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Abstract

Background: Cellular differentiation during development is controlled by gene regulatory networks (GRNs). This
complex process is always subject to gene expression noise. There is evidence suggesting that commonly seen
patterns in GRNs, referred to as biological multistable switches, play an important role in creating the structure of
lineage trees by providing stability to cell types.

Results: To explore this question a new methodology is developed and applied to study (a) the multistable
switch-containing GRN for hematopoiesis and (b) a large set of random boolean networks (RBNs) in which
multistable switches were embedded systematically. In this work, each network attractor is taken to represent a
distinct cell type. The GRNs were seeded with one or two identical copies of each multistable switch and the
effect of these additions on two key aspects of network dynamics was assessed. These properties are the barrier to
movement between pairs of attractors (separation) and the degree to which one direction of movement between
attractor pairs is favored over another (directionality). Both of these properties are instrumental in shaping the
structure of lineage trees. We found that adding one multistable switch of any type had a modest effect on
increasing the proportion of well-separated attractor pairs. Adding two identical switches of any type had a much
stronger effect in increasing the proportion of well-separated attractors. Similarly, there was an increase in the
frequency of directional transitions between attractor pairs when two identical multistable switches were added to
GRNs. This effect on directionality was not observed when only one multistable switch was added.

Conclusions: This work provides evidence that the occurrence of multistable switches in networks that control
cellular differentiation contributes to the structure of lineage trees and to the stabilization of cell types.

Introduction
Understanding differentiation is critical to knowing how
normal development unfolds and for taming diseases, such
as cancer, that are associated with defects or reversals in
differentiation. In animals, the process of differentiation
typically results in cells reaching a terminally differentiated
state. However, recent discoveries have shown that “term-
inal differentiation” may be a misnomer as fully differen-
tiated cells can be reprogrammed to revert back to a
pluripotent state, with these pluripotent cells having the
potential to differentiate into other cell types.

Transitions between cell types can be mapped as a
directed tree of cell types, known as a lineage tree, with
embryonic stem cells at the root, various classes of pre-
cursor cells as internal nodes, and terminally differen-
tiated cells as branch tips. Gene regulatory networks
(GRNs) that respond to both external stimuli and to gene
expression noise control transitions between cell types
and determine the structure of lineage trees [1]. Given
that differentiation is driven by the output of dynamic
gene regulatory networks, a useful, network-based per-
spective for envisioning different stable cell types is as
basins in an attractor landscape [2,3]. In this dynamical
systems view, differentiation is the process of moving
between the different attractor basins that are generated
by the dynamics of the gene regulatory network.
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The GRNs that control differentiation are complex,
but these larger networks can be decomposed into smal-
ler modules of simpler, frequently appearing regulatory
motifs that consist of only a few genes that interact in
characteristic patterns[1]. For example, a common fea-
ture of many regulatory motifs is a pair of genes
coupled by either positive or negative feedback loops
[4]. These couplings result in different network outputs,
with positive feedback loops often producing two or
more stable attractor states, and negative feedback loops
often enhancing attractor stability [4]. The generation of
two or more attractors is referred to as multistability,
with the special case of generating only two attractors
termed bistability.
In this work, we investigated four regulatory motifs,

termed multistable switches, that operate in differentiat-
ing cells[4,1]. Each of these motifs results in multistability
when the motif operates in isolation[1]. These multistable
switches were added singly or in identical pairs to larger
GRNs to understand how they affect the structure of
lineage trees and the stability of different cell types.
These studies were done by generating random Boolean
GRNs that produce five or more attractors.
These networks were then seeded with the multistable

switches. We found that the addition of identical pairs
multistable switches of any of the four different types
increased the stability of attractors produced by the
GRNs. Adding a single multistable switch of any type
had little effect on attractor stability. The addition of
two multistable switches to a randomly generated GRN
also increased the proportion of directional transitions
between attractors. In terms of differentiation, this con-
tributes to the structure of a lineage tree by favoring
particular pathways that lead between different cell
types.

