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Abstract Analysis of microarray data is associated with the methodological problems of high

dimension and small sample size. Various methods have been used for variable selection in high-

dimension and small sample size cases with a single survival endpoint. However, little effort has

been directed toward addressing competing risks where there is more than one failure risks. This

study compared three typical variable selection techniques including Lasso, elastic net, and

likelihood-based boosting for high-dimensional time-to-event data with competing risks. The per-

formance of these methods was evaluated via a simulation study by analyzing a real dataset related

to bladder cancer patients using time-dependent receiver operator characteristic (ROC) curve and

bootstrap .632+ prediction error curves. The elastic net penalization method was shown to outper-

form Lasso and boosting. Based on the elastic net, 33 genes out of 1381 genes related to bladder

cancer were selected. By fitting to the Fine and Gray model, eight genes were highly significant
nces and
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(P< 0.001). Among them, expression of RTN4, SON, IGF1R, SNRPE, PTGR1, PLEK, and

ETFDH was associated with a decrease in survival time, whereas SMARCAD1 expression was asso-

ciated with an increase in survival time. This study indicates that the elastic net has a higher capacity

than the Lasso and boosting for the prediction of survival time in bladder cancer patients.

Moreover, genes selected by all methods improved the predictive power of the model based on only

clinical variables, indicating the value of information contained in the microarray features.
Introduction

Bladder cancer is the fourth most common cancer with more
than 350,000 new cases and causing 145,000 deaths world-
wide annually [1,2]. Despite improved surgical procedures

and aggressive treatments, muscle invasive bladder carci-
noma continues to have a high mortality rate [2]. The preva-
lence of bladder cancer is 3–8 folds higher than its incidence,

which makes it one of the most prevalent neoplasms and a
major burden for health care systems [1]. Approximately
20%–30% of patients exhibit muscle-invasive (stages

T2–T4) or metastatic disease at the time of diagnosis, while
about one third of patients with initially non-muscle-invasive
disease (stages Ta/T1/Tis) will progress to muscle-invasive or

metastatic disease [3,4]. Clinical variables such as stage and
grade (high or low) are highly associated with the out-
comes and play a substantial role in determining treatment
[4]. Despite the important role of these variables in predict-

ing outcome, significant variability remains in the prognosis
of patients with analogous characteristics. Due to this dis-
crepancy, it is necessary to gain additional information

about tumor characteristics that predict clinical behaviors
[4].

The advent of genome-wide transcriptome profiling and

advances in experimental technologies in molecular biology
have greatly impacted the discovery of new molecular mark-
ers or gene expression signatures for classifying and predict-
ing disease outcome in various cancers, including bladder

cancer [1]. Analysis of such data is of particular interest in
dealing with some types of phenotypic data such as patient
survival time or time to cancer relapse, which contain cen-

sored observations. In such instances, the main purpose is
typically to identify a subset of genes that have significant
correlation with time-to-event response [5]. To this end, a

major problem arises from the high dimensionality of these
data (i.e., the number of genomic variables is usually much
larger than the number of subjects), due to the inability to

apply standard statistical methods. The microarray time-to-
event data become more complicated when there are com-
peting events, such as ‘‘progression’’ versus ‘‘death from
non-cancer cause’’, i.e., the failure of a patient can occur

due to one of multiple distinct causes. Furthermore, the
influence of one selected variable on different causes might
vary [6].

Different variable selection methods have been employed
for the analysis of high dimension and small sample size
time-to-event data [7–10]. However, given the large number

of variables compared to the small sample size of micro-
array data, there are only a small number of effective genes
that can be identified reliably [6]. Therefore, techniques

with sparse results are more desirable, where a small
amount of non-zero variables were selected as the impor-
tant ones [6].
To achieve this goal, penalized methods such as least abso-

lute shrinkage and selection operator (Lasso) [11,12] and
likelihood-based boosting methods [13] can be applied. How-
ever, due to the sparseness of these methods, if there is a group
of highly-correlated variables related to the response, typically

only one or two of them will receive non-zero estimates and
others will be ignored [5,6]. One possible solution of this draw-
back is the elastic net penalization approach, which may be

applied in analyzing microarray time-to-event data [5], since
it simultaneously performs automatic variable selection and
continuous shrinkage similar to the Lasso method. In addition,

the elastic net penalization approach is capable of performing
‘‘grouped selection’’. Thus it can identify an entire set of cor-
related genes [5,14], while remaining computationally efficient

[14].
These techniques have been used in several studies for a sin-

gle survival endpoint [13,15,16]. To our knowledge, the only
effort in the context of high-dimensional time-to-event data

with competing risks was made by Binder et al. [6], who
employed a likelihood-based boosting technique for variable
selection [6]. However, the performance of other methods like

elastic net and Lasso for gene selection remains uninvestigated
for competing risks.

