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Abstract
Background: Although the mechanisms of short- and long-term potentiation of nociceptive-
evoked responses are well known in the spinal cord, including central sensitization, there has been
a growing body of information on such events in the cerebral cortex. In view of the importance of
anterior cingulate cortex (ACC) in chronic pain conditions, this review considers neuronal
plasticities in the thalamocingulate pathway that may be the earliest changes associated with such
syndromes.

Results: A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink
current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the
response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal
and intralaminar thalamic nuclei (MITN) suggesting that the MITN projection to ACC mediates the
nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different
inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were
compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity
and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for
contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by
polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term
plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of
the short-term plasticity.

Conclusion: The potentiation of ACC neuronal activity induced by thalamic bursting suggest that
short-term synaptic plasticities enable the processing of nociceptive information from the medial
thalamus and this temporal response variability is particularly important in pain because temporal
maintenance of the response supports cortical integration and memory formation related to
noxious events. Moreover, these modifications of cingulate synapses appear to regulate afferent
signals that may be important to the transition from acute to chronic pain conditions associated
with persistent peripheral noxious stimulation. Enhanced and maintained nociceptive activities in
cingulate cortex, therefore, can become adverse and it will be important to learn how to regulate
such changes in thalamic firing patterns that transmit nociceptive information to ACC in early
stages of chronic pain.
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Introduction
The cingulate cortex is one of the most frequently acti-
vated regions in human pain research [1,2]. The thalamus
is also frequently activated and its responses are correlated
with the nociceptive responses in the cingulate cortex
[3,4]. The cingulate response, however, may not be stable
over time. A human imaging study has shown that the cin-
gulate noxious activation habituates over time, while
innocuous responses are not altered [5]. Response varia-
bility over time is particularly important in pain process-
ing as the temporal maintenance or habituation of the
response supports cortical integration and memory for-
mation. Thus, the temporal characteristics of synaptic
plasticity from peripheral to cortical targets are pivotal to
understanding pain processing, anticipation of future
pain events and developing avoidance behaviors.

Of equal importance is the fact that anterior cingulate cor-
tex (ACC) has been implicated in a number of human
chronic pain syndromes and three studies activated pre-
genaul ACC. Kern et al. [6] stimulated the esophagus with
acid to induce heartburn in gastroesophageal reflux dis-
ease patients and Naliboff et al. [7] and Mayer et al. [8]
employed noxious rectal distension in patients with irrita-
ble bowel syndrome. Frequent migraine and tension-type
migraines are associated with reduced grey matter in ACC
[9,10]. Thus, short- and long-term plasticities may sub-
serve the initiation of chronic pain states in ACC and we
consider the short-term plasticity in this review. For
reviews on long-term plasticity changes in the ACC, see
Zhou's articles [11-14].

Neurons communicate with each other by transmission
through chemical synapses and the dynamic course of
synaptic transmission is regulated by a variety of short-
lasting processes. The sum of pre- and post-synaptic
responses evoked by stimulation of afferent axons is often
termed synaptic "strength" and during dynamic short-
term processes it varies in a systematic manner and is
dependent on the precise onset and duration of activa-
tion, i.e., tens of milliseconds to several minutes. Short-
term plasticities (STP) have been described in several
forms, such as paired-pulse facilitation (PPF), augmenta-
tion, post-tetanic potentiation and synaptic depression
which are each distinguished by their decay kinetics [15].

PPF is the synaptic enhancement of the second response
in which the post-synaptic potential is increased up to sev-
eral times the amplitude of the first potential. The
enhancement of synaptic potentials can develop and
decline with a time course of about 100 ms. When the
response lasts for 5-10 s, it is termed synaptic augmenta-
tion and is distinguished from post-tetanic potentiation
which lasts from 30 s to several minutes. Furthermore,
post-tetanic potentiation is an augmentation of synaptic

transmission following a train of repetitive stimuli. Dur-
ing the stimulation each synaptic potential increases the
synaptic strength by 1-15% and the summed effect of
sequential pulses can reach to a many-fold enhancement.

Action potential discharges are often activated at high fre-
quencies or in a bursting mode and it is the pattern of
dynamic discharges that change with altered synaptic
strength. Thus, the properties of STP that are specific to the
activated synapses may determine the spiking pattern of a
presynaptic cell that ultimately influences the firing of its
post-synaptic neurons. Many mechanisms can lead to
activity-dependent alterations in synaptic strength during
neuronal high-frequency discharges. A short-term depres-
sion may result from a reduction in neurotransmitter
release either by reducing the probability of release or by
depleting the readily releasable pool of vesicles. A short-
term facilitation may occur by repeated activations that
increase the probability of neurotransmitter release, either
by saturating a local calcium buffer or by increasing cal-
cium concentration in the presynaptic terminal [16,17].
The post-synaptic mechanism may also involve regulation
of the properties of the STP [18]. For instance, desensitiza-
tion of postsynaptic receptors by neurotransmitters can
reduce synaptic responses during repeated activation;
however, the presynaptic and postsynaptic mechanisms
may only partially determine the properties of the STP.
The variety of plasticities exhibited by different synapses
reflects the many of functions that synapses serve in
extracting features of presynaptic activity. Multiple mech-
anisms are present at most synapses that interact and lead
to complex responses during patterns of synaptic activa-
tion.