Approach and results
This work studied three key properties of cellular differ-
entiation[5]: (a) differentiation of multipotent cells can
be driven by gene expression noise; (b) there is a strong
directionality to differentiation, with transitions between
cell types occurring from less to more differentiated
cells; and (c) terminally differentiated cells are stable.
The simplified myeloid linage tree illustrated in Figure 1

provides an example of these key properties. This lineage
tree includes only favored transitions between cell types
that involve progenitor cells giving rise to two different,
more differentiated cell types, and the establishment of
barriers between cell types that prevent transdifferentia-
tion and dedifferentiation.

Cellular differentiation and attractor dynamics
In this work, differentiation is viewed as a set of transi-
tions between attractor basins produced by a dynamical
genetic regulatory network. This model of differentiation
was pioneered by Kaufman and extended by many others
[6,3,7,5]. Borrowing from early work by Waddington[8],
the landscape created by these attractor basins has been
termed an epigenetic landscape [1]. A conceptual model
of such an epigenetic landscape is shown in Figure 2. In
this view, each cell type occupies an attractor basin at a
particular level of a potential energy landscape. A cell can
be moved out its attractor basin in response to an exter-
nal signal or to gene expression noise. Once it crosses
the barrier that delimits the basin, it moves down to
another attractor basin lower in the epigenetic landscape.
There are at least two possible paths leaving each attrac-
tor basin, with each downhill path leading to a different
basin that represents a distinct, more specialized cell
type. Once a cell descends into a new basin, the large
potential energy barrier between the new lower basin and

Figure 1 A simplified myeloid lineage tree. A simplified myeloid lineage tree (from [11]) where the terminal nodes are the mature cell types
of erythrocytes (ERY), megakaryocytes (MEG), monocytes (MON), and granulocytes (GRA). Multipotent cells are the common myeloid progenitor
(CMP), megakaryocyte-erythrocyte progenitor (MEP), and granulocyte-monocyte progenitor (GMP).

Ghaffarizadeh et al. BMC Bioinformatics 2014, 15(Suppl 7):S7
http://www.biomedcentral.com/1471-2105/15/S7/S7

Page 2 of 13



upper starting basin makes it unlikely for a more specia-
lized cell to make the transition back to a progenitor cell.
This process of cells moving out of an attractor basin in
response to external signals or to gene expression noise
and descending into attractor basins of lower potential
energy that correspond to more differentiated cells is
repeated at each level of the lineage tree.
This potential energy barrier that must be crossed to move
between attractor basins is called the epigenetic barrier.
Schmulevich et al. [9] proposed a method of quantifying
this barrier termed the mean first passage time (MFPT),
defined as the average number of state transitions needed
to move from one attractor basin to another during the
noisy operation of a Boolean regulatory network. The
MFPT provides a measure of the probability of a particular
transition between two attractor basins, with low MFPTs
indicating a high likelihood of the transition, and high
MFPTs indicating a low likelihood for this transition.
Details on the calculation of MFPT values and all other
aspects of the procedures are given in Methods; this sec-
tion will only provide an overview.
The forward and reverse MFPT values between two

attractor basins (simply called attractors from this point
forward), att1 and att2, provide information on the direc-
tionality of the transition. Directionality is a key element
of differentiation, as under normal circumstances, cells
transition from less to more mature states, but not in the
reserve direction. For the pair of attractors att1 and att2,
we define a directional transition to occur if att1 ® att2
(reaching att2 from att1) has a significantly larger MFPT
than the MFPT of att2 ® att1.