In the present study, we aimed to compare the performance

of three variable selection methods including Lasso, elastic net,
and likelihood-based boosting for analysis of high-dimensional
time-to-event data with competing risks based on the

commonly-used cause-specific hazard model to predict survival
time in patients with bladder cancer. Moreover, we also iden-
tified significant genes among those that were selected by the
best variable selection method and to determine their effect

on the survival time in patients with bladder cancer, according
to the subdistribution hazard model.
Results

Bladder cancer data analysis

The cause-specific Cox proportional hazards model was fitted
to bladder cancer microarray data by the elastic net and Lasso

penalization techniques for the event of interest ‘‘progression
or death from bladder cancer’’. In this regard, the hazard of
the patients who progressed or died from bladder cancer was

modeled using a Cox model by treating individuals failing
from other or unknown causes as censored observations. The
results of the component-wise likelihood-based boosting uti-

lized by Binder et al. [6] are also provided for comparison.
The genes selected by elastic net and Lasso approaches, along
with those identified by Binder et al. [6] are shown in Table 1.
The number of selected genes that were significantly (P 6 0.05)

associated with progression or death from bladder cancer var-
ied remarkably among the three methods. In general, elastic



Table 1 Genes selected by three methods for bladder cancer event

included in Dyrskjøt dataset

Gene ID Method

Elastic net Lasso Boosting

SEQ1014 + � �
SEQ1038 � + �
SEQ1082 + � �
SEQ1111 + � �
SEQ1164 + � �
SEQ1197 + � �
SEQ1225 + � �
SEQ1226 + � �
SEQ1262 + � �
SEQ1330 + � �
SEQ1381 + � +

SEQ1384 + � +

SEQ162 + � +

SEQ164 + + +

SEQ183 + � �
SEQ213 + � �
SEQ240 + � �
SEQ251 � + �
SEQ265 + � +

SEQ279 + � �
SEQ287 + � �
SEQ34 + � +

SEQ347 + + +

SEQ370 + + �
SEQ377 + � �
SEQ410 + � �
SEQ424 � + �
SEQ634 + � �
SEQ681 + � �
SEQ785 + � �
SEQ813 + � �
SEQ820 + � +

SEQ833 + � �
SEQ940 + � �
SEQ972 + � �
SEQ973 + � �
No. of genes 33 6 8

Note:Genes for bladder cancer event listed in Dyrskjøt dataset [1] were

selected using three methods. ‘‘+’’ indicates that the gene was selected

by the respective method and genes not selected by the respective

methods are indicated with ‘‘�’’.
Time (weeks)

P
re

di
ct

io
n 

er
ro

r

0 10 20 30 40 50 60 70
0.00

0.05

0.10

0.15

0.20

Clinical
Clinical+Lasso
Clinical+elastic net
Clinical+boosting

Figure 2 The prediction error curves for bladder cancer data

Clinical model used age, sex, stage, grade and treatment as

predictors. The elastic net, Lasso, and boosting used microarray

features in addition to the clinical parameters as predictors.
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Figure 1 The area under the ROC curve for bladder cancer data

AUC value over time was presented in y-axis, survival time on

x-axis was time to progression or death from bladder cancer (in week).
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net identified a greater number of significant genes than Lasso
and boosting methods. Elastic net identified 33 genes in total,

whereas the Lasso and boosting methods identified 6 and 8
genes, respectively.

