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Abstract

The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) at the end of 2019 from the Chinese 
province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details 
of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS- CoV-2 and SARS- CoV 
and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared 
to SARS- CoV, SARS- CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50- fold less infectious viral 
progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS- CoV-2- infected cells established 
extensive cross- reactivity of antisera previously raised against a variety of non- structural proteins, membrane and nucleocap-
sid protein of SARS- CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are 
very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the 
two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, 
but that SARS- CoV-2 infection was substantially more sensitive to pre- treatment of cells with pegylated interferon alpha. An 
important difference between the two viruses is the fact that – upon passaging in Vero E6 cells – SARS- CoV-2 apparently is 
under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a 
putative furin- like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic 
change in plaque assays.

InTRoduCTIon
For the first time in a century, societies and economies 
worldwide have come to a near- complete standstill due to 
a pandemic outbreak of a single RNA virus. This virus, the 
severe acute respiratory syndrome coronavirus 2 (SARS-
 CoV-2) [1] belongs to the coronavirus (CoV) family, which 
is thought to have given rise to zoonotic introductions on 
multiple occasions during the past centuries. Coronaviruses 

are abundantly present in mammalian reservoir species, 
including bats [2], and should now be recognized definitively 
as a continuous zoonotic threat with the ability to cause severe 
human disease and explosive pandemic transmission.

To date, seven CoVs that can infect humans have been identi-
fied, which segregate into two classes. On the one hand, there 
are four endemic human CoVs (HCoVs), the first of which 
were identified in the 1960s, annually causing a substantial 
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number of common colds [3, 4]. On the other hand, we now 
know of (at least) three zoonotic CoVs that recently have 
caused outbreaks in the human population: severe acute 
respiratory syndrome coronavirus (SARS- CoV) [5, 6] in 
2002–2003, Middle East respiratory syndrome- coronavirus 
(MERS- CoV) [7, 8] since 2012 (and probably earlier) and 
the current pandemic SARS- CoV-2 [9, 10]. The latter agent 
emerged near Wuhan (PR China) in the fall of 2019 and 
its animal source is currently under investigation [11–13]. 
Transmission to humans of SARS- CoV and MERS- CoV 
was attributed to civet cats [14] and dromedary camels [15], 
respectively, although both species may have served merely as 
an intermediate host due to their close contact with humans. 
All three zoonotic CoVs belong to the genus betacoronavirus 
(beta- CoV), which is abundantly represented among the 
CoVs that circulate in the many bat species on this planet 
[2, 16–19]. The genetic diversity of bat CoVs and their phylo-
genetic relationships with the four known endemic HCoVs 
(OC43, HKU1, 229E and NL63; the latter two being alpha- 
CoVs) suggests that also these may have their evolutionary 
origins in bat hosts, for most of them probably centuries ago 
[20]. The potential of multiple CoVs from different genera to 
cross species barriers had been predicted and documented 
previously [2, 16–19, 21, 22], but regrettably was not taken 
seriously enough to invest more extensively in prophylactic 
and therapeutic solutions that could have contributed to 
rapidly containing an outbreak of the current magnitude.

Compared to other RNA viruses, CoVs possess an unusually 
large positive- sense RNA genome with a size ranging from 
26 to 34 kilobases [23]. The CoV genome is single- stranded 
and its 5′-proximal two- thirds encode for the large and 
partially overlapping replicase polyproteins pp1a and pp1ab 
(4000–4500 and 6700–7200 amino acids long, respectively), 
with the latter being a C- terminally extended version of the 
former that results from ribosomal frameshifting. The repli-
case polyproteins are processed into 16 cleavage products 
(non- structural proteins, nsps) by two internal proteases, 
the papain- like protease (PLpro) in nsp3 and the 3C- like or 
‘main’ protease (Mpro) in nsp5 [24]. Specific transmembrane 
nsps (nsp3, 4 and 6) then cooperate to transform intracel-
lular membranes into a viral replication organelle (RO) [25] 
that serves to organize and execute CoV RNA synthesis, 
which entails genome replication and the synthesis of an 
extensive nested set of subgenomic mRNAs. The latter are 
used to express the genes present in the 3′-proximal third 
of the genome, which encode the four common CoV struc-
tural proteins [spike (S), envelope (E), membrane (M) and 
nucleocapsid (N) protein] and the ‘so- called’ accessory 
protein genes, most of which are thought to be involved in 
the modulation of host responses to CoV infection [26]. The 
CoV proteome includes a variety of potential targets for drug 
repurposing or de novo development of specific inhibitors 
of, e.g. viral entry (S protein) or RNA synthesis [27]. The 
latter process depends on a set of enzymatic activities [24] 
including an RNA- dependent RNA polymerase (RdRp; in 
nsp12), RNA helicase (in nsp13), two methyltransferases 
involved in mRNA capping (a guanine- N7- methyltransferase 

in nsp14 and a nucleoside-2′-O- methyltransferase in nsp16) 
and a unique exoribonuclease (ExoN, in nsp14) that promotes 
the fidelity of the replication of the large CoV genome [28]. 
Other potential drug targets are the transmembrane proteins 
that direct the formation of the viral RO, several less well 
characterized enzymatic activities and a set of smaller nsps 
(nsp7-10) that mainly appear to serve as cofactors/modula-
tors of other nsps.

The newly emerged SARS- CoV-2 was rapidly identified as a 
CoV that is relatively closely related to the 2003 SARS- CoV 
[9, 29, 30]. The two genome sequences are about ~80 % iden-
tical and the organization of ORFs is essentially the same. The 
overall level of amino acid sequence identity of viral proteins 
ranges from about 65 % in the least conserved parts of the 
S protein to about 95 % in the most conserved replicative 
enzyme domains, prompting the coronavirus study group of 
the International Committee on the Taxonomy of Viruses to 
classify the new agent within the species Severe acute respira-
tory syndrome- related coronavirus, which also includes the 
2003 SARS- CoV [1]. The close phylogenetic relationship also 
implies that much of our knowledge of SARS- CoV molecular 
biology, accumulated over the past 17 years, can probably 
be translated to SARS- CoV-2. Many reports posted over 
the past months have described such similarities, including 
the common affinity of the two viruses for the angiotensin- 
converting enzyme 2 (ACE2) receptor [9, 31]. This receptor 
is abundantly expressed in Vero cells (African green monkey 
kidney cells). Since 2003, Vero cells have been used exten-
sively for SARS- CoV research in cell- culture- based infection 
models by many laboratories, including our own.