Another important aspect of cellular differentiation
captured by MFPT is the probability of making a transi-
tion between any pair of different cell types. This is
important in shaping the structure of a lineage tree and
in stabilizing cell types. For example, progenitor cell
types should not differentiate into cell types off the nor-
mal lineage path, and terminally differentiated cells must
be prevented from dedifferentiation or transdifferentiat-
ing into other cell types. Therefore, the MFPT should be
high in both directions for unfavored transitions between
attractors. We term this separation, with high separation
occurring when the MFPTs of att1 ® att2 and att2 ®
att1 are both large.
Given the directionality of differentiation and the large

separation of the majority of cell types within a linage tree,
a plot of the distribution of MFTPs of the forward (for
example, att1 ® att2) and reverse (att2 ® att1) transitions
between all possible pairs of cell types within a lineage tree
is expected to show clustering in the regions of direction-
ality and separation. This is shown in Figure 3. In this plot
of forward and reverse MFPTs between all possible attrac-
tor pairs produced by a set of gene regulatory networks,
the quadrant with a low forward MFPT and high reverse
MFPT represents attractor pairs (cell types) that are linked
with a strong directional transition. In contrast, the quad-
rant with high MFTPs in both the forward and reverse
directions represents well separated attractor pairs. This
region of high separation represents low probability transi-
tions between cells types, such as transdifferentiation or
differentiation off the normal lineage pathway. Using this
reasoning, if adding a small multistable switch to a larger

Figure 2 A hypothetical two dimensional epigenetic landscape of differentiation (modified from [1]). The horizontal axis shows the state
space of different cell types and the vertical axis approximates potential energy differences between cell types. The basins are attractors that
represent different cell types and the magnitude of potential energy differences between states provides a measure of the probability of
transitions between states under gene expression noise.
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GRN enhances the directionality of transitions between
attractors, then in a plot like the one shown in Figure 3,
there should be an increase in frequency of attractor pairs
in the regions labeled directional. Similarly, if a multistable
switch added to a gene regulatory network increases the
separation between pairs of attractors, then there should
be an increase in the region of Figure 3 labeled separate.
This is the basis of the approach followed in this work.
An important point to note is that in a MFPT represen-
tation of biologically realistic lineage trees, the propor-
tion of attractor pair transitions in the separate region
will far exceed the proportion in the directional quad-
rant. This is because the topology of actual linage trees
leads to there being significantly fewer directional transi-
tions than well separated transitions. Intuitively, this
stems from the ideas that the number of favored transi-
tions between different cell types is much smaller than
the number of theoretically possible transitions, and that
most of the theoretically possible transitions are unfa-
vored events such as dedifferentiation and transdifferen-
tiation. Mathematically, the possible number of well
separated transitions is on the order O(b2h) while the
number of directional transitions is of the order O(bh),
where b is the branching factor of differentiation tree
(number of children for each node) and h is the height
of the tree measured as the number of cell type transi-
tions between a stem cell and a terminally differentiated

cell. This expected difference in the proportions of sepa-
rate and directional attractor pair transitions is impor-
tant when interpreting the effects of adding multistable
switches to random Boolean genetic regulatory networks
(see below).
We investigated how the addition of the four multistable

switches shown in Figure 4 influenced the attractor land-
scape produced by randomly generated Boolean regulatory
networks. A conventional node-and-edge diagram of each
multistable switch used in biological literature is depicted
in the figure, followed by a more informative logic circuit
representation. The first logic circuit (Figure 4.a) is usually
referred to as a bistable switch (BS) or toggle switch[10].
We call the second logic switch (4.b) a mutual inhibition
switch (MI00). Note how the less informative node-and-
edge diagrams for these two distinct logic circuits are
identical. The next two multistable switches extend
mutual inhibition with the addition of one (MI+0) or two
(MI++) positive feedback loops. MI++ is sometimes
referred to as tristable switch.

Multistable switches in myeloid differentiation
An important example of cellular diversification is the
well studied system of hematopoiesis. During hematopoi-
esis, multipotent stem cells (hemocytoblasts) differentiate
into either myeloid or lymphoid progenitors [11]. A sub-
tree of the myeloid lineage tree is illustrated in Figure 1.