Short-term synaptic plasticity appears to be a widespread
in the nervous system and STP is a dominant mechanism
underlying the plasticity of sensory responses in mamma-
lian cerebral cortex. The functional relevance of the short-
term synaptic depression and facilitation has been linked
to habituation and sensitization, respectively. Recently,
studies have extended its role in this simple form of learn-
ing and it has been suggested that STP involves signal fil-
tering that is used in information processing. Specifically,
the differential activation and integration of short-term
synaptic depression and facilitation might enhance and
sustain temporal filtering [18].

At the simple reflex level in the spinal cord, the STP of
inhibitory interneurons provides an intrinsic mechanism
for the dynamic regulation of a reflex. At higher levels of
the nervous system, such as in the cerebral cortex, STP pro-
vides a dynamic mechanism for signal processing where it
may serve as a general mechanism for the short-term
amplification of signals. Some evidence suggests that
short-term facilitation participates in temporal coding
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within neuronal circuits [19]. Furthermore, it has been
shown that short-term facilitation coupled with slow
inhibitory conductances might act to transform temporal
codes to spatial codes within a cortical circuit [20]. New
findings also suggest that short-term facilitation and syn-
aptic depression can interact in the neocortex in complex
functions such as visual contrast adaptation and
enhanced sensitivity to dynamically changing cortical
inputs [21]. Thus, when considering diverse systems, STP
appears to provide a highly flexible and adaptive mecha-
nism that might contribute significantly to temporal
information processing ranging from single synapses to
complex neural circuits involving many classes of
interneurons. Studies in STP in the thalamocortical path-
ways have furthered our understanding of the dynamic
cortical processes activated by specific inputs. Indeed, STP
in the thalamocortical circuit may play an important role
in pain processing.

Relationship of STP to Nociception at Each Level of the 
Nervous System
All levels of pain processing in the CNS are associated
with STP. Temporal enhancement of nociceptive signals
throughout the nervous system provide a mechanism of
amplifying one or a few signals above baseline activity
over time and the thalamus and cortex have time to assess
the signals in context; i.e., in the context of other visual,
auditory or somatic sensory events. In the longer term,
this information can be used to predict painful outcomes,
establish new memories, and modify nocifensive reflexes
to particular contexts.

Nociceptors
In the peripheral nervous system, nociceptors are distinct
from innocuous sensory receptors in that they have a high
threshold of activation. The responses of mechanoheat-
sensitive nociceptor axons increase monotonically with
heat stimuli ranging from 41-49°C and correlates with the
pain threshold in humans [22]. The peripheral neural
mechanisms of nociception reflect only one aspect of pain
sensibility, since there is a dynamic plasticity that relates
stimulus intensity and sensation. For instance, the
response of nociceptors is strongly influenced by the past
history of stimulus sequence. Both fatigue and sensitiza-
tion of nociceptors following repetitive heat or mechani-
cal stimuli have been observed. [22-24]. Furthermore,
tissue damage can result in a cascade of events that leads
to enhanced pain in response to noxious stimuli which is
termed hyperalgesia. This type of primary hyperalgesia
exemplifies the functional plasticity of the nervous sys-
tem. Substantial evidence supports the view that the pri-
mary hyperalgesia to heat and mechanical stimuli that
develops at the site of a injured area is mediated by the
sensitization of nociceptors [25,26]. Sensitization is char-
acterized by an enhanced nociceptive response to supra-

threshold stimuli in addition to a decrease in threshold
and ongoing spontaneous activity.

Spinal cord
Trains of afferent discharges following repeated noxious
inputs from nociceptors can evoke a period of facilitated
transmission in dorsal horn neurons in the spinal cord.
Windup is a form of STP characterized by a progressive
increase in action potential output from dorsal horn neu-
rons during a train of repetitive, C-fiber stimuli [27,28]. It
appears that this form of STP in the dorsal horn plays an
important role in post-injury pain hypersensitivity and in
the initiation of the persistent pain. Pain signals in this
context serve as a warning signal for the organism and the
nociceptive system may increase its sensitivity following
exposure to repetitive noxious stimuli that result in sensi-
tization. This sensitization enhances escape responses
and, with a reduced threshold, protects the organism from
further injury.

Nociceptive information transmitted from the dorsal
horn to the forebrain are encoded in lamina I and lamina
V neurons with nociceptive-specific (NS) and wide
dynamic range (WDR) properties. Spinal nociceptive neu-
rons project to the reticular formation, midbrain periaq-
ueductal grey, parabrachial nucleus, dorsal column nuclei
and thalamus [29-33]. Neurons that form the spinotha-
lamic pathway show graded responses to innocuous and
noxious mechanical stimuli, noxious heat and cold and
noxious muscle or visceral stimuli. Their responses usu-
ally increase with strong noxious stimulation followed by
sensitization to innocuous stimuli in a manner that
resembles the hyperalgesia and allodynia experienced by
humans following such stimuli [34]. On the other hand,
the lamina I NS and polymodal NS cells can readily be
sensitized to innocuous mechanical and cold thermal
stimuli by repeated noxious stimulation [35]. A unique
study in humans used repetitive electrical stimulation of
anterolateral fibres of the spinal cord and showed a linear
relationship between stimulation frequency and the sub-
ject's pain [36]. This relationship ranged from 5-25 Hz
with 100% of patients reporting pain at 25 Hz and 0% at
5 Hz. The threshold, frequency and refractory period data
obtained are similar to those for WDR cells in the ventral
half of the dorsal horn in the monkey and suggest that
activation of these cells is a sufficient condition to pro-
duce human pain. Since the pain was blocked by antero-
lateral cordotomy that removes spinothalamic afferents in
these patients, it is likely that such information is trans-
mitted to the thalamus.