We set out to establish the basic features of SARS- CoV-2 repli-
cation in Vero cells and compare it to the Frankfurt-1 SARS-
 CoV isolate from 2003 [32, 33]. When requesting virus isolates 
(February 2020), and in spite of the rapidly emerging public 
health crisis, we were confronted – not for the first time – with 
administrative hurdles and discussions regarding the alleged 
‘ownership’ of virus isolates cultured from (anonymous) 
clinical samples. From a biological and evolutionary point of 
view, this would seem a strangely anthropocentric considera-
tion, but it ultimately forced us to reach out across the globe 
to Australian colleagues in Melbourne. After checking our 
credentials and completing a basic material transfer agree-
ment, they provided us (within 1 week) with their first SARS-
 CoV-2 isolate (originally named 2019- nCoV/Victoria/1/2020 
and subsequently renamed BetaCoV/Australia/VIC01/2020 
[34], which will be used throughout this study. Until now, this 
isolate has been provided to 17 other laboratories worldwide 
to promote the rapid characterization of SARS- CoV-2, in this 
critical time of lockdowns and other preventive measures to 
avoid a collapse of public health systems.

In this report, we describe a comparative study of the basic 
replication features of SARS- CoV and SARS- CoV-2 in Vero 
E6 cells, including growth kinetics, virus titres, plaque pheno-
type and an analysis of intracellular viral RNA and protein 
synthesis. Additionally, we analysed infected cells by light 
and electron microscopy, and demonstrated cross- reactivity 
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of 13 available SARS- CoV- specific antisera (recognizing ten 
different viral proteins) with their SARS- CoV-2 counter-
parts. Finally, we established the conditions for a medium- 
throughput assay to evaluate basic antiviral activity and 
assessed the impact of some known CoV inhibitors on SARS-
 CoV-2 replication. In addition to many anticipated similari-
ties, our results also established some remarkable differences 
between the two viruses that warrant further investigation. 
One of them is the rapid evolution – during virus passaging in 
Vero cells – of a specific region of the SARS- CoV-2 S protein 
that contains the so- called furin- like cleavage site.

METHodS
Cell and virus culture
Vero E6 cells and HuH7 cells were grown as described 
previously [35]. SARS- CoV-2 isolate Australia/VIC01/2020 
(GenBank ID: MT007544.1 [34]) was derived from a positively 
testing nasopharyngeal swab in Melbourne, Australia, and was 
propagated twice in Vero/hSLAM cells, before being shared 
with other laboratories. In Leiden, the virus was passaged two 
more times at low m.o.i. in Vero E6 cells to obtain a working 
stock (p2 stock) that was used in all experiments. SARS- CoV 
isolate Frankfurt 1 [36] was used to compare growth kinetics 
and other features with SARS- CoV-2. Infection of Vero E6 
cells was carried out in PBS containing 50 µg ml−1 DEAE- 
dextran and 2 % FCS (Bodinco). The inoculum was added to 
the cells for 1 h at 37 °C, after which cells were washed twice 
with PBS and maintained in Eagle’s minimal essential medium 
(EMEM; Lonza) with 2 % FCS, 2 mM l- glutamine (PAA) and 
antibiotics (Sigma). Viral titres were determined by plaque 
assay in Vero E6 cells as described previously [37]. For plaque 
picking, plaque assays were performed using our p1 stock, 
while using an overlay containing 1 % of agarose instead of 
Avicel (RC-581; FMC Biopolymer). Following neutral red 
staining, small and large plaques were picked and used to 
inoculate a 10 cm2 dish of Vero E6 cells containing 2 ml of 
EMEM-2%FCS medium, yielding p1 virus. After 48 h, 200 µl 
of the culture supernatant was used to infect the next dish of 
cells (p2), a step that was repeated one more time to obtain 
p3 virus. All work with live SARS- CoV and SARS- CoV-2 was 
performed in biosafety laboratory level 3 facilities at Leiden 
University Medical Center, the Netherlands.

Analysis of intracellular viral RnA and protein 
synthesis
Isolation of intracellular RNA was performed by lysing 
infected cell monolayers with TriPure isolation reagent 
(Roche Applied Science) according to the manufacturer’s 
instructions. After purification and ethanol precipitation, 
intracellular RNA samples were loaded onto a 1.5 % agarose 
gel containing 2.2 M formaldehyde, which was run over-
night at low voltage in MOPS buffer [10 mM MOPS (sodium 
salt) (pH 7), 5 mM sodium acetate, 1 mM EDTA]. Dried 
agarose gels were used for direct detection of viral mRNAs 
by hybridization with a 32P- labelled oligonucleotide probe 
(5′-CACATGGGGATAGCACTAC-3′) that is complementary 

to a fully conserved sequence located 30 nucleotides upstream 
of the 3’ end of the genome as well as all subgenomic mRNAs 
produced by SARS- CoV-2 and SARS- CoV. After hybridiza-
tion, RNA bands were visualized and quantified by phospho-
rimaging using a Typhoon-9410 variable mode scanner (GE 
Healthcare) and ImageQuant TL software (GE Healthcare). In 
order to verify the amount of RNA loaded, a second hybridi-
zation was performed using a 32P- labelled oligonucleotide 
probe recognizing 18S ribosomal RNA (5′- GATC CGAG 
GGCC TCAC TAAAC-3′). Protein lysates were obtained by 
lysing infected cell monolayers in 4×Laemmli sample buffer 
and were analysed by semi- dry Western blotting onto Hybond 
0.2 µM polyvinylidene difluoride (PVDF) membrane (GE 
Healthcare). Membranes were incubated with rabbit antisera 
diluted in PBS with 0.05 % Tween-20 containing 5 % dry 
milk (Campina). Primary antibodies were detected with a 
horseradish peroxidase- conjugated swine anti- rabbit IgG 
antibody (Dako) and protein bands were visualized using 
Clarity Western Blot substrate (Biorad) and detected using 
an Advanced Q9 Alliance imager (Uvitec Cambridge).

next-generation sequencing and bioinformatics 
analysis
SARS- CoV-2 genomic RNA was isolated from cell- culture 
supernatants using TriPure isolation reagent (Roche Applied 
Science) and purified according to the manufacturer’s instruc-
tions. The total amount of RNA in samples was measured 
using a Qubit fluorometer and RNA High Sensitivity kit 
(Thermo Fisher Scientific). For next- generation sequencing 
(NGS) library preparation, RNA (25–100 ng) was mixed 
with random oligonucleotide primers using the NEBNext 
First Strand Synthesis Module kit for Illumina (NEB) and 
incubated for 10 min at 94 °C. NGS of samples was performed 
by a commercial service provider (GenomeScan, Leiden, the 
Netherlands) while including appropriate quality controls 
after each step of the procedure. Sequencing was performed 
using a NovaSeq 6000 Sequencing System (Illumina). Subse-
quently, sequencing reads were screened for the presence of 
human (GRCh37.75), mouse (GRCm38.p4), E. coli MG1655 
(EMBL U00096.2), phiX (RefSeq NC_001422.1) and common 
vector sequences (UniVec and ChlSab1.1). Prior to alignment, 
reads were trimmed to remove adapter sequences and filtered 
for sequence quality. The remaining reads were mapped to 
the SARS- CoV-2 GenBank reference sequence (NC_045512.2 
[38]). Data analysis was performed using Bowtie 2 [39]. Raw 
NGS data sets for each virus sample analysed in this study 
are deposited in NCBI Bioproject and available under the 
following link: http://www. ncbi. nlm. nih. gov/ bioproject/ 
628043. Only SARS- CoV-2- specific reads were included in 
these data files.