Figure 3 Regions representing desired properties of a differentiation tree. Forward and reverse MFPT plot showing directional and
separate regions.
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This figure shows that common myeloid progenitor
(CMP) cells produce two pluripotent cell types (megakar-
yocyte-erythrocyte progenitor (MEP) cells and granulo-
cyte-monocyte progenitor (GMP) cells) that in turn
produce terminally differentiated erythrocyte, megakar-
yocyte, monocyte and granulocyte cells.
To construct a GRN that simulates the dynamics of

the myeloid differentiation, we extracted a set of regula-
tory gene expression levels of all cell types in Figure 1
from three datasets of distinct experiments available at
ArrayExpress database (http://www.ebi.ac.uk/microarray-
as/ae/): E-GEOD-5606, E-GEOD-8407, and E-GEOD-
18483. Motivated by Krumsiek et al. [11], we picked 11
transcription factors that play important roles in mye-
loid differentiation: GATA-1, GATA-2, FOG-1, EKLF,
Fli-1, SCL, C/EBPa, PU.1, cJun, EgrNab, and Gfi-1; note
that the EgrNab, represents an integration of Egr-1, Egr-
2 and Nab-2. Using these genes and their expression
profiles, we utilized a search tool to infer a GRN for
myeloid differentiation as a Boolean network (manu-
script in preparation). This network includes 4 well-
known gene interactions that represent multistable
switches [11], [1]: a) An MI++ switch between GATA-1
and PU.1; b) An MI++ switch between GATA-2 and
PU.1; c) A bistable switch between Fli-1 and EKLF; and
d) A bistable switch between Gfi-1 and EgrNab. We
computed the MFPT between attractors of this network
that represent the cell types of the myeloid lineage tree.
The pairwise forward and reverse MFPT values between
all pairs of attractors of this network are depicted in the
Figure 5 (red circles); we also included the MFPT values
for the attractors of the original network proposed by
Krumsiek and colleagues (green diamonds) that contains

only four attractors as the terminally differentiated cell
types. This figure shows that the majority of transitions
in myeloid differentiation fall in either the separation or
directionality regions shown in Figure 3.

Multistable switches in random networks
We showed that the myeloid differentiation network,
with its multistable switches, generates directional tran-
sitions and well separated attractors. How general is this
result? We extended our study to examine the role of
these switches in a large space of cellular differentiation
networks.
The outline of this approach was to:

1 Construct a random Boolean network (only net-
works that are expected to operate in the critical
domain were generated (see Methods)).
2 Embed zero, one or two copies of a given multi-
stable switch within the network.
3 Run the network and identify attractors; if the num-
ber of attractors is less than 5, go back to step 1.
4 Compute the forward and reverse MFPT between
all pairs of attractors.
5 Map the forward and reverse MFPT of each pair
of attractors to a point in a MFPT density plot like
the one shown in Figure 3.
6 Repeat for 5000 random Boolean networks to cre-
ate each MFPT density plot.

Density plots were generated for 9 different types of
networks: RBN networks without any added multistable
switch and RBNs with one or two identical copies of
each of the four types of multistable switches. Figure 6

Figure 4 Multistable switches used in this work. The diagrams in the left show the node and edge representation and the diagrams at the
right show the logic gate representation of each switch. The truth table of the functions are [1,1,0,1] for a and [0,1,0,0] for b, c, and d for binary
numbers [00,01,10,11], respectively. In this work, the multistable switches are referred to as: (a) bistable switch (BS ), (b) mutual inhibition with
zero positive feedback loops (MI00), (c) mutual inhibition with one positive feedback loop (MI0+), and (d) mutual inhibition with two positive
feedback loops (MI++).
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shows these density plots. Each plot shows the forward
and reverse MFPT between all attractor pairs generated
by 5000 networks of a single type.
The MFPT density distribution produced by RBNs with-
out any added multistable switch (Figure 6a) shows no
clustering in the directional or separate regions of the
plot. Instead, the forward and reverse MFPTs of most of
the transitions are equal and of intermediate values and
therefore fall in the mid-range of the diagonal. Adding a
single multistable switch of any type to the RBN had a
modest effect of increasing the density of attractor pairs

in the separate region. Adding two multistable switches
of the same type to the RBN had a much stronger effect
on increasing the frequency of well separated attractor
pairs. This is reflected in an increased density in the
separate region of the MFPT plots. The particular kind
of multistable switch had little impact on this effect;
instead, the critical element was adding two rather than
one multistable switch to the RBN.
There was a modest increase in the density of attrac-

tor pairs in the directional regions of the MFPT plot
when two identical multistable switches were added.