To assess predictive performance, the median area under

the curve (AUC) was calculated and plotted for each method.
The results are presented in Figure 1. The average median
AUC (across all time points) were 0.808, 0.695, and 0.729

for the elastic net, Lasso, and boosting methods, respectively.
As shown in Figure 1, in terms of prediction, the predictive
performance of elastic net was superior to the Lasso and
boosting in the analysis of this dataset, whereas the predictive

performance of boosting was slightly better than the Lasso
method. Moreover, bootstrap .632+ prediction error curves
were plotted for the three methods (Figure 2). The data clearly
indicated that the elastic net outperformed the Lasso and
boosting methods, which agreed well with the AUC analysis.

As a result, 8 out of 33 genes selected by elastic net, includ-
ing SEQ1082, SEQ1197, SEQ1262, SEQ1330, SEQ162,
SEQ377, SEQ634, and SEQ940, were significant based on

the Fine and Gray model (P < 0.05). The coefficients, stan-
dard errors, hazard ratios, and P values for these genes are
listed in Table 2. The survival time increased with the gene

expression of SEQ940 (P = 0.004) and decreased with the
expression of the remaining seven significant genes.



Table 2 Genes affecting bladder cancer patients’ survival as selected by elastic net

Gene ID GenBank accession No. Gene symbol Gene description Coefficient Hazard ratio P value

SEQ1082 NM_207521.1 RTN4 Homo sapiens reticulon 4 0.745 ± 0.250 2.11 0.00290

SEQ1197 NM_003103.5 SON Homo sapiens (human) SON, DNA binding

protein

1.335 ± 0.364 3.80 0.00024

SEQ1262 NM_000875.2 IGF1R Homo sapiens insulin-like growth factor 1

receptor, mRNA

1.364 ± 0.510 3.85 0.00750

SEQ1330 NM_003094.1 SNRPE Homo sapiens small nuclear ribonucleoprotein

polypeptide E

0.789 ± 0.193 2.2 0.00005

SEQ162 NM_001146108 PTGR1 Homo sapiens prostaglandin reductase 1 1.386 ± 0.395 3.99 0.00045

SEQ377 NM_002664 PLEK Homo sapiens pleckstrin, mRNA 1.058 ± 0.315 2.88 0.00078

SEQ634 NM_004453 ETFDH Homo sapiens electron-transferring-flavoprotein

dehydrogenase, transcript variant 1, mRNA

1.400 ± 0.399 4.06 0.00045

SEQ940 NM_020159.1 SMARCAD1 Homo sapiens SWI/SNF-related, matrix-

associated actin-dependent regulator of

chromatin, subfamily a, containing DEAD/H box

1, transcript variant 3, mRNA

�1.000 ± 0.348 0.37 0.00400

Note: Genes affecting bladder cancer patients’ survival were selected by elastic net based on Fine and Gray model. Coefficient is indicated as

average ± standard error.
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Simulation study

In order to evaluate the performance of the three methods, a
simulation study was performed. The results of the simulation
study with over 100 runs including true positive (TP), false

negative (FN), false positive (FP), and true negative (TN) for
the three methods of Lasso and elastic net are provided in
Table 3. In each run, we simulated a competing risks dataset

including two possible failure types (type 1 and type 2), censor-
ing rate of 35%, and p = 5000 covariate with a fixed number
of 400 observations. Sixteen informative covariates corre-

sponding to a sparse true model were considered with coeffi-
cients equal to 0.5 and �0.5 for increasing and decreasing
effects, respectively. In addition, the coefficient of covariates

with no direct effect on the hazards were considered zero.
The values of performance criteria were computed for the
three methods. The results showed that the average number
of selected genes by elastic net (53.89 ± 51.85 and

69.28 ± 76.29 for events type 1 and 2, respectively) were
greater than those selected by the Lasso and boosting methods
(Table 3). In addition, as shown in Table 3, considering either

failure type, the proportion of covariates that had no effect but
received non-zero parameter estimates (FP) was slightly
greater for the elastic net (1.03% for event type 1 and 1.30%

for event type 2) due to the greater number of selected genes.
On the other hand, with respect to the selection of those
covariates with effects on the hazards (TP), the performance

of the elastic net was better (31.58% and 31.80% for event 1
Table 3 Results of simulation study using the three methods

Event type No. of selected variables

Elastic net 1 53.89 ± 0.52

2 69.28 ± 0.76

Lasso 1 15.16 ± 0.93

2 15.90 ± 0.85

Boosting 1 23.86 ± 0.12

2 23.90 ± 0.12

Note: Type 1 is the first simulated event and type 2 is the competing event.