To study evolution/adaptation of the S protein gene, we 
performed an in- depth analysis of reads covering the S1/S2 
region of the S protein gene. This was done for the p2 stock 
and for the four virus samples of the plaque- picking experi-
ment shown in Fig. 1a. First, all reads spanning nt 23 576 to 
23 665 of the SARS- CoV-2 genome were selected. Next, reads 
constituting less than 1 % of the total number of selected reads 

http://www.ncbi.nlm.nih.gov/bioproject/628043.
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were excluded from further analysis. The remaining number 
of reads were 3860 (p2 stock), 1924 (S5p1), 2263 (S5p2), 4049 
(S5p3) and 3323 (L8p1). These reads were translated in the 
S protein ORF and the resulting amino acid sequences were 
aligned, grouped on the basis of containing the same muta-
tions/deletions in the S1/S2 region and ranked by frequency 
of occurrence (Fig. 1b).

Antisera and immunofluorescence microscopy

The SARS- CoV- specific rabbit or mouse antisera/antibodies 
used in this study are listed in Table 1. Most antisera were 
described previously (see references in Table  1), with the 
exception of three rabbit antisera recognizing SARS- CoV nsps 
8, 9 and 15. These were raised using full- length (His)6- tagged 

Table 1. SARS- CoV- specific antisera used and their cross- reactivity with corresponding SARS- CoV-2 targets

SARS- CoV 
antiserum

Function of target Antigen type Antibody type IFA signal* Reference

nsp3 (DGD7) transmembrane replicase protein, containing PLpro bacterial expression product rabbit polyclonal ++ [48]

nsp4 (FGQ4) transmembrane replicase protein synthetic peptide rabbit polyclonal ++ [109]

nsp5 (DUE5) Mpro bacterial expression product rabbit polyclonal + [48]

nsp6 (GBZ7) transmembrane replicase protein synthetic peptide rabbit polyclonal − [109]

nsp8 (DUK4) RNA polymerase co- factor bacterial expression product rabbit polyclonal ++ [48]

nsp8 (39-12) RNA polymerase co- factor bacterial expression product mouse monoclonal ++ unpublished

nsp9 (HLJ5) RNA- binding protein synthetic peptide rabbit polyclonal ++ unpublished

nsp13 (CQS2) RNA helicase synthetic peptide rabbit polyclonal ++ [48]

nsp15 (HLT5) endoribonuclease bacterial expression product rabbit polyclonal + unpublished

nsp15 (BGU6) endoribonuclease synthetic peptide rabbit polyclonal + [48]

M (EKU9) membrane protein synthetic peptide rabbit polyclonal + [48]

N (JUC3) nucleocapsid protein bacterial expression product rabbit polyclonal + [35]

N (46-4) nucleocapsid protein bacterial expression product mouse monoclonal ++ [41]

* ++, strongly positive; +, positive; -, negative.

Fig. 1. Rapid evolution of SARS- CoV-2 during passaging in Vero E6 cells. (a) Outline of a plaque- picking experiment that was initiated 
when the p2 stock of SARS- CoV-2 Australia/VIC01/2020 showed remarkable plaque heterogeneity on Vero E6 cells (leftmost well). 
Following a plaque assay of the p1 virus stock, small and large plaques were picked and these virus clones were passaged three times in 
Vero E6 cells, while their plaque phenotype was monitored. In contrast to the large plaque viruses (example L8; bottom row), the plaque 
phenotype of the small plaque viruses (example S5; top row) rapidly evolved within these three passages. (b) Evolution/adaptation of 
the S protein gene during Vero E6 passaging. Overview of NGS data obtained for the p2 stock, S5p1/p2/p3 and S8p1 in the S1/S2 region 
of the SARS- CoV-2 S protein gene that encodes the so- called furin- like cleavage site. The analysis was based on NGS reads spanning 
nt 23 576 to 23 665 of the SARS- CoV genome (see Methods for details) and their translation in the S protein ORF. Deletions are indicated 
with Δ followed by the affected amino acid residues.
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bacterial expression products (nsp8 and nsp15) or a synthetic 
peptide (nsp9, aa 4209–4230 of SARS- CoV pp1a), which were 
used to immunize New Zealand white rabbits as described 
previously [40, 41]. Cross- reactivity of antisera to SARS-
 CoV-2 targets was evaluated microscopically by immuno-
fluorescence assay (IFA) and for some antisera (nsp3 and 
N protein) also by Western blot analysis. Double- stranded 
RNA was detected using mouse monoclonal antibody J2 from 
Scicons [42].

Cells were grown on glass coverslips and infected as described 
above [43]. At 12, 24, 48 or 72 h post- infection (p.i.), cells were 
fixed overnight at 4 °C using 3 % paraformaldehyde in PBS (pH 
7.4). Cells were washed with PBS containing 10 mM glycine 
and permeabilized with 0.1 % Triton X-100 in PBS. Cells were 
incubated with antisera diluted in PBS containing 5 % FCS. 
Secondary antibodies used were an Alexa488- conjugated 
goat anti- rabbit IgG antibody (Invitrogen), a Cy3- conjugated 
donkey anti- mouse IgG antibody (Jackson ImmunoResearch 
Laboratories) and an Alexa488- conjugated goat anti- mouse 
IgG antibody (Invitrogen). Nuclei were stained with 1 µg ml−1 
Hoechst 33 258 (ThermoFischer). Samples were embedded 
using Prolong Gold (Life Technologies) and analysed with a 
Leica DM6B fluorescence microscope using LASX software.

Electron microscopy
Vero E6 cells were grown on TC- treated Cell Star dishes 
(Greiner Bio- One) and infected at an m.o.i. of 3, or mock- 
infected. Cells were fixed after 6, 8 and 10 h p.i. for 30 min 
at room temperature with freshly prepared 2 % (vol/vol) 
glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) and then 
stored overnight in the fixative at 4 °C. The samples were then 
washed with 0.1 M cacodylate buffer, treated for 1 h with 1 % 
(wt/vol) OsO4 at 4 °C, washed with 0.1 M cacodylate buffer 
and Milli- Q water, and stained with 1 % (wt/vol) uranyl 
acetate in Milli- Q water. After a new washing step, samples 
were dehydrated in increasing concentrations of ethanol (70, 
80, 90 and 100 %), embedded in epoxy resin (LX-112, Ladd 
Research) and polymerized at 60 °C. Sections (100 nm thick) 
were collected on mesh-100 copper EM grids covered with a 
carbon- coated Pioloform layer and post- stained with 7 % (wt/
vol) uranyl acetate and Reynold’s lead citrate. The samples 
were examined in a Twin transmission electron microscope 
[Thermo Fisher Scientific (formerly FEI)] operated at 120 kV 
and images were collected with a OneView 4 k high- frame 
rate CMOS camera (Gatan).