Figure 5 Forward and reverse MFPT plot for the myeloid differentiation network. Red circles are the MFPT values of our inferred network.
This network has all 7 attractors of the myeloid lineage tree shown in Figure 1, including multipotent cells. Green diamonds show the MFPT
values for the network proposed by Krumsiek et al. which only has the 4 terminally differentiated cell types[11]. Including multipotent cells
illustrates additional attractor relations, including directionality.
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However, as discussed above, a major clustering of
MFPT values in the directional region is not expected in
networks that produce lineage trees. The modest
increase in directionality gained by adding multistable
switches is likely to be significant. In contrast to the
effect on separation, there was a difference between the
multistable switch types in increasing directionality: The
MI++ switch type did not increase directionality, but all
three of the other types did. To better illustrate these

enrichments in directional and separate regions, Figure 7
shows the difference between the MFPT distribution of
networks with two embedded multistable switches and
the base-line random network distribution.

Conclusion
This work examined how the attractor structure gener-
ated from random Boolean regulatory network dynamics
was influenced by the addition of multistable switches

Figure 6 Distributions of MFPT values. The plots show the forward and reverse MFPTs for all transitions seen in 5000 critical networks of each
type. (a) Networks with no added multistable motifs; (b) Networks with one embedded bistable switch; (c) Networks with two embedded
bistable switches; (d) Networks with one embedded MI00 switch; (e) Networks with one embedded MI+0 switch; (f) Networks with one
embedded MI++ switch; (g) Networks with two embedded MI00 switches; (h) Networks with two embedded MI+0 switches; (i) Networks with
two embedded MI++ switches.
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that are commonly found in biological networks that
control differentiation. The results show that the addi-
tion of multistable switches increases the resilience of
genetic regulatory networks to gene expression noise.
This is seen by the increase in the proportion of well
separated attractors. In a biological context, this separa-
tion of attractors has the effect of stabilizing determined
cells and of helping to establish well defined pathways
between differentiating cells. Adding a single multistable
switch to a random network had a relatively modest sta-
bilizing effect, but adding two identical switches of any
of the four types tested here produced much stronger
barriers between different cell types. In parallel, there
was also evidence that adding two multistable switches
to a genetic regulatory network increased the frequency
of directional transitions between attractors. From a bio-
logical perspective, this structures a linage tree by favor-
ing one-way transitions between particular cell types.
Therefore, the pervasive occurrence of multistable
switches in networks that control cellular differentiation
is likely to contribute to the structure of lineage trees
and to the stabilization of cell types.

Detailed methods
Cell differentiation and attractor dynamics
Boolean networks [6] have proved effective in represent-
ing GRN structure and dynamics in many systems,
including Drosophila development [12,13], angiogenesis
[14], eukaryotic cell dynamics [15], and yeast transcrip-
tion networks [16]. Each gene in a network is repre-
sented as a node whose regulation by other genes is
modeled using updating rules as logic functions. An
expressed gene is assigned the value true and a non-
expressed gene the value false.
A Boolean network with n genes has 2n possible

states, denoted as Ŝ. At each step in the simulation, the
next state ŝt+1 ∈Ŝis determined by applying each gene’s
logic function (representing the regulatory interactions)

to the current value of the genes in ŝt. Let this computa-
tion be defined as ŝt+1 ¬ D(ŝt) where D(ŝt) is the deter-
ministic mapping function that finds the next state of
the network given the current state. As the network is
executed by repeated applications of D(ŝt), the state will
reach a previously visited state, and thus, since the
dynamics are deterministic, enter into an attractor
which represents a fixed point of the system. Attractors
can be single states, called point attractors, or consist of
more than one state that the network continuously tran-
sitions between, called cyclic attractors. Let â= D*(ŝ) be
the resulting network attractor state reached when start-
ing at ŝand applying the logic functions until the attrac-
tor state âis reached.
In this work, cell types are considered attractors in the

state space of possible gene expression profiles [17] and
cell differentiation is modeled as the process of transi-
tioning from one attractor to another [18].