Thalamus
The thalamus is the essential relay of nociceptive inputs
that are transmitted from the spinal cord to cortex. The
likely thalamic source of such information to anterior cin-
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gulate cortex (ACC) is from the midline, mediodorsal and
intralaminar thalamic nuclei (MITN) [37,38]. As noted
earlier, high frequency discharges or bursting alter synap-
tic strength, i.e., STP that are specific to the activated syn-
apses determine the spiking pattern of postsynaptic
neurons. The bursting discharge pattern is well known in
the thalamus and it has been reported that bursting dis-
charges similar to the low-threshold calcium spike-medi-
ated bursting activity in animal studies exists in the
thalamus of chronic pain patients [39,40].

There is also evidence for plasticity in the thalamocortical
system in pain patients with deafferentation as a result of
amputation or spinal cord injury. This implies that neuro-
nal activity in the thalamus gives rise to sensations per-
ceived as originating from the missing part of the original
limb. Furthermore, stimulation in such regions frequently
elicits pain sensations arising from the deafferented body
region [41].

The role of the STP in nociceptive signalling in the thalam-
ocingulate pathway is still not clear. Attempts have been
made to link the short-term facilitation to synapses in this
pathway and their role in temporal signal integration. The
cellular mechanisms underlying these dynamic responses
involve pre- and post-synaptic and circuit properties [42]
and the short-term facilitation could act to enhance the
ability of a neuronal circuit to sustain persistent activity
evoked by a transient stimulus. Also, enhancement of syn-
aptic transmission in short periods of time could tempo-
rarily increase the level of recurrent excitation throughout
a cortical network. Such synaptic enhancement is a
dynamic mechanism for temporarily enhancing the effi-
cacy of recurrent synapses. Thus, the STP may serve to syn-
chronize, amplify and/or filter neural activity in cortex
depending on behavioral demands, and thus to adapt this
pathway to its specific nociceptive function.

Thalamic Nociceptive Transmission to Anterior Cingulate 
Cortex
Nociceptive responses are transmitted to cingulate cortex
from the MITN. Thus, expression of the product of the
immediate early c-fos gene is a marker of metabolic activ-
ity and c-Fos expression in the MITN is increased in rats
subjected to noxious colorectal distension or electrical
stimulation of hind limb C-fibers [43]. Neurons in the
MITN have nocireceptive response properties [44,45] and
these are reflected in neuron responses of ACC. Figure 1
shows neuronal responses in the mediodorsal (MD) and
centrolateral (CL) thalamic nuclei during nociceptive
stimulation [46]. Most of the MITN neurons (78%)
responded to both peripheral innocuous and noxious
stimuli and were WDR neurons. The remainder of the
units (22%) showed NS responses. The receptive fields of
MITN nociceptive neurons are widely distributed on the

body surface and covered the two lower extremities and/
or the entire body. In some instances, electrical stimula-
tion applied to the center of the receptive fields and the
mean latency of responses evoked in MITN neurons was
41.98 ± 1.4 ms (Mean ± S.E.M.).

Several lines of evidence indicate that the MITN provide
the primary source of nociceptive information to the ACC.

First, the nociceptive response in rabbit ACC neurons
occurred within 200 ms which may preclude prior
processing via other cortical areas. Also, knife-cut lesions
lateral or posterior to ACC that remove most cortical input
to ACC do not alter the percentage of units in area 24
driven by noxious stimuli [47].

Second, the MITN has similar nociceptive response prop-
erties with cingulate neurons, which suggests a functional
linkage. Nociceptive ACC neurons have a broad somato-
topic organization; i.e., stimulation of large parts of the
body can activate a single ACC neuron. They also respond
to noxious mechanical or heat stimulation on both sides
of the body and can be polymodal in responding to both
such stimuli. In other words, single ACC neurons do not
"know" where on the body the stimulus is occurring and
often do not "know" what type of stimulus is producing
the pain. Electrically-evoked cutaneous nociceptive
responses in the ACC are depicted in Figure 1E[48]. Each
cingulate area is shown (areas 24b, 32, 25) along with
adjacent motor area 8 (Fig. 1D). Fifty-five percent of total
recorded neurons were excited or inhibited either by nox-
ious electrical or mechanical stimulation. Among the elec-
trical stimulation-responsive neurons, 88% had excitatory
responses and 12% had inhibitory responses, while the
percentage of neurons responsive to noxious mechanical
stimuli was either excitatory (78%) or inhibitory (22%).
Finally, most responsive neurons were in layers V (58%)
and III (30%). A typical example of an ACC unit response
to noxious mechanical stimulation is shown in Figure 1F
where one unit had excitatory responses to left hind paw
(3) pinch, but inhibitory responses to both tail (1) and
right hind paw (2) pinches.

Third, thalamic lidocaine injections block ACC nocicep-
tive activity [47].

Fourth, electrolytic lesion of MITN activity abolishes noci-
ceptive responses in ACC [49].