Compounds and antiviral screening assay
A 10 mM stock of Remdesivir (HY-104077; MedChemex-
press) was dissolved in DMSO and stored at −80 °C in aliquots 
for single use. Alisporivir was kindly provided by DebioP-
harm (Dr Grégoire Vuagniaux, Lausanne, Switzerland [44]) 
and a 20 mM stock was dissolved in 96 % ethanol and stored at 
−20 °C in aliquots for single use. A 20 mM chloroquine stock 
(C6628; Sigma) was dissolved in PBS and stored at −20 °C in 
aliquots for single use. Pegylated interferon alpha- 2a (PEG- 
IFN-α; Pegasys, 90 mcg, Roche) was aliquoted and stored 
at room temperature until further use. Vero E6 cells were 

seeded in 96- well flat bottom plates in 100 µl at a density of 
10 000 cells/well and grown overnight at 37 °C. Twofold serial 
dilutions of compounds were prepared in EMEM with 2 % 
FCS and 50 µl was added to the cells 30 min prior to infection. 
Subsequently, half of the wells were infected with 300 p.f.u. 
each of SARS- CoV or SARS- CoV-2 in order to evaluate inhibi-
tion of infection, while the other wells were used to in parallel 
monitor the (potential) cytotoxicity of compound treatment. 
Each compound concentration was tested in quadruplicate 
and each assay plate contained the following controls: no cells 
(background control), cells only treated with medium (mock 
infection for normalization), infected/untreated cells and 
infected/solvent- treated cells (infection control). At 3 days 
p.i., 20 µl/well of CellTiter 96 Aqueous Non- Radioactive Cell 
Proliferation reagent (Promega) was added and plates were 
incubated for 2 h at 37 °C. Reactions were stopped and virus 
inactivated by adding 30 µl of 37 % formaldehyde. Absorbance 
was measured using a monochromatic filter in a multimode 
plate reader (Envision; Perkin Elmer). Data was normalized to 
the mock- infected control, after which EC50 and CC50 values 
were calculated with Graph- Pad Prism 7.

RESuLTS
Rapid adaptation of SARS-CoV-2 BetaCoV/
Australia/VIC01/2020 during passaging in Vero E6 
cells
SARS- CoV-2 isolate BetaCoV/Australia/VIC01/2020 was 
received as a stock derived from two consecutive passages 
in Vero/hSLAM cells [34]. The virus was then propagated 
two more times at low m.o.i. in Vero E6 cells, in which it 
caused a severe cytopathic effect (CPE). We also attempted 
propagation in HuH7 cells, using the same amount of virus 
or a tenfold larger inoculum, but did not observe any cyto-
pathology after 72 h (data not shown). At 24 h p.i., immuno-
fluorescence microscopy revealed infection of only a small 
percentage of the HuH7 cells, without any clear spread to 
other cells occurring in the next 48 h. We therefore conclude 
that infection of HuH7 cells does not lead to a productive 
SARS- CoV-2 infection and deemed this cell line unsuitable 
for further SARS- CoV-2 studies.

The infectivity titre of the Leiden- p2 stock grown in Vero E6 
cells was analysed by plaque assay, after which we noticed 
a mixed plaque phenotype [~1 : 3 ratio of small versus large 
(plaques; data not shown)] while a virus titre of 7×106 p.f.u. 
ml−1 was calculated. To verify the identity and genome 
sequence of the SARS- CoV-2/p2 virus stock, we isolated 
genomic RNA from culture supernatant and applied NGS 
(see Methods for details). The resulting consensus sequence 
was found to be identical to the sequence previously deposited 
in GenBank (accession number MT007544.1) [34], with one 
exception. Compared to the SARS- CoV-2 GenBank refer-
ence sequence (NC_045512.3) [38] and other field isolates 
[29], isolate BetaCoV/Australia/VIC01/2020 exhibits >99.9 % 
sequence identity. In addition to synonymous mutations in 
the nsp14- coding sequence (U19065 to C) and S protein gene 
(U22303 to G), ORF3a contains a single non- synonymous 
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mutation (G26144 to U). Strikingly, the 3′ UTR contains a 10 
nt deletion (nt 29 750–29 759; CGAUCGAGUG) located 120 
nt upstream of the genomic 3′ end, which is not present in 
other SARS- CoV-2 isolates described thus far (>670 SARS-
 CoV2 sequences present in GenBank on 17 April 2020).

In about 71 % of the 95 173 p2 NGS reads covering this posi-
tion, we noticed a G23607 to A mutation encoding an Arg682 
to Gln substitution near the so- called S1/S2 cleavage site of 
the viral S protein (see Discussion), with the other 29 % of the 
reads being wild- type sequence. As this ratio approximated 
the observed relative proportions between large and small 
plaques, we performed a plaque assay on the p1 virus stock 
(Fig. 1a, leftmost well) and picked multiple plaques of each 
size, which were passaged three times in Vero E6 cells while 
monitoring their plaque phenotype. Interestingly, for several 
of the small- plaque virus clones (like S5; Fig. 1a) we observed 
rapid conversion to a mixed or large- plaque phenotype during 
these three passages, while large- plaque virus clones (like L8) 
stably retained their plaque phenotype (Fig. 1a). NGS analysis 
of the genome of a large- plaque p1 virus (L8p1) revealed that 
>99 % of the reads in the S1/S2 cleavage site region contained 
the G23607 to A mutation described above. No other muta-
tions were detected in the genome, thus clearly linking the 
Arg682 to Gln substitution in the S protein to the large- plaque 
phenotype observed for the L8p1 virus.