Network construction
A random Boolean regulatory network is generated by ran-
domly connecting a varying number of nodes, then instan-
tiating each node with a randomly generated logic
function. To replicate networks found in natural systems,
we created only networks that operate in the critical
domain, rather than ordered or chaotic. Critical networks
implement maximal information flow [3] and have the low-
est attractor basin entropy [19]. Evidence that GRN’s tend
to be critical is given in [20]. To generate critical networks,
the parameters are set according to s = 2qpN(1 −pN) where
s is the sensitivity of the network to perturbations in gene
values, pN is the probability of the output of each Boolean
function being 1, and q is the count of inputs to each Boo-
lean function [21]. When s = 1 a single bit change is on
average propagated to one other node and the network is
in the critical domain. In an ordered network, s < 1 and
perturbations tend to die out, while in a chaotic network,
s > 1 and perturbations tend to grow. In this work s was

Figure 7 Difference of distributions of MFPT values. Difference of distributions of MFPT values for networks embedded with two identical
motifs against the networks with no motifs. (a) Difference of network with no motifs and networks with two embedded bistable switches; (b)
Difference of network with no motifs and networks with two embedded MI00 switches; (c) Difference of network with no motifs and networks
with two embedded MI+0 switches; (c) Difference of network with no motifs and networks with two embedded MI++ switches.
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fixed at 1 and pN was adjusted depending upon the
value of q.
The attractors of each random Boolean regulatory net-

work are determined, then Markov chain analysis is per-
formed to determine the transition probabilities between
all possible states. This allows determination of the
MFPTs between each pair of attractors [9]. The MFPTs
allow the construction of a graph whose nodes are
attractors and weighted edges are the MFPT value
between different nodes. Figure 8.a shows a sample
graph. MFPT graphs for cellular differentiation are
expected to have a small MFPT value for forward edges
(moving from less to more specialized cell types), large
values for reverse edges, and large values in both direc-
tions for transitions between attractors at the same level
of tree (level is the number of transitions from the
root). In [5] a method was introduced that applied suc-
cessively higher MFPT thresholds to prune edges from
this complete MFPT tree as a means to identify separa-
tion among subsets of close attractor states as illustrated
in Figure 8(b). The effects of changing the threshold
from low to high was proposed as a possible mechanism
for cellular differentiation with the low threshold repre-
senting pluripotency and the process of raising the
threshold as type specialization as attractors become
more and more isolated. This model proposes that cells
differentiate by actively controlling their sensitivity of

expression noise and can account for the observation
that terminally differentiated cell states tend to be more
stable than pluripotent states.

Network search
We perform a uniform Monte Carlo search over the
space of critical random Boolean networks. For each
network we find the attractors and compute the MFPT
between all possible attractor pairs (extended from code
posted at http://code.google.com/p/pbn-matlab-toolbox
[9]). Using the MFPT values, for each type of multi-
stable switch added to the network, we draw a density
plot where the x-axis is the forward MFPT and the
y-axis is the reverse MFPT (we consider the edge with
lower MFPT as forward). The acquired density plots are
used to determine the distribution of directional, non-
directional, separated and non-separated probability
transitions between attractors in each network.