Fifth, multichannel recordings from all layers of ACC and
thalamus during tonic noxious formalin hind paw injec-
tions confirm the nociceptive thalamocingulate link. Lee
et al. [50] showed there is a high correlation between
MITN nociceptive-related neuron activity and local field
potentials in the ACC. Figure 2A, B, and 2C show the for-
Page 4 of 20
(page number not for citation purposes)



Molecular Pain 2009, 5:51 http://www.molecularpain.com/content/5/1/51

Page 5 of 20
(page number not for citation purposes)

Thalamic and ACC nociceptive unit responses and distributionFigure 1
Thalamic and ACC nociceptive unit responses and distribution. A. Thalamic distributions of electrical and mechanical 
evoked unit responses. B. Thalamic unit responses evoked by noxious mechanical stimuli. C. Thalamic unit response evoked by 
electrical stimuli. D. Cortical numbers for each ACC area and layer distributions of the electrical and mechanical evoked unit 
responses in the ACC. E. Unit activities evoked by noxious mechanical stimuli. The horizontal black bars indicate the time peri-
ods during which the following stimuli were applied: 1. tail, 2. left hind paw, and 3. right hind paw. F. Post-stimulus histogram of 
electrically evoked unit activities in the ACC (Modified from 42 and 44).
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malin-injection model and joint recording paradigm. In
addition to the high correlation of spike outputs from
both structures, bursting discharges were induced in tha-
lamic neurons (Fig. 2D) and could be used to align spon-
taneous local field potentials (Fig. 2D.) and averaged
current-source-density (CSD) derived from the local field
potentials (Fig. 2E.). The bursting discharges were used to
align field-potentials across all layers of ACC and this
demonstrated the laminar profile of local field potentials
and the synaptic activation of ACC evoked activity by
MITN afferents.

A Remark on Current Source Density Analysis
One of the problems in interpreting the source localiza-
tion of field potentials is that the voltage traces reflect
both local and volume conducted activities. Thus, the val-

ues of the voltage activity pattern and those of the fre-
quency power spectrum do not reflect local activities in
particular cortical layers when the voltage is considered
alone. When studying the laminar distribution of sponta-
neous electrical rhythms with a single electrode, it is diffi-
cult to predict the location of the current source of the
synaptic input because of the variability of the rhythms in
amplitude, frequency, and location during successive
events. The ACC is dominated by parallel-aligned pyram-
idal cells whose apical dendrites extend across many cor-
tical layers. Synchronous excitation of ensembles of
pyramidal cells results in a major current flow perpendic-
ular to the cortical layers. Under the assumptions of
homogeneous cortical activity and constant extracellular
electrical conductivity, CSD of the current flow can be esti-
mated from the second spatial derivative of the recorded
field potentials in the axis parallel to the cortical layers
[51]. Thus the procedure employed to obtain CSD data is
to record the field potential at equidistant, linearly posi-
tioned electrode contacts using multi-channel recording
electrodes that vertically penetrate the cortical layers. This
method can alleviate the problem of source localization
and derive these sink current calculations from the CSD
traces which reflect the actual local current flow. This is an
important consideration, since the essence of the present
study relates electrical patterns to laminar position.

Short-term Plasticity in ACC
As a general rule, STP at cortical synapses strongly influ-
ences network activity [52-54]. Unlike the transient nature
of the sensory responses in primary visual and somatosen-
sory cortices, neurons in association cortices, including
cingulate cortex, can exhibit persistent activity that out-
lasts the initial stimulus considerably [55-57]. Such activ-
ity may reflect activation of recurrent excitatory circuits or
intrinsic synaptic plasticities. The major neurotransmitter
involved in excitatory synaptic transmission in the ACC is
glutamate and thalamic inputs are the primary source of
glutamatergic signaling to cingulate neurons [49,58-60].
The blockade of thalamic-evoked intra-ACC sink currents
with CNQX in vivo strongly indicates that AMPA/kainate
glutamate receptors mediate the excitatory drive in tha-
lamic inputs that are presynaptic to cingulate neurons
[49]. In vitro whole cell patch-clamp recordings conducted
in genetically modified mice show that postsynaptic kain-
ate receptors contribute to fast synaptic transmission in
ACC pyramidal neurons [42]. The functional activation of
NMDA receptors in the ACC may require co-activation of
glutamate- and glycine-binding sites. Whole-cell patch-
clamp recording in ACC slices showed that endogenous
D-serine may play a critical role in synaptic transmission
by activating the glycine site of NMDA receptors in the
ACC [61]. GABA is an important inhibitory neurotrans-
mitter mediating the excitatory synaptic transmission in
the ACC. Thalamocingulate terminals synapse on

Thalamocingulate responses during formalin injection to the hind paw (A, red asterisk)Figure 2
Thalamocingulate responses during formalin injec-
tion to the hind paw (A, red asterisk). Mulichannel unit 
activities and local field potentials were recorded from the 
MITN (B) and ACC (C) respectively. D. Aligned multichan-
nel thalamic unit activities and ACC spontaneous local field 
potentials showing that bursting activity and local field poten-
tial in both structures is correlated. E. The initial time of 
bursting (arrow heads aligned at the red lines) of MITN unit 
activities were aligned. Current source density profile across 
the cingulate cortical layer was calculated from the local field 
potentials. Abbreviations: MDM, mediodorsal thalamic 
nucleus, Pv, paraventricular thalamic nucleus, Hb, habenular 
nucleus.
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GABAergic interneurons in addition to principal neurons
in the ACC [62]. This arrangement may enable GABAergic
interneurons to inhibit cingulate principal neurons by
feedforward inhibition [63]. On the other hand, it has
also been shown that GluR5 containing kainite receptors
also modulate GABAergic transmission in the ACC [43].
The presence of GABAergic terminals, both pre- and post-
synaptic of thalamocingulate synapses, may enable disin-
hibition of interneurons after activation of thalamocingu-
late afferents [59,64,65].