Next, we also analysed the genomes of the p1, p2 and p3 
viruses derived from a small- plaque (S5) that was picked. This 
virus clone retained its small- plaque phenotype during the 
first passage (Fig. 1a; S5p1), but began to yield an increasing 
proportion of large(r) plaques during subsequent passages. 
Sequencing of S5p2 (Fig.  1b) revealed a variety of low- 
frequency reads with mutations near the S1/S2 cleavage site 
motif (aa 681–687; PRRAR↓SV), with G23607 to A (speci-
fying the Arg682 to Gln substitution) again being the domi-
nant one (in ~2.1 % of the reads covering nt 23 576 to 23 665 of 
the genome). At lower frequencies single- nucleotide changes 
specifying Arg682 to Trp and Arg683 to Leu substitutions 

were also detected. Furthermore, a 10 aa deletion (residues 
679–688) that erases the S1/S2 cleavage site region was discov-
ered, as well as a 5 aa deletion (residues 675–679) immediately 
preceding that region. The amount of large plaques increased 
substantially upon the next passage, with NGS revealing the 
prominent emergence of the mutants containing the 10 aa 
deletion or the Arg682 to Gln point mutation (~22 and~12 % 
of the reads, respectively), and yet other minor variants with 
mutations in the PRRAR↓SV sequence being discovered. 
Taken together these data clearly link the large- plaque pheno-
type of SARS- CoV-2 to the acquisition of mutations in this 
particular region of the S protein, which apparently provides 
a strong selective advantage during passaging in Vero E6 cells.

Comparative kinetics of SARS-CoV and SARS-CoV-2 
replication in Vero E6 cells
To our knowledge, a detailed comparison of SARS- CoV-2 and 
SARS- CoV replication kinetics in cell culture has not been 
reported so far. Therefore, we infected Vero E6 cells with the 
SARS- CoV-2/p2 virus stock at high m.o.i. to analyse viral RNA 
synthesis and the release of infectious viral progeny (Fig. 2a). 
This experiment was performed using four replicates per 
time point and for comparison we included the SARS- CoV 
Frankfurt-1 isolate [36], which has been used in our labora-
tory since 2003. During the early stages of infection (until 8 h 
p.i.), the growth curves of the two viruses were similar, but 
subsequently cells infected with SARS- CoV clearly produced 
more infectious progeny (about 50- fold more) than SARS- 
CoV-2- infected cells, with both viruses reaching their plateau 
by about 14 h p.i. As shown in Fig. 2b, despite its transition to 
a mainly large- plaque phenotype, the largest SARS- CoV-2/p3 
plaques were still substantially smaller than those obtained 
with SARS- CoV Frankfurt-1.

In parallel, we analysed the kinetics of viral RNA synthesis by 
isolating intracellular viral RNA, subjecting it to agarose gel 
electrophoresis and visualizing the various viral mRNA species 
by in- gel hybridization with a 32P- labelled oligonucleotide 

Fig. 2. Comparison of SARS- CoV-2 and SARS- CoV replication kinetics in Vero E6 cells. (a) Growth curve showing the release of infectious 
viral progeny into the medium of infected Vero E6 cells (m.o.i. 3), as determined by plaque assay (n=4; mean±sd is presented). (b) 
Comparison of SARS- CoV-2 Australia/VIC01/2020 and SARS- CoV Frankfurt-1 plaque phenotype in Vero E6 cells.
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probe recognizing a fully conserved 19 nt sequence located 30 
nt upstream of the 3′ end of both viral genomes (Fig. 3a). This 
revealed the anticipated presence of the genomic RNA and 
eight subgenomic mRNAs, together forming the well- known 
5′- and 3′- coterminal nested set of transcripts required for 
full CoV genome expression.

In general, for both viruses, the accumulation of viral RNAs 
followed the growth curves depicted in Fig. 2a. The relative 
abundance of the individual RNAs was determined using 
the 12, 14 and 24 h p.i. samples (averages presented in 
Fig. 3b) and found to be largely similar, with the exception 
of SARS- CoV-2 mRNAs 7 and 8, which accumulated to 
about four and twofold higher levels, respectively. Strik-
ingly, in spite of the ultimately lower yield of infectious viral 
progeny, SARS- CoV-2 RNA synthesis was detected earlier 
and reached an overall level exceeding that of SARS- CoV. 
Overall, we conclude that in Vero E6 cells, SARS- CoV-2 
produces levels of intracellular RNA that are at least 
comparable to those of SARS- CoV, although this does not 
translate into the release of equal amounts of infectious 
viral progeny (Fig. 2a).

Cross-reactivity of antisera previously raised 
against SARS-CoV targets
To be able to follow virus replication in SARS- CoV-2- infected 
cells more closely, we explored cross- reactivity of a variety 
of antisera previously raised against SARS- CoV targets, in 
particular a variety of nsps. In an earlier study, many of those 
were found to cross- react also with the corresponding MERS-
 CoV targets [35], despite the relatively large evolutionary 
distance between MERS- CoV and SARS- CoV. Based on the 
much closer relationship with SARS- CoV-2, similar or better 
cross- reactivity of these SARS- CoV reagents was expected, 
which was explored using immunofluorescence microscopy.

Indeed, most antisera recognizing SARS- CoV nsps that were 
tested (nsp3, nsp4, nsp5, nsp8, nsp9, nsp13, nsp15) strongly 
cross- reacted with the corresponding SARS- CoV-2 target 
(Fig. 4, Table 1), the exception being a polyclonal nsp6 rabbit 
antiserum. Likewise, both a polyclonal rabbit antiserum 
and mouse monoclonal antibody recognizing the N protein 
cross- reacted strongly (Fig. 4b, Table 1). The same was true 
for a rabbit antiserum raised against a C- terminal peptide 
of the SARS- CoV M protein (Fig. 4e). Labelling patterns 
were essentially identical to those previously documented 
for SARS- CoV [45, 46], with nsps accumulating in the 
perinuclear region of infected cells, where the elaborate 
membrane structures of the viral ROs are formed (Fig. 4a, 
c and d). Punctate structures in the same area of the cell 
were labelled using an antibody recognizing double- stranded 
RNA (dsRNA), which presumably recognizes replicative 
intermediates of viral RNA synthesis [46, 47]. The N protein 
signal was diffusely cytosolic (Fig. 4b), whereas the M protein 
labelling predominantly showed the expected localization to 
the Golgi complex (Fig. 4e), where the protein is known to 
accumulate [48].