Network types
We investigated nine types of networks. Approximately 5 *
104 networks of each type were explored to find 5, 000
networks of each type with five or more attractors. The
different network types come from the use of the 4 multi-
stable switches that are shown in Figure 4. The first switch
(Figure 4 a) is a bistable switch, a small local circuit with
feedback loops. This is a common switch in biological

Figure 8 Mean first passage time graphs. (a) A sample MFPT graph. Nodes are attractors and the weights of edges are proportional to MFPT
values between attractors. (b) Same graph as in (a) with high (> 103) MFPT edges eliminated.
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networks and it controls binary branch points between
two mutually exclusive cell lineages[1,10]. The truth table
of the functions in this switch is [1,1,0,1] for binary num-
bers [00,01,10,11] respectively. The other three switches
all encode mutual inhibition between two genes. The first
is MI00 and is based on the network synthesized in [10].
MI00 includes two incoherent feedback loops. The final
two switches extend mutual inhibition with the addition of
one MI+0 or two MI++ positive (coherent) feedback
loops. These two switches were explored in [22], where it
was shown that the positive feedback loops can introduce
additional shallow attractor basins in continuous ODE
network models.
The four switches were used as described above to con-

struct nine different types of networks: no motif, one BS,
one MI00, one MI0+, one MI++ and then four more net-
work classes each with two of the same switch. Note that
when a motif defined in Figure 4 is embedded, two nodes
of the original RBN are selected randomly, their logic
functions replaced and inputs and outputs rewired. For
illustration, consider how a MI0+ motif is embedded into
a RBN. Starting with a RBN (see Figure 4 (a)), two nodes
are selected randomly and their truth tables are changed
to [0,1,0,0]. Then, the 20 input of the second node is
wired to the output of first node and, conversely, the 20

input of first node is wired to the output of the second
node. The small or-gate and not-gate are not considered
in wiring, because they were previously considered in the
truth tables of their respective nodes.

Mean first passage time
The first-passage time (FPT), also called first hitting time,
is the time taken by a stochastic system for the first visit
of a specific state. Mathematically, FPT is defined as Fk
(ŝx, ŝy): the probability that starting in state x̂, the first
time the system visits a state ŷ will be at time k. In the
case of Boolean networks, time is the path length of state
transitions. Considering pxy as the probability of transi-
tion between states x and y, then F1(ŝx, ŝy) = pxy. As equa-
tion 1 shows, for k ≥ 2, Fk is calculated by a recursive
iteration over all transitive relations: for all z states in the
network dynamics, Fk(ŝx, ŝy) is the probability of a one
step transition from state x to z times the FPT from state
z to y in k −1 steps.

Fk(ŝx, ŝy) =
∑

ŝz∈{0,1}n ,z �=y

pxzFk−1(ŝz, ŝy) (1)

Probabilistically, there are two possibilities to reach
state y from x; either y is a deterministic target for x
and no bit flips occur due to the noise, or an aggregate
of bit flips drive the transition from x to y. So the equa-
tion for pxy can be written as follows.

pxy =

{
(1 − pe)

n y ← D(ŝx)

p
hxy
e (1 − pe)

n−hxy y ← η(ŝx, hxy), ŝx �= ŝy
(2)

where dij is equal to 1 if there is a deterministic tran-
sition from x to y in the network dynamics, otherwise it
is 0; pe is the probability of a single bit flip resulting
from noise and hxy is the Hamming distance between
two states; n is the total number of nodes in the
network.
Although the FPT is a valuable measure, the average

time it takes to reach state y from state x, termed Mean
First Passage Time (MFPT), is of greater interest. MFPT
in Boolean networks was introduced by Shmulevich et
al [23] and is defined as:

MFPT(ŝx, ŝy) =
∑

k

kFk(ŝx, ŝy) (3)

A low MFPT between two states indicates that start-
ing from the first state, the second state is easily reached
by gene expression noise. Figure 9 shows Fk, kFk, and
MFPT for the transition between two arbitrary attrac-
tors. As this figure shows, the a to b transition has a
lower MFPT compared to the other.
At each network state update D(ŝ) there is a probability
that the state will change as a function of the Hamming
distance (h) between the current state and the subse-
quent state ŝt+1 ¬D(h(ŝt, r)). MFPT models uniform
gene expression noise by considering probabilistic bit
flips at every possible state of the network and deriving
the distribution of passage times from analysis of the
corresponding Markov process. Statistically, the prob-
ability distribution of bit flips can be seen as a binomial
distribution, thus the probability of r bit flips, h(ŝa, r) is(

h
r

)
pr(1 − p)h−r, where p is the probability of a single

bit flip and h is the total number of bits.