TP, true positive, the proportion of correctly-included variables; FN, fals

positive, the proportion of incorrectly-included variables; TN, true negativ
and event 2, respectively) than that of Lasso (12.5% and
16.41% for event 1 and event 2, respectively) and boosting

(13.58% and 16.67% for event 1 and event 2, respectively).
In addition, the results showed that the elastic net tended to
select the informative covariates. In the simulation study, six-

teen informative variables were selected. The informative
covariates were selected from three different blocks of covari-
ates with correlation coefficient of 0.5, 0.35, and 0.05. The first

four informative covariates were selected from the first block
that the correlation between its variables was 0.5 and the
related coefficients were b1, b2, b3, and b4. These four variables
had an increasing effect on both event types. The second four

informative variables were selected from the second block with
the correlation of 0.35 (they had an increasing effect on the
first event hazard and a decreasing effect on the second event

hazard). Finally, four informative variables were selected from
third block that had a decreasing effect on the first event haz-
ard and another four informative variables with an increasing

effect on the second event hazard. For example, every time
that b1 received a non-zero coefficient, the other three covari-
ates (b2, b3, and b4) were selected. This was also the case for
the coefficients from the second block.
Discussion

This study compared the performance of three variable selec-
tion approaches including elastic net, Lasso, and boosting in
TP (%) FN (%) FP (%) TN (%)

31.58 68.42 1.03 98.97

31.80 68.20 1.30 98.67

12.50 87.50 0.30 99.70

16.41 83.59 0.32 99.68

13.58 86.42 0.58 99.42

16.67 83.33 0.58 99.42

Number of selected variables is indicated as average ± standard error.

e negative, the proportion of incorrectly-excluded variables; FP, false

e, the proportion of correctly-excluded variables.
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high dimension and with a small sample size setting with two
competing events using real and simulation datasets.

Based on the criteria of AUC and .632+ prediction error

curves, the elastic net penalty resulted in higher capability of
prediction than the Lasso. The same dataset was also analyzed
by Binder et al. [6] using a likelihood-based boosting tech-

nique. All their selected genes were also selected by the present
study including SEQ34, SEQ162, SEQ164, SEQ265, SEQ347,
SEQ820, SEQ1381, and SEQ1384. These data indicate that

the performance of the elastic net method was superior to
the boosting method. Furthermore, the results of the simula-
tion study indicated that the ability of recovering informative
variables was lower in Lasso and boosting methods than in

the elastic net method, while the covariates wrongly selected
as informative ones by the three methods were fairly similar.
In summary, the elastic net exhibited better performance

in the simulation study and real dataset implementation,
followed by boosting and then Lasso.

As expected, the elastic net penalization method exhibited

the grouping effect and identified correlated gene expression
while Lasso did not. In this regard, both elastic net and Lasso
methods selected SEQ164, while the former method also

selected SEQ162, which was highly correlated with gene
SEQ164 (q = 0.65, P< 0.001). In addition, SEQ972 and
SEQ973 were selected by the elastic net method with a high cor-
relation (q = 0.85). For the vast majority of the genes selected

by the elastic net, the observed correlation was >0.35, whereas
the observed correlation between most of genes selected by the
Lasso method was lower than 0.30. This was also the case for

the boosting method. Due to the sparseness of the boosting
and Lasso methods, only one or two of the genes were selected
from a group of highly-correlated genes [6,14]. In addition, the

results of the simulation study confirmed that the elastic net
exhibited the grouping effect in the competing risks setting,
while the other two methods did not. This is a substantial prop-

erty in the analysis of microarray data, because the understand-
ing of the biological pathway may be improved by the
identification of an entire set of correlated genes [5].

There was also an overlap with the 88-gene progression

classifiers proposed by Dyrskjøt et al. [1] using a univariate
Cox regression model. Four genes including SEQ183,
SEQ213, SEQ833 and SEQ820 were identified in the present

study as well as Dyrskjøt’s study [1].
Based on the Fine and Gray model, 8 out of 33 genes that

were selected by the elastic net method were diagnosed as influ-

ential genes on bladder cancer survival. Accordingly, the
expression of these genes was related to the survival time of
patients with bladder cancer. The expression of RTN4, SON,
IGF1R, SNRPE, PTGR1, PLEK, and ETFDH appeared

related to a decrease in survival time, whereas the expression
of SMARCAD1 may be related to an increase in survival time.