ultrastructural characterization of SARS-CoV-2-
infected cells
We next used electron microscopy to investigate the ultras-
tructural changes that SARS- CoV-2 induces in infected cells, 
and focused on the membranous replication organelles (ROs) 
that support viral RNA synthesis and on the assembly and 
release of new virions (Fig. 5). Compared to mock- infected 
control cells (Fig. 5a–b), various distinct membrane altera-
tions were observed in cells infected with either SARS- CoV 
or SARS- CoV-2 (Fig. 5c–j). At 6 h p.i., larger regions with 
membrane alterations were found particularly in cells infected 
with SARS- CoV-2 (data not shown), which may align with 
the somewhat faster onset of intracellular RNA synthesis 
in SARS- CoV2- infected Vero E6 cells (Fig.  3a). From 8 h 
p.i. onwards, SARS- CoV- and SARS- CoV-2- infected cells 
appeared more similar (Fig. 5c–j). Double- membrane vesicles 
(DMVs) were the most prominent membrane alteration up to 
this stage (Fig. 5d–e, h- i). In addition, convoluted membranes 
[46] were readily detected in SARS- CoV- infected cells, while 
zippered ER [25, 49, 50] appeared to be the predominant 
structure in SARS- CoV-2- infected cells (Fig.  5e, i, white 
arrowheads). As previously described for SARS- CoV [46], 
SARS- CoV-2- induced DMVs also appeared to fuse through 
their outer membrane, giving rise to vesicle packets that 
increased in numbers as infection progressed (Fig. 5f, k, white 
asterisks). Virus budding near the Golgi apparatus, presum-
ably into smooth membranes of the ER- Golgi intermediate 
compartment (ERGIC) [45, 51, 52], was frequently observed 
at 8 h p.i. (Fig. 5k–l, o–p). This step is followed by transport 
to the plasma membrane and release of virus particles into 
extracellular space. By 10 h p.i., released progeny virions were 
abundantly detected around all infected cells (Fig.  5m–n, 
q–r). Interestingly, whereas spikes were clearly present on 
SARS- CoV progeny virions, a relatively large proportion of 
SARS- CoV-2 particles seemed to carry few or no visible spike 
projections on their surface, perhaps suggesting a relatively 
inefficient incorporation of spike proteins into SARS- CoV-2 
virions. This could potentially reduce the yield of infectious 
particles and may contribute to the lower progeny titres 
obtained for this virus (Fig. 2a).

Establishing a CPE-based assay to screen 
compounds for anti-SARS-CoV-2 activity
In order to establish and validate a CPE- based assay to identify 
potential inhibitors of SARS- CoV-2 replication, we selected 
four previously identified inhibitors of CoV replication: 
remdesivir [53, 54], chloroquine [55, 56], alisporivir [57, 58] 
and pegylated interferon alpha (PEG- IFN-α) [35, 59]. Cells 
were infected at low m.o.i. to allow for multiple cycles of repli-
cation. After 3 days, a colorimetric cell viability assay [60] was 
used to measure drug toxicity and inhibition of virus replica-
tion in mock- and virus- infected cells, respectively. With the 
exception of PEG- IFN-α, the inhibition of virus replication by 
the compounds tested and the calculated half- maximal effec-
tive concentrations (EC50) were similar for SARS- CoV and 
SARS- CoV-2. For remdesivir, we obtained higher EC50 values 
for SARS- CoV-2 and SARS- CoV (6.2±1.3 and 4.5±1.1 µM, 
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Fig. 3. Kinetics of SARS- CoV-2 and SARS- CoV RNA synthesis in infected Vero E6 cells. (a) Hybridization analysis of viral mRNAs isolated 
from SARS- CoV-2- and SARS- CoV- infected Vero E6 cells, separated in an agarose gel and probed with a radiolabelled oligonucleotide 
recognizing the genome and subgenomic mRNAs of both viruses. Subsequently, the gel was re- hybridized to a probe specific for 18S 
ribosomal RNA, which was used as a loading control. (b) Analysis of the relative abundance of each of the SARS- CoV-2 and SARS- CoV 
transcripts. Phosphorimager quantification was performed for the bands of the samples isolated at 12, 14 and 24 h p.i., which yielded 
essentially identical relative abundances. The table shows the average of these three measurements. SARS- CoV-2 mRNA sizes were 
calculated on the basis of the position of the leader and body transcription- regulatory sequences (ACGAAC) in the viral genome [110, 
111]



933

Ogando et al., Journal of General Virology 2020;101:925–940

respectively; Fig. 6a) than previously reported by others, but 
this may be explained by technical differences like a longer 
assay incubation time (72 h instead of 48 h) and the use of 
a different read- out (cell viability instead of qRT- PCR or 
viral load). Based on the obtained half maximal cytotoxic 
concentration (CC50) values of >100 µM, a selectivity index 
>22.5 was calculated. Chloroquine potently blocked virus 
infection at low- micromolar concentrations, with an EC50 
value of 2.3±1.1 µM for both viruses (CC50>100 µM, SI>45.5; 
Fig. 6b). Alisporivir, a known inhibitor of different groups 
of RNA viruses, was previously found to effectively reduce 
the production of CoV progeny. In this study, we measured 
EC50 values of 4.9±1.3 and 4.3±1.0 µM for SARS- CoV-2 and 
SARS- CoV, respectively (Fig.  6c; CC50>100 µM, SI>20). 
Treatment with PEG- IFN-α completely inhibited replica-
tion of SARS- CoV-2, even at the lowest dose of 7.8 ng ml−1 
(Fig. 6d). In line with previous results [35, 59], SARS- CoV 
was much less sensitive to PEG- IFN-α treatment, yielding 

only partial inhibition at all concentrations tested (from 7.8 to 
1000 ng ml−1). Overall, we conclude that Vero E6 cells provide 
a suitable basis to perform antiviral compound screening 
and select the most promising hits for in- depth mechanistic 
studies and further development.

dISCuSSIon
In this report, we describe a comparative analysis of the repli-
cation features of SARS- CoV-2 and SARS- CoV in Vero E6 
cells, one of the most commonly used cell lines for studying 
these two viruses. In contrast to the stable phenotype exhib-
ited by SARS- CoV during our 17 years of working with this 
virus in these cells, SARS- CoV-2 began to exhibit remarkable 
phenotypic variation in plaque assays within a few passages 
after its isolation from clinical samples (Fig. 1a). In addition 
to the BetaCoV/Australia/VIC01/2020 isolate used in this 
study, similar observations were made for a variety of other 

Fig. 4. Cross- reactivity of antisera raised against SARS- CoV structural and non- structural proteins. Selected antisera previously raised 
against SARS- CoV nsps and structural proteins cross- react with corresponding SARS- CoV-2 proteins. SARS- CoV-2- infected Vero E6 
cells (m.o.i. of 0.3) were fixed at 12 or 24 h p.i. For immunofluorescence microscopy, cells were (double) labelled with (a) a rabbit 
antiserum recognizing nsp4 and a mouse mAb recognizing dsRNA; (b) anti- nsp4 rabbit serum and a mouse mAb directed against the 
N protein; (c–e) rabbit antisera recognizing against nsp3, nsp13 and the M protein, respectively. Nuclear DNA was stained with Hoechst 
33 258. Bar is 25 µm for (a) and (b); 100 µm for (c), (d) and (e).