Comparisons of epigenetic barrier measures
There are a number of possible ways to measure epige-
netic barriers that separate two attractor basins. In this
part of the work, the utility of three of these measures,
MFPT, transitory bit flips, and Hamming distance, were
compared.

Evaluating epigenetic barriers: MFPT vs. transitory bit flips
Villani et al. [5] studied noise-driven network transitions
in RBNs. They introduced a measure of the probability of
network transitions as the likelihood of attractor transi-
tion under expression noise. In this measure, for each
pair of attractors {ai, aj}, P(i, j) is the portion of single
one-step bit flips (transitory perturbations) in the nodes
of all states of attractor ai which will result in a transition
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from ai to aj under noise-free dynamics. The measure of
likelihood of network transition under noise is similar to
MFPT, but it does not consider gene expression variabil-
ity throughout the network. MFPT better models global

expression noise by considering probabilistic bit flips at
every possible state of the network and deriving the dis-
tribution of passage times from analysis of the corre-
sponding Markov process.

Figure 9 Illustration of mean first passage time. (a) Fk (probability of first visit at time step k) plotted for two arbitrary attractors, called a and
b, in a random Boolean network for 2500 steps (k). The red curve is for the transition from a to b that has a low MFPT compared to the reverse
transition, b to a (shown with the blue curve); (b) kFk plotted for the Fk curves in (a). Note that MFPT is the centroid of area under the kFk curve.

Figure 10 MFPT vs. transitory bit flips. Relationship between MFPT and P for 100 critical RBNs.
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Since one-off bit flips consider noise only as a single
bit changes and only when the network has reached its
attractor states, it could serve as an efficient yet heuris-
tic measure of the MFPT. To test this idea, a study was
performed on a set of small critical networks where for
each network and each pair of attractors, P(i, j) was
compared with MFPT(i, j). Figure 10 depicts the rela-
tionship between MFPT and P for 100 arbitrary Boolean
networks that have 5 or more attractors. Each point
represents the epigenetic barrier between two attractors
measured in MFPT and P. Since the networks studied
in these experiments are small and do not have many
attractors, many points are located in the line P = 0.
The regression line in this figure shows that as MFPT
increases P tends to decrease. P and MFPT are modestly
correlated for these small networks and it is unclear
how well one-off bit flips can accurately estimate MFPT
when network size grows. Since the networks in our
experiments are small, we only consider MFPT because
of its realism in modeling expression noise.

Evaluating epigenetic barriers: MFPT vs. Hamming
distance
An intuitive idea is that MFPT between attractors has a
direct relationship to the Hamming distance that sepa-
rates these attractors. However, we found that this is
not the case. Instead, network dynamics, not the Ham-
ming distance, is the main contributor to the MFPT
between attractors. As an example of the limitations of
Hamming distance, consider that the MFPT(ai, aj) and
MFPT(aj, ai) can be different, but that the Hamming
distance between these attractors is the same. However,
even though there is not a strong relationship between
MFPT and Hamming distance, a weak correlation
between the average of the forward and reverse MFPT
between attractors and their Hamming distance can be
detected. This is depicted in Figure 11 which shows
MFPT versus the Hamming distance obtained from 100
RBNs containing 8 nodes. As the Hamming distance
increases, the upper-bound of MFPT values also
increases (r = 0.1027 for Hamming distance and average

Figure 11 MFPT vs. Hamming distance. Relationship between average MFPT between attractor pairs and Hamming distance for 100 critical BNs.
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MFPT). In Figure 11, the box represents the central 50%
of the points and the red bar shows the median of data.
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