Previous studies have shown that RTN4, a myelin-

associated endoplasmic reticulum protein, may play a role in
apoptosis particularly in cancerous cells [17]. Alternative splic-
ing of genes involved in apoptosis and epigenetic modification

can be regulated by SON and its absence will disrupt expres-
sion of these genes [18]. Another gene, IGF1R, which encodes
insulin-like growth factor 1, plays an important role in regulat-

ing cellular proliferation and apoptosis through signaling path-
way [19]. Several studies have confirmed that IGF1R is over-
expressed in invasive bladder cancer tissues and promotes
motility and invasion of urothelial carcinoma cells [20–24].
In addition, over-expression of SNRPE and PLEK could play
some important roles in different types of cancers such as pros-
tate, lung, and breast cancers [25–27]. The spliceosome is a

dynamic macromolecular ribonucleoprotein (RNP) complex
that catalyzes the splicing of nuclear pre-mRNAs into
mRNAs. The splicing process plays an important role in the

control of expression of a number of genes including those
involved in cell cycle, signal transduction, angiogenesis, apop-
tosis, and invasion [26]. PLEK protein may play a dual role in

tumorigenesis and chemoresistance, depending on the tissue
specificity [28]. PTGR1 encodes prostaglandin reductase 1,
which is a highly-inducible enzyme involved in the inactivation
of the chemotactic factor leukotriene B4 [29–31]. The electron-

transferring-flavoprotein dehydrogenase (ETFDH) in the
inner mitochondrial membrane accepts electrons from ETF.
Being an energy pathway gene, ETFDH is overexpressed in

different cancers [32]. SMARCAD1 encodes a member of the
SNF subfamily of helicase proteins and is involved in restoring
heterochromatin organization and propagating epigenetic pat-

terns following DNA replication by mediating histone H3/H4
deacetylation [33].

Our findings were consistent with several previous studies.

Engler and Li [5] compared the Cox elastic net and Cox Lasso
variable selection methods for a single point survival data in a
high-dimensional setting with the AUC criteria over time and
relative frequency of variable selection. They found that the

elastic net method performed better than the Lasso method
with both the correlated and uncorrelated covariates, as shown
in the current study. Similarly, Zou and Hastie [14] also

showed that the performance of the elastic net in linear regres-
sion was superior to the Lasso based on mean square error
(MSE) criteria, and Ogutu et al. reported similar accuracies

for Lasso and elastic net methods for handling linear regres-
sion [34]. In addition, Lin and Lv [35] showed similar perfor-
mance of Lasso and elastic net penalties based on the

additive hazards model with the simulation data. The present
study introduced a new set of influential microarray features
for predicting bladder cancer survival. According to the results
of the present study, the genes selected by the three methods of

boosting, Lasso and elastic net the selected genes improved
prediction performance over a pure clinical model, which
reflects valuable information contained in the microarray fea-

tures. These results suggest the potential to characterize blad-
der cancer based on influential gene expression features, and
that the expression levels of these genes could be correlated

with the patient survival time. Hence, such information can
be considered as a prognostic factor in secondary prevention.

This study indicated that the elastic net outperformed the
Lasso and boosting methods for the prediction of survival time

in patients with bladder cancer in the presence of competing
risks. This superiority was also confirmed by a simulation
study. Moreover, including microarray features selected by

the three methods in the models resulted in improvement over
the pure clinical model, indicating that valuable information is
contained in the microarray features.

Although the elastic net was shown to perform more effi-
ciently when compared to the Lasso and boosting methods,
this method evaluates the effects of genes individually. It is

suggested that other methods such as path analysis and ran-
dom survival forests be utilized to examine the simultaneous
effects of genes on each other as well as on the response
variable.
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Materials and methods

In this study, a public available time-to-event dataset
(GSE5479) related to 1381 preprocessed custom platform

microarray features extracted from patients with bladder can-
cer was utilized. This dataset contains information about
tumor samples from 404 patients with pTa or pT1 tumors

but with no previous or synchronous muscle-invasive tumors,
which was used by Dyrskjøt et al. [1] to validate a signature for
predicting tumor progression. In addition to gene expression
data, this dataset contained information about clinical covari-

ates including age, sex, stage (pTa vs. pT1), grade (PUNLM-
P/low vs. high), and treatment. Since complete information
was available for 301 patients, only this subset of patients

was analyzed in the current study. There were two competing
events: (a) the event of interest (event 1 or cause 1), which was
the time to progression or death from bladder cancer and (b)

the competing event (event 2 or cause 2), which was death from
other or unknown causes. Progression or death from bladder
cancer occurred in 74 patients, death from other or unknown

causes was observed in 33 patients, and censoring occurred
in 194 patients.