Thus far, it appears that stimulation of any afferent to ACC
induces STP and distinct forms of short-term synaptic
plasticities in the cingulate neurons have been reported in
studies of electrical stimulation of callosal inputs [66], the
layer II/III junction [67], layer V [65], and the thalamocor-
tical pathway [58,68]. Short-term depression and facilita-
tion are similar to those described previously in other
sensory cortical regions discussed above. In addition, syn-
apses in cingulate cortex express augmentation; a longer
lasting form of short-term synaptic enhancement. This
consists of a 40-60% enhancement of synaptic transmis-
sion which lasts seconds to minutes and that can be
induced by stimulus trains of moderate duration (15 stim-
uli) and frequency (50 Hz). The hypothesis guiding our
studies of the thalamocingulate circuit is that the nocicep-
tive MITN input generates STP in ACC and may be a pre-
cursor to longer term pain processing events.

Peripheral Nociceptive and MITN Stimulation
A single nociceptive electrical stimulus (10 mA) to the sci-
atic nerve induced a prominent sink current in the layer II/
III of the ACC (Fig. 3B, left plate). High frequency stimu-
lation of the nerve (11 pulses, 100 Hz) potentiated the
evoked response of sink currents in layers II/III and V (Fig.
3B, right plate). There was a strong correlation (r = 0.91, p
< 0.001) between MITN neuron activities and the inte-
grated layer II/III sink currents [49].

One test to show the involvement of the MITN in trans-
mitting this STP is to evaluate paired-pulse stimulation in
these nuclei directly as shown in the bottom half of Figure
3. The first response to a paired-pulse thalamic stimula-
tion evoked a sink current in layer II/III as shown in blue
(sink 1, Fig. 3D, left plate). The complementary source
current (source 1, yellow) appeared below in layer V. The
second sink current (sink 2) was activated with a longer
latency and situated in upper layer VI. The complemen-
tary source current (source 2) was in layer II/III. These sink
currents were potentiated by the second pulse (dark blue,
Fig. 3D, left panel) relative to the first responses. The
potentiation was significant when the inter-pulse interval
was in the 50-100 ms range (Fig. 3D, right plate). These
two observations together suggest that the MITN projec-
tion to ACC mediates the nociceptive STP.

Unique Features of MITN/ACC STP
As we anticipate that STP has a role on information
processing, it may provide a mechanism to distinguish the
information from different inputs. To examine this
hypothesis in MITN-ACC pathway in vitro, a slice prepara-
tion was developed with this pathway intact [50]. ACC
electrophysiological studies in vitro have been carried out
as shown in the Figure 4. This slice preparation has intact
MITN-ACC path and corpus callosum (cc) stimulation
can be used to compare STP induced from both sites (Fig.
4A).

We found that MITN-stimulation produces marked short-
term facilitation in the ACC. Paired-pulses were delivered
with varied (50, 100, 150, 300, 500, 800 ms) inter-pulse
intervals (IPIs) at 80% of the intensity that induced maxi-
mum response activity (Fig. 4B). Maximal potentiation
was obtained with a 50 ms IPI, and PPF with 50 ms and
100 ms IPIs was significantly greater when the stimulation
was delivered in the thalamus rather than in the contralat-
eral cc (Fig. 4C). Tetanic stimuli applied to the thalamus
enhanced excitatory postsynaptic potentials (EPSPs) at all
frequencies tested (10-200 Hz) and the maximal potenti-
ation was obtained with 50 Hz stimulation (20 ms IPI)
(Fig. 4D). The thalamus-evoked potentiated responses
with 20 Hz and 50 Hz stimulation were significantly
greater than that evoked by from the other site (Fig. 4E).

Analysis of Thalamic Bursting Activities during Noxious 
Stimuli
The tetanic stimuli used above were pulses delivered with
a regular pulse sequence but action potential discharges
are often activated in irregular bursting mode in physio-
logical conditions. Thus, the properties of STP that are
specific to the activated synapses may be tested in a spik-
ing pattern that mimics the firing condition during nocic-
eptive stimulation. We recorded unit activities in MITN
which received inputs from hind paw of anesthetized rats.
The burst pattern of thalamic units was analyzed under
pre- and post- formalin injected conditions. Following the
formalin injection in the hind paw, the increased firing
rate of unit activity was regarded as nociceptive. Unit
activities were collected 30 min before and one hour after
the formalin injection. The increased unit activity can be
expressed as increasing firing rate in the burst and the
burst sequences were defined with at least 500 ms pre-
burst silent period and at least 3 spikes within 300 ms
post-burst period. All burst related unit activities were dis-
played in raster plot (Fig. 5A). Burst sequences (shown as
black dot) were aligned by first spike of bursts which sep-
arate the pre- and post-burst spikes. There is a significant
increase in burst activities following formalin injection
(Fig. 5A1 before and Fig. 5A2 after formalin). The
summed burst activities are shown in the histogram in
which aligned bursts sequence shows major peaks after
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Effects of high-frequency, paired-pulse stimulation on ACC responses in vivioFigure 3
Effects of high-frequency, paired-pulse stimulation on ACC responses in vivio. A. Diagram depicting the locations of 
the 2 multichannel probes used to simultaneously record activities from the MD thalamic nucleus and ACC. B. Example of 
enhanced ACC responses and MITN unit activities after high-frequency sciatic nerve stimulation (100 Hz, 11 pulses). C. Dia-
gram of a multichannel probe used to record activities from the ACC and a tungsten electrode used to stimulate the MD 
nucleus. Black dots represent the stimulating sites. D. evoked CSD profile after direct stimulation of the MD nucleus. Paired-
pulse facilitation was observed in ACC layer II/III CSD responses evoked by direct electrical stimulation of the MD nucleus 
when pulses were delayed 50 to 100 ms (n = 5; **P < 0.01). Abbreviations: CL, centrolateral thalamic nucleus; MD, mediodor-
sal thalamic nucleus; PC, paracentral thalamic nucleus; VL, ventrolateral thalamic nucleus; VPL, ventral posterolateral thalamic 
nucleus; VPM, ventral posteromedial thalamic nucleus (Modified from 45)
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the first bust spike (Fig. 5B2) following the formalin injec-
tion as compared with the burst histogram in pre-forma-
lin injection period (Fig. 5B1).