934

Ogando et al., Journal of General Virology 2020;101:925–940

Fig. 5. Visualization of SARS- CoV-2 and SARS- CoV infection by electron microscopy. Electron micrographs of Vero E6 cells infected with 
either SARS- CoV-2 or SARS- CoV at the indicated time points (c–j). Images from a mock- infected cell are included for comparison (a–b). 
(c–j) Regions containing viral replication organelles. These virus- induced structures accumulated in large clusters in the perinuclear 
region by 8 h p.i. [(c), (g), boxed regions enlarged in (d) and (h), respectively]. These regions primarily contained DMVs [(d–e), (h–i), black 
asterisks]. Additionally, virus- induced convoluted membranes [(e), white arrowhead] were observed in SARS- CoV infection, whereas 
zippered ER [(i), white arrowheads] appeared to be more common in SARS- CoV-2- infected cells. At 10 h p.i., vesicle packets [(f), (j), white 
asterisks], which seem to arise by fusion of two or more DMVs through their outer membrane, became abundant in the RO regions. 
(k–r) Examples of virion assembly and release in infected cells. Virus particles budding into membranes of the ERGIC [(k–l), (o–p), 
arrowheads]. The black arrowheads in the boxed areas highlight captured budding events, enlarged in (l) and (p). Subsequently, virus 
particles are transported to the plasma membrane which, at 10 h p.i., is surrounded by a large number of released virions [(m), (q), boxed 
areas enlarged in (n) and (r), respectively]. N, nucleus; m, mitochondria; G, Golgi apparatus. Scale bars: 1 µm (a, c, g); 500 nm (b, d–f, h–j, 
k, m, o, q); 100 nm (l, n, p, r).
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clinical isolates (data not shown). To establish the genetic 
basis for the observed plaque size heterogeneity, small and 
large plaques were picked and the resulting virus clones were 
passaged repeatedly and analysed using NGS. The consensus 
sequences obtained for S5p1 and L8p1, which differed by a 
single nucleotide substitution in the S protein gene, clearly 
established that a single S protein mutation (Arg682 to Gln) 
was responsible for the observed plaque size difference. This 
mutation is localized near the so- called furin- like S1/S2 
cleavage site (Fig. 1b) [61] in the S protein [62]. This sequence 
constitutes a (potential) processing site that is present in a 
subset of CoVs (including SARS- CoV-2 and MERS- CoV) but 
is lacking in others, like SARS- CoV and certain bat CoVs 
[61, 63]. This polybasic motif (PRRAR↓SV, in SARS- CoV-2) 
can be recognized by intracellular furin- like proteases during 
viral egress and its cleavage is thought to prime the S protein 
for fusion and entry [64], which also requires a second 
cleavage event to occur at the downstream S2’ cleavage site 

[61]. In general, the presence of the furin- like cleavage site 
does not appear to be critical for successful CoV infection. 
Using pseudotyped virions carrying mutant S proteins of 
SARS- CoV [65] or SARS- CoV-2 [66], it was shown that its 
presence minimally impacts S protein functionality. In the 
SARS- CoV S protein, an adjacent sequence that is conserved 
across CoVs can be cleaved by other host proteases like cath-
epsin L or TMPRSS2 [67–69], thus providing an alternative 
pathway to trigger viral entry. Possibly, this pathway is also 
employed by our Vero E6- cell adapted SARS- CoV-2 mutants 
that have lost the furin- like cleavage site, like clone L8p1 and 
multiple variants encountered in S5p3 (Fig. 1a). These vari-
ants contain either single point mutations or deletions of 5 
to 10 aa (Fig. 1b), resembling variants recently reported by 
other laboratories [30, 70, 71]. Interestingly similar changes 
were also observed in some clinical SARS- CoV-2 isolates that 
had not been passaged in cell culture [70]. It is currently being 
investigated why mutations that inactivate the furin- like 

Fig. 6. Assay to screen for compounds that inhibit SARS- CoV-2 replication. Inhibition of SARS- CoV-2 replication (coloured symbols 
and curves) was tested in Vero E6 cells by developing a CPE- reduction assay and evaluating several previously identified inhibitors of 
SARS- CoV, which was included for comparison (grey symbols and curves). For each compound a twofold serial dilution series in the 
low- micromolar range was tested; (a) remdesivir, (b) chloroquine, (c) alisporivir and (d) pegylated interferon alpha-2. Cell viability was 
assayed using the CellTiter 96 Aqueous One Solution cell proliferation assay (MTS assay). Compound toxicity (solid line) was evaluated in 
parallel using mock- infected, compound- treated cells. The graphs show the results of three independent experiments, each performed 
using quadruplicate samples (mean±sd are shown). A non- linear regression analysis was applied.
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cleavage site provide such a major selective advantage during 
SARS- CoV-2 passaging in Vero E6 cells and how this trans-
lates into the striking large- plaque phenotype documented 
in this paper.

An additional remarkable feature confirmed by our 
re- sequencing of the BetaCoV/Australia/VIC01/2020 isolate 
of SARS- CoV-2 is the presence of a 10 nt deletion in the 3′ 
UTR of the genome [34]. Screening of other available SARS-
 CoV-2 genome sequences indicated that the presence of this 
deletion apparently is unique for this particular isolate, and 
likely represents an additional adaptation acquired during 
cell- culture passaging. This deletion maps to a previously 
described ‘hypervariable region’ in the otherwise conserved 
3′ UTR, and in particular to the so- called s2m motif [72] that 
is conserved among CoVs and also found in several other 
virus groups [73, 74]. The s2m element has been implicated 
in the binding of host factors to viral RNAs, but its exact 
function has remained enigmatic thus far. Strikingly, for the 
mouse hepatitis coronavirus the entire hypervariable region 
(including s2m) was found to be dispensable for replication 
in cell culture, but highly relevant for viral pathogenesis in 
mice [72]. Although the impact of this deletion for SARS-
 CoV-2 remains to be studied in more detail, these previous 
data suggest that this mutation need not have a major impact 
on SARS- CoV-2 replication in Vero E6 cells. This notion is 
also supported by the fact that the results of our antiviral 
screening assays (Fig. 6) correlate well with similar studies 
performed with other SARS- CoV-2 isolates [54, 75, 76]. 
Clearly, this could be different for in vivo studies, for which it 
would probably be better to rely on SARS- CoV-2 isolates not 
carrying this deletion in their 3′ UTR.

Vero E6 cells are commonly used to isolate, propagate and 
study SARS- CoV- like viruses as they support viral replication 
to high titres [77–81]. This may be due to a high expression 
level of the ACE-2 receptor [82] that is used by both SARS-
 CoV-2 and SARS- CoV [9] and/or the fact that they lack the 
ability to produce interferon [83, 84]. It will be interesting to 
evaluate whether there is a similarly strong selection pressure 
to adapt the S1/S2 region of the S protein when SARS- CoV-2 
is passaged in other cell types. Such studies are currently in 
progress in our laboratory and already established that HuH7 
cells may be a poor choice, despite the fact that they were used 
for virus propagation [9, 85] and antiviral screening in other 
studies [54, 86]. Immunolabelling of infected HuH7 cells 
(data not shown) revealed non- productive infection of only a 
small fraction of the cells and a general lack of cytopathology. 
While other cell lines are being evaluated, the monitoring 
of the plaque phenotype (plaque size and homogeneity) as 
illustrated above may provide a quick and convenient method 
to assess the composition of SARS- CoV-2 stocks propagated 
in Vero E6 cells, at least where it concerns the evolution of the 
S1/S2 region of the S protein.