In the case of competing risks, the observations are shown
by (ti, Diei, Xi), i= 1,. . .n, where ti is the observed time,

ei 2 1; . . . ;Kg is the type of event, xi = (xi1, . . ., xip) is a vector
of covariates, and Di is the censoring indicator, which takes the
value 1 for occurrence of an event and value 0 for occurrence

of censoring, i.e., D = I (T*
6 C), where T* and C are the event

time and the censoring time, respectively [6].
There are different approaches to handle competing risks.

The most commonly used method is the cause-specific hazard
method, which is utilized in many microarray literatures [36].
We used the cause-specific approach to make the results of
the present study comparable with those of the previous stud-

ies conducted [1,6] on the same dataset.
Under the Cox proportional hazards (PH) model that con-

siders predictors X ¼ ðx1; x2; . . . ; xpÞ; the cause-specific hazard
model is specified as:

heðt;XÞ ¼ h0eðtÞ exp
Xp
i¼1

biexi

 !
; e ¼ 1; . . . ;K: ð1Þ

where bie is the coefficient of the i-th predictor and h0eðtÞ is the
unspecified baseline hazard of the event type e [37].

Also, the Cox PH model for the subdistribution hazard is
defined as:

h1ðt;XÞ ¼ h1;0ðtÞ exp
Xp
i¼1

bixi

 !
ð2Þ

where h1,0(t) is an unspecified baseline,
h1ðt;XÞ ¼ dF1ðt;XÞ=dt=1� F1ðt;XÞ is the instantaneous risk
of an event occurring in the absence of competing events

[37], and F1ðt;XÞ ¼ PðT� 6 tje ¼ 1;XÞ is the cumulative inci-
dence function for event of interest e = 1 (the expected pro-
portion of patients experiencing event 1 over time). In the

present study, the cause-specific approach was used in the gene
selection stage. The Fine and Gray model was then utilized to
analyze the dataset based on the genes selected by the better

variable selection technique of Lasso, elastic net, and boosting.
The Lasso variable selection method [38] is a regularized

estimation method for regression models including the Cox
PH model. In this method, an L1 norm constraint ofP
jbjj 6 s is added to the regression coefficients (s is a positive

user-specified value and bj is the coefficient corresponding to

the jth covariate) [39]. This constraint shrinks the coefficients
toward zero and results in coefficients with values of exactly

zero. In general, the Lasso estimate b̂lasso of the vector of

regression coefficients b ¼ ðb1; . . . ; bpÞ
T
in terms of Lagrange

multiplier k is defined as:

b̂lasso ¼ argmax
b2Rp

leðbÞ � k
Xp
j¼1
jbjj

( )
ð3Þ

where Rp is a p-dimensional space of covariates, leðbÞ is the
Cox log partial likelihood for cause e ¼ 1; . . . ;K and is defined

as leðbÞ ¼ 1
n

P
r2D ln expðb0xðrÞÞ=

P
j2Rer

expðb0xjÞ
� �

, where D

denotes the set of indices for observed events of type e and
Rer ¼ fj 2 1; . . . ; n : yj P teðrÞg is the risk set of cause

e ¼ 1; . . . ;K.

The elastic net estimate of b ¼ ðb1; . . . ; bpÞ
T
is also defined

as:

b̂EN ¼ argmax
b2Rp

leðbÞ � k1

Xp
j¼1
jbjj � k2

Xp
j¼1
ðbjÞ

2

( )
ð4Þ

where b̂EN is the elastic net estimate of the vector of regression
coefficients, leðbÞ is the Cox log partial likelihood, and k1 and
k2 are fixed non-negative values [5]. Due to the strict convexity
of the penalty function for 0 < k2 6 1, the elastic net method
can identify entire sets of highly-correlated variables [5]. In
addition, the optimum values of the tuning parameters related

to the methods were determined by 10-fold cross validation.
The likelihood-based boosting approach is based on two

main parameters: penalty term and number of boosting steps.