The unit activities were recorded in vivo in a region of
MITN that was confirmed to receive a signal from the foot.
The spike pattern was further confirmed to project to the
ACC by the spike-triggered averaging technique. This
bursting pattern of thalamic discharges can be converted
to a irregular bursting stimulation pattern which was then
used to evaluate the STP of ACC activity in vitro.

MITN-Pattern Stimulation: Burst and Glutamate 
Dependence
Figure 4 shows the in vitro stimulation/recording para-
digm for studying ACC discharges following burst-mod-
elled stimulation patterns that simulate physiological
responses. Thalamic bursting unit patterns obtained fol-
lowing formalin injection were first transformed into
transistor-transistor logic pulses. These square wave pulses
meet the specific requirement for the triggering of an out-
put signal generated from a pulse generator. These trig-
gered stimulating pulse sequences were then used to apply
stimulation in the thalamus or contralateral cc and to
evoke EPSPs in ACC neurons in slices. The amplitude of

EPSPs evoked by the first four stimuli from different stim-
ulation sites were measured and normalized relative to
the first responses. The thalamus-evoked fourth EPSPs
showed greater potentiation than that produced by con-
tralateral cc (Fig. 6A). The maximal response that occurs
during the train of thalamus bursting was measured. Anal-
yses of both the maximal-to-control ratios of the EPSPs
and the number of evoked action potentials showed that
thalamic stimulation efficiently delivered the bursting
unit pattern to the ACC and elicited substantial cingulate
neuron firing.

There is evidence that the thalamocingulate projection is
glutamatergic [45] and a blocker of the NMDA receptor is
d, l-2-amino-5-phosphonopentanoic acid (APV) and it
was used to evaluate the role of glutamate in this system.
As shown in Figure 6B, the potentiation of the EPSPs by
thalamic bursting stimuli was diminished following per-
fusion with APV (30 μM) in contrast to artificial cerebros-
pinal fluid (aCSF). Thus, this pathway uses glutamate as is
characteristic of all thalamocortical projection systems
[69,70].

Another way to analyze the monosynaptic, thalamocorti-
cal response in the slice and to dissociate it from multisy-

PPF and tetanic potentiation of the ACC evoked by stimulation of the thalamus or the contralateral corpus callosum (CC)Figure 4
PPF and tetanic potentiation of the ACC evoked by stimulation of the thalamus or the contralateral corpus 
callosum (CC). A. Schematic diagram showing stimulation and recording sites in an ACC slice model. B. Example traces of 
EPSPs evoked by different inputs at varying paired pulse intervals (50-800 ms). C. A greater paired-pulse potentiation ratio 
(second EPSP/first EPSP) at the 50- and 100-ms intervals was observed with stimulation in the thalamus than in the contralat-
eral CC (*P < 0.01 vs stimulation in contralateral CC). Data are means ± SEM. D. Example traces of tetanic potentiation in the 
ACC evoked by stimulation of the thalamus, or contralateral CC. E. Potentiated responses (Max/Control EPSP) were greater 
with thalamic stimulation than with contralateral CC stimulation, at 20 and 50 Hz (*P < 0.01 vs contralateral CC stimulation). 
Data are means ± SEM (Modified from 46).
Page 9 of 20
(page number not for citation purposes)



Molecular Pain 2009, 5:51 http://www.molecularpain.com/content/5/1/51
naptic, intracingulate activity is to use a high
concentration of divalent cations. This protocol was used
by Sah and Nicol [66] in cingulate cortex in vitro while
stimulating the corpus callosum and recording from layer
V neurons. Here we use the high divalent cation solution
to differentiate the monosynaptic thalamic projection and
potentially confounding reverberating cingulate excita-
tory connections. This protocol also provides a means of
diminishing responses to bursting stimuli that generate
potentiation by polysynaptic circuitry presumably by
increasing the threshold for spike generation in interneu-
rons.

The potentiation induced by thalamic burst stimulation
was significantly reduced after high divalent cations in
comparison to aCSF. Figure 6B shows that the first
response was not affected by either APV or divalent cati-
ons, while the 2-5 potentiated responses were highly vul-
nerable to both treatments. These results indicate that STP
of the thalamocingulate pathway provides a specific
means by which the MITN can signal to the ACC. Gluta-
mate transmission via NMDA receptors appears to play an
important role in transduction of both the initial excita-
tion and subsequent multisynaptic events evoked by noci-

ceptive stimulation. The short-term facilitation observed
in the thalamocingulate pathway could enhance the abil-
ity of this neuronal circuit to sustain persistent activity
evoked by noxious stimulus. Furthermore, such synaptic
enhancement could temporarily increase the level of
recurrent excitation throughout the local cortical network.
Thus the STP may serve to enhance neural activity in cin-
gulate cortex and to adapt this pathway to its specific noci-
ceptive function.

