
Both terms are suggestive of a case being benign [27–30]. 
Therefore, it can be concluded that the descriptors for these 
cases sit between correctly classified benign cases and cor-
rectly classified malignant cases and there was distinction 
to some extent to both of classifications.

The current study has a number of limitations. Firstly, 
only 20 cases were shown to the radiologists and only five 
of these cases were misclassified by the AI tool, or 25 of the 
cases in the research study. For generalizing the findings of 
this study, a larger project will be required. Within this study, 
a large number of participating radiologists compensated for 
a low case number and provided sufficient statistical power 
for our analysis. However, in future works, more cases with 
more diverse malignant and benign characteristics should be 
included. Presenting a single slice of the CT scan is another 

Table 3  Average percentage 
of annotations containing each 
topic for malignant and benign 
cases. Areas containing nodules 
were included. The significant 
and marginally significant 
p-values are shown using “*.” 
“B” and “M” represent all of 
the benign and malignant cases 
while cB and cM represent 
correctly classified benign and 
malignant cases. mB and mM 
represent misclassified benign 
and malignant cases

Malignant Benign p-value (B vs M) p-value (cB vs 
mM)

p-value 
(mB vs 
cM)

Solid 14% 25% 0.1553 0.639 0.026*
Single 1% 8% 0.0186* 0.746 0.126
Small 10% 20% 0.1824 0.349 0.455
Adenocarcinoma 2% 1% 0.0770 0.056* 0.569
Malignant 13% 2% 0.0002* 0.084 0.10
Benign 2% 6% 0.0099* 0.476 0.268
Irregular/ill-defined 10% 1% 0.0012* 0.023* 0.139
Satellite/spiculated 11% 1% 0.0004* 0.023* 0.165
Circumscribed 2% 4% 0.0867 0.931 0.049*
Consolidation 2% 0% 0.0526* 0.99 0.953
Indeterminate 1% 1% 0.9605 0.056* 0.018*
Lobulated 2% 0% 0.4282 0.056* 0.237
Non-specific 2% 2% 0.5551 0.329 0.188
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limitation of the current study. Volumetric information is 
critical in many cases for identifying and describing differ-
ent elements of the images. Lack of such information could 
cause discrepancies observed here among the readers. As 
a future avenue for extending current study, volumetric 
OBSMs can be explored. Additionally, the recruited radi-
ologists for this study were aware of the actual “decision” 
assigned to the case by the AI. This could cause some bias in 
terms of the radiological labels selected by the radiologists, 
who may tend to use descriptors commonly associated with 
the benign or malignant nodules. A “pre-and-post” inter-
vention study whereby radiologists label the areas before 
and after being made aware of the OBSM may assist in 
our understanding of any biases created by the inclusion of 
the AI output. This is something that the AI communities 
and industry will need to develop further in order to gain 
acceptability with radiology communities. At present, there 
are very few reviewed studies that present decision-making 
by radiologists with and without AI prompts and what is 
the effect on decision-making, perceptual errors, sampling 
errors, and biases. The laboratory effect [33] could also limit 
generalizing the finding of the current study to real clinical 
practice and we do not know whether the recruited readers 
were familiar with any AI tools and specifically OBSMs.

Conclusion

Occlusion-based saliency maps represent one technique for 
interpreting the decision-making processes of an AI sys-
tem. We investigated the magnitude of agreement among 
text responses from a group of radiologists to describe 
areas chosen as diagnostically relevant areas by our AI on 
LDCT images. Although in several studies some styles of 
highlighting diagnostically relevant areas have been used 
to illustrate areas related to the decision made by the AI, it 
is unknown whether showing them alone, without any fur-
ther meaningful label, is of any advantage to the radiologists 
when decision-making. Furthermore, it is not known if the 
inherent difficulty of identifying these areas would lead to 
considerable disagreement among radiologists in describing 
these areas. Our data showed that participating radiologists 
could only agree on the main radiological label in only 12% 
of all areas identified.

We also explored whether the recruited radiologists’ 
descriptions of cases misclassified by the AI provide a 
rationale for ruling out the AI’s output. The comparison 
of misclassified benign cases with the correctly classi-
fied malignant cases showed that on average radiologists 
used “solid” and “circumscribed” more often in describing 
misclassified benign cases compared to the correctly clas-
sified malignant cases. Also, differences in the descriptor 
usage were noted between misclassified malignant cases 

and correctly classified benign cases and therefore, to some 
extent, radiologists might be able to rule out these misclas-
sified cases.
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