At each boosting step, only one element of the parameter vec-
tor is updated, and the previous boosting steps are included as
an offset [6]. In the cause-specific Cox model, the objective

function is a penalized partial log likelihood function as
follows:

lpenðckjÞ ¼
Xn
i¼1

Iðdiei ¼ 1Þðĝk�1;i þ ck;jxij � log
Xn
l¼1

Iðti

6 tlÞwlðtiÞ expðgk�1;i þ ckjxljÞÞ þ
k
2
c2kj ð5Þ

where k is the penalty parameter, which was selected to avoid
boosting steps to be too large, c is the parameter vector, and

ĝk�1;i ¼ x0ib̂k is the corresponding linear predictors [13]. Once

ĉkl is calculated for the best candidate model j*, the following
update is performed:

b̂k;j ¼
b̂k�1;j þ ĉk;j� if j ¼ j�

b̂k�1;j otherwise

(
: ð6Þ

Evaluation of the predictive performance of the three mod-
els using the bladder cancer dataset was performed via time-

dependent receiver operator characteristic (ROC) curves and
bootstrap .632+ prediction error curves (to assess prediction
performance improvement by including selected genes over a

pure clinical model) [6]. To obtain AUC over time, 10-fold
cross validation was utilized and the average AUC over time
was calculated.
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Moreover, to evaluate and compare the performance of the
boosting, Lasso, and elastic net methods for identifying true
important variables, a simulation study was conducted. Com-

peting risks data, in which there is more than one cause of fail-
ure with two possible failure types, were simulated. To ensure
the comparability of the results with the boosting method [6], a

similar strategy was considered to implement the simulation
study. Since it was of interest to assess the performance of
the methods in high-dimensional settings, p = 5000 covariates

were considered following the design employed by Binder et al.
[6] to produce correlations with a fixed number of 400 observa-
tions. Sixteen informative covariates corresponding to a sparse
true model were considered with an effect on the cause-specific

hazards for events of type 1 (the first cause of failure from dis-
ease) and/or type 2 (the second cause of failure from disease).
Each informative covariate was selected from one of three

blocks of correlated covariates, where the correlations in
blocks were 0.5, 0.35, and 0.05, respectively. The informative
covariates were selected so that four covariates had an increas-

ing effect on type 1 and type 2 hazards that were selected from
the first block, four other covariates had an increasing effect
on the cause-specific hazard for type 1 hazard and a decreasing

effect on the type 2 hazard and were selected from the second
block, four covariates had a decreasing effect on the event
type-1 hazard only, and four other covariates had an increas-
ing effect on the event type-2 hazard that all were selected from

the third block. The true coefficient bej, with e 2 1; 2, took val-

ues 0.5 (for increasing effects) and �0.5 (for decreasing

effects). Therefore, the hazard ratios of positive and negative
coefficients were 1.65 and 0.61, respectively. The remaining
covariates had no direct effect on the hazards with bej ¼ 0. Sur-

vival time was generated based on the cause-specific hazard
Cox-exponential models for each cause with baseline hazards
equal to 0.1 [6]. Censoring time was generated from a uniform

distribution in interval 0 to 9 (U(0,9)), which led to an overall
censoring rate of 35%. The ratio between the number of obser-
vations of the event I and event II was fixed at 6:4. One hun-
dred datasets were generated to determine the prediction

performance of the methods.
To investigate the performance of the methods, the non-

zero estimates of informative and non-informative covariates

were used as described by Binder et al. [6]. In this regard,
the proportion of correctly-included variables or TP, the pro-
portion of incorrectly-excluded variables or FN, the propor-

tion of incorrectly-included variables or FP, and the
proportion of correctly-excluded variables or TN were
calculated.

In this study, all analyses were implemented using the R
software packages including ‘‘fastcox’’, ‘‘CoxBoost’’, ‘‘cm-
prsk’’, ‘‘survAUC’’, and ‘‘pec’’ (http://www.r-project.org).
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