STP in Layer II/III Involves Pre- and Post-synaptic 
Mechanisms
Short-term synaptic plasticity shapes the postsynaptic
response to bursts of impulses and is crucial for plastic
changes of central neurons after strong noxious stimula-
tion. For instance, central sensitization is an enhanced
responsiveness of central nociceptive neurons to innocu-
ous and noxious stimuli [27]. All of these plastic changes
arise from activity-dependent changes in the amount of
neurotransmitter released by persistent actions of calcium
ions within the presynaptic terminal [71,72]. The rela-
tionship between calcium and STP has been studied in the
central nervous system [42,73]. These studies indicated
that STP is mediated by the residual calcium in presynap-

Bursts analysis of MITN pattern in control and after formalin injectionFigure 5
Bursts analysis of MITN pattern in control and after formalin injection. Burst unit activities were displayed as raster 
plot of under control (A1) and formalin injection (A2) condition. The spikes were sorted by its shape at first. Then, the spikes 
within one burst were separated from other spikes with a 500 ms pre-burst silent interval. All spike activities were shown as 
black dots in raster plot. The burst-trigged histogram of spike activities in control (B1) and formalin injected (B2) condition 
were summated from raster plot with a 10 ms bin width.
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tic terminals which increases the number of quanta
released by a second afferent pulse. In light of the fact that
calcium acts as an important regulator of PPF [17,74,75],
we posited that [Ca2+]o is an important regulator of STP
in ACC neurons.

We used low frequency, paired-pulse and high-frequency
tetanus stimuli to examine STP of the layer II/III neurons
in ACC in vitro [76]. Also, the post-tetanic effects were
tested by altering the time delay between the tetanus and
the test stimulus. The effects of different extracellular cal-
cium concentrations and calcium-channel antagonist ω-
Conotoxin on STP were examined. For these experiments
the stimulation pulses were delivered at different time
points at homo-synaptic inputs. To evaluate the effects of
stimulating hetero-synaptic inputs in layer II/III, a two-
site stimulation method was adopted [77].

The experiments were conducted after finding the loca-
tion of maximum synaptic response in layer II/III. Two
distinct negative potentials were evoked in layer II/III by
electrical stimulation applied in layer VI under normal
aCSF. Following 200 μA stimulation, the first field poten-
tial had a latency of 2.3 ± 0.5 ms and an amplitude of -
0.46 ± 0.15 mV and the second field potential had a
latency of 6.2 ± 0.7 ms and an amplitude of -0.47 ± 0.095

mV. The evoked potentials were systematically mapped
along and around the trajectory path of the layer V/VI neu-
rons. Isopotential plots depicting the areas of the half
maximal of the peak amplitudes of the first and second
evoked field potentials (EFP) can illustrate the excitatory
extent of the evoked responses (Fig. 7A). The maximum
potential was obtained in layer II/III for both the first and
second field potentials with a slight shift in the distributed
location. When the perfusion solution was changed to
Ca2+-free aCSF, the first field potential was maintained at
the same amplitude, but the second field potential was
totally abolished (Fig. 7B).

To characterize the cellular components that corre-
sponded to the evoked extracellular field potentials, intra-
cellular excitatory post-synaptic potentials (EPSPs) were
evoked and recorded simultaneously with the field poten-
tials. EPSPs and the second field potentials were blocked
completely in the presence of CNQX (15 μM) alone or in
combination with APV (30 μM). The first field potential
however was not affected by the glutamate receptor antag-
onist (Fig. 7C).

Two consecutive stimuli of identical strength were applied
at an interval of 40 ms (paired-pulse stimulation). The
field action potential (fAP) evoked by the first stimulus

Differential effects of patterned-bursting stimuli on ACC neurons in MITN-ACC sliceFigure 6
Differential effects of patterned-bursting stimuli on ACC neurons in MITN-ACC slice. A. EPSPs were recorded 
from ACC neurons when the in vivo bursting stimulus pattern was applied at the thalamus, or contralateral corpus callosum in 
the slice. B. EPSP potentiation by MT bursting stimulation is shown in the upper sweeps. The EPSPs evoked by the same stimuli 
during perfusion of high divalent aCSF or APV. The effects are illustrated with superimposed sweeps obtained during control 
(black lines) and in high divalent and APV conditions (red lines) (Modified from 46).
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Responses in the ACC evoked by paired-pulse stimulationFigure 7
Responses in the ACC evoked by paired-pulse stimulation. A. The part of ACC in which the half-maximal response for 
the first field potential (dark gray area) and second field potentials (light gray area) was determined following electrical stimula-
tion in the deep layers (BSE, bipolar stimulating electrodes). B. The evoked-field potentials (EFP; either field action potential-
fAP or field postsynaptic potential-fPSP) were recorded and fPSPs totally abolished in the presence of Ca2+-free aCSF. C. 
Effects of CNQX (15 μM) and APV (30 μM) on EFP. D. Frequency-response dependence in the presence of low external 
[Ca2+] (1 mM) aCSF and high [Ca2+] (3 mM) aCSF. E. Relationship between the ratio of max/control, min/control and fre-
quency under the different external [Ca2+] concentrations (Modified from 66).
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(fAP1) did not differ from that evoked by the second stim-
ulus (fAP2) (amplitude = -0.46 ± 0.15, fAP1 vs. -0.45 ±
0.16 mV, fAP2, stimulated at 200 μA, n = 6). There is a lin-
ear relationship between the fAPs and the stimulation
strength applied (from 20 to 500 μA). The field post-syn-
aptic potentials (fPSPs) of the second stimulation (fPSP2)
had greater amplitude than the fPSPs evoked by first stim-
ulation (fPSP1) (-0.82 ± 0.12 mV vs. -0.47 ± 0.09 mV,
stimulated at 200 μA). PPF was obtained with current
applied in the range of 20 to 500 μA. Optimal PPF was
obtained when the interpulse interval was in the range of
20-150 ms.