Given the ongoing SARS- CoV-2 pandemic, the detailed 
characterization of its replication cycle is an important step 
in understanding the molecular biology of the virus and 
defining potential targets for inhibitors of replication. The 

cross- reacting antisera described in this study (Table 1) will 
be a useful tool during such studies. In general, the subcel-
lular localization of viral nsps and structural proteins (Fig. 4) 
and the ultrastructural changes associated with RO forma-
tion (Fig. 5) were very similar for the two viruses. We also 
observed comparable replication kinetics for SARS- CoV-2 
and SARS- CoV in Vero E6 cells, although clearly lower final 
infectivity titres were measured for SARS- CoV-2 (~50- fold 
lower; Fig. 2). Nevertheless, RNA synthesis could be detected 
somewhat earlier for SARS- CoV-2 and the overall amount of 
viral RNA produced exceeded that produced by SARS- CoV 
(Fig. 3). This may be indicative of certain assembly or matura-
tion problems or of virus–host interactions that are different 
in the case of SARS- CoV-2. These possibilities merit further 
investigation, in particular since our preliminary EM studies 
suggested intriguing differences with SARS- CoV regarding 
the abundance of spikes on the surface of freshly released 
SARS- CoV-2 particles (Fig. 5n, r).

Our analysis of SARS- CoV-2 subgenomic mRNA synthesis 
revealed an increased relative abundance of mRNAs 7 and 8 
(~four and ~twofold, respectively) in comparison to SARS-
 CoV. Mechanistically, these differences do not appear to be 
caused by extended base- pairing possibilities of the transcrip-
tion regulatory sequences that direct the synthesis of these 
two mRNAs [24]. As in SARS- CoV, mRNA7 of SARS- CoV-2 
encodes for two proteins, the ORF7a and ORF7b proteins, 
with the latter presumably being expressed following leaky 
ribosomal scanning [32]. Upon ectopic expression, the ORF7a 
protein has been reported to induce apoptosis via a caspase- 
dependent pathway [87] and/or to be involved in cell- cycle 
arrest [88]. The ORF7b product is a poorly studied integral 
membrane protein that has (also) been detected in virions 
[89]. When ORF7a/b or ORF7a were deleted from the SARS-
 CoV genome, there was a minimal impact on the kinetics 
of virus replication in vitro in different cell lines, including 
Vero cells, and in vivo using mice. In another study, however, 
partial deletion of SARS- CoV ORF7b was reported to provide 
a replicative advantage in CaCo-2 and HuH7 cells, but not in 
Vero cells [90].

The SARS- CoV ORF8 protein is membrane- associated 
and able to induce endoplasmic reticulum stress [91, 92], 
although it has not been characterized in great detail in 
the context of viral infection. Soon after the emergence 
of SARS- CoV in 2003, a conspicuous 29 nt (out- of- 
frame) deletion in ORF8 was noticed in late(r) human 
isolates, but not in early human isolates and SARS- like 
viruses obtained from animal sources [93–95]. Conse-
quently, loss of ORF8 function was postulated to reflect 
an adaptation to the human host. The re- engineering of 
an intact ORF8, using a reverse genetics system for the 
SARS- CoV Frankfurt-1 isolate, yielded a virus with strik-
ingly enhanced (up to 23- fold) replication properties in 
multiple systems [96]. Clearly, it remains to be established 
whether the increased synthesis of mRNAs 7 and 8 is a 
general feature of SARS- CoV-2 isolates, and this indeed 
also translates into higher expression levels of the acces-
sory proteins encoded by ORFs 7a, 7b and 8. If confirmed, 
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these differences definitely warrant an in- depth follow- up 
analysis as CoV accessory proteins in general have been 
shown to be important determinants of virulence. They 
may thus be relevant for our understanding of the wide 
spectrum of respiratory disease symptoms observed in 
COVID-19 patients [97].

Based on the close ancestral relationship between SARS-
 CoV-2 and SARS- CoV [98], one might expect that the 
patterns and modes of interaction with host antiviral 
defence mechanisms would be similar. However, our 
experiments with type- I interferon treatment of Vero E6 
cells (Fig. 6) revealed a clear difference, with SARS- CoV-2 
being considerably more sensitive than SARS- CoV, as also 
observed by other laboratories [76]. Essentially, SARS-
 CoV-2 replication could be inhibited by similarly low 
concentrations of PEG- IFN- alpha- 2a that inhibit MERS-
 CoV replication in cell culture [35]. Taken together, our 
data suggest that SARS- CoV-2 is less able to counteract a 
primed type- I IFN response than SARS- CoV [76, 99].

Previously identified inhibitors of CoV replication were 
used to further validate our cell- based assay for SARS-
 CoV-2 inhibitor screening. These compounds inhibited 
replication at similar low- micromolar concentrations 
and in a similar dose- dependent manner as observed 
for SARS- CoV (Fig.  6). Remdesivir is a prodrug of an 
adenosine analogue developed by Gilead Sciences. It was 
demonstrated to target the CoV RNA polymerase and act 
as a chain terminator [100–102]. The clinical efficacy of 
remdesivir is still being evaluated and, after some first 
encouraging results [103], worldwide compassionate use 
trials are now being conducted. Likewise, hydroxychlo-
roquine and chloroquine have been labelled as potential 
‘game changers’ and are being evaluated for treatment 
of severe COVID-19 patients [104]. Both compounds 
have been used to treat malaria and amebiasis [105], 
until drug- resistant Plasmodium strains emerged [106]. 
These compounds can be incorporated into endosomes 
and lysosomes, raising the pH inside these intracellular 
compartments, which in turn may lead to defects in protein 
degradation and intracellular trafficking [68, 107]. An 
alternative hypothesis to explain their anti- SARS- CoV 
activity is based on their impact on glycosylation of the 
ACE2 receptor that is used by SARS- CoV [56]. Finally, 
as expected, the non- immunosuppressive cyclosporin A 
analogue alisporivir inhibited SARS- CoV-2 replication, as 
demonstrated previously for SARS- CoV and MERS- CoV 
[58]. Although the exact mode of action of this inhibitor 
is unclear, it is thought to modulate CoV interactions with 
members of the cyclophilin family [108]. Unfortunately, all 
of these in vitro antiviral activities should probably be clas-
sified as modest, emphasizing the urgency of large- scale 
drug repurposing and discovery programmes that target 
SARS- CoV-2 and coronaviruses at large.
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