These findings suggest that the first fAP was directly acti-
vated by stimulation without synaptic relay and the sec-
ond fPSP resulted from postsynaptic excitation. Strong
short-term potentiation of the fPSP of the ACC can be
obtained by PPF. Thus, layer II/III neurons express an STP
that is calcium dependent and involves glutamatergic
transmission. To test the presynaptic mechanism of the
PPF, the effects of varying external calcium concentrations
and blocking calcium influx were examined.

Presynaptic Mechanism of STP: Effects of Calcium and -
Conotoxin
The fPSP response was recorded following 25 Hz (15
pulses with 40 ms IPI) tetanic stimulation under normal
calcium conditions with superimposed responses to
altered stimuli. The fAP amplitude changed very little sug-
gesting the persistence of the excitability of a pre-synaptic
volley. The amplitude of the response following the first
stimulus was -0.32 ± 0.017 mV and was regarded as the
control value. The fPSP response reached the maximal
amplitude (-0.49 ± 0.02 mV, n = 19) following the second
stimulus. The maximal response declined gradually in the
following stimuli. There was depression of the amplitude
after the 10th stimulus and the depressive effect reached a
steady state that lasted from the 12th to15th stimuli (-0.223
± 0.001 mV, n = 19). To evaluate the augmentation effect
after tetanus, a single test stimulus was applied at a vary-
ing delay interval (0.2~8 s) after cessation of tetanus. The
maximal response (-0.48 ± 0.04 mV, n = 19) was obtained
when the test stimulus was applied with a 4 s delay.

During tetanic stimulation (12.5 Hz, 25 Hz and 50 Hz),
the second fPSP showed maximal facilitation under nor-
mal (2 mM) and high (3 mM, Fig. 7D, right plate) calcium
conditions. In the presence of low (1 mM, Fig. 7D, left
plate) calcium aCSF, maximal fPSP amplitude was
reached after the third stimulus presentation and the fPSP
gained a much greater Max/control ratio (2~6) than that
obtained under normal and high calcium concentrations
(1.2~1.8). The fPSP could not be successfully initiated
when the extracellular calcium concentration was less
than 1 mM. Thus 1 mM was set as the lower limit for the

calcium concentration. The fPSP reached a near steady
state at the end of tetanus in different calcium concentra-
tions. The Min/control ratio (the ratio of the 15th response
to the first response) showed depression in the presence
of normal and high calcium aCSF (except at 12.5 Hz stim-
ulation in normal calcium concentration) but showed
facilitation in the presence of low calcium aCSF (except at
50 Hz stimulation). The Max/control and Min/control
ratios obtained during tetanus under different calcium
concentrations were plotted against stimulus frequency as
shown in Figure 7E.

The effect of low calcium concentration on fPSP ampli-
tude may be due to a reduction of calcium influx from the
extracellular space. To test this possibility, we pharmaco-
logically reduced calcium influx by applying the calcium-
channel blocker ω-Conotoxin GVIA (CTX; 10 μM, 3 min
in aCSF). The fPSP amplitudes were decreased following
CTX application, and the maximal effect was reached
within 10 min. We measured CTX effects on facilitation
and response depression under tetanus only after stable
control responses had been obtained. Slices were perfused
in aCSF with 25 μM CTX for 5 min then returned to per-
fusion with normal or low calcium aCSF. One-way
ANOVA indicated a significant effects CTX and low cal-
cium on amplitude of the fPSP1, amplitude of the fPSP2,
maximal amplitude, first response to the test stimuli (4-s
1st) and second response to the test stimuli (4-s 2nd)(p's <
.05), but not on steady-state amplitude or normalized
augmentation amplitudes (4-s 1st/fPSP1) (p's > .05).
When comparing PPF ratio, one-way ANOVA indicated a
significant effect of Ca2+ influx on PPF (fPSP2/fPSP1) and
PPF during augmentation (fPSP2 at 4 s/fPSP1 at 4 s).

The results indicated that the presynaptic calcium influx is
an important mechanism that regulates the expression of
the STP in the layer II/III ACC neurons. As central neurons
are susceptible to strong noxious stimulation, the central
sensitization of the central neurons may underlie the
long-term pathophysiological changes in chronic pain.
Thus, the understanding of the calcium regulation in the
nociceptive pathway will be crucial in controlling the
development of the central sensitization in ACC. A recent
study suggested that all different forms of STP may be
caused by a common mechanism, namely calcium-
dependent regulation of the presynaptic calcium channels
that are responsible for triggering transmitter release [72].
It is still to be determined specifically how calcium chan-
nel modulation is employed as a mechanism for short-
term synaptic plasticity in the thalamocingulate pathway.
Recent studies have shown that voltage-gated calcium-
permeable ion channels are regulating neuronal excitabil-
ity, action-potential firing patterns and neurotransmis-
sion in nociceptive pathways [78-80]. Thus it will be
important in the future to develop new analgesic drugs
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which target the N-type and T-type calcium channels
which are key regulators of nociceptive signaling in
humans [81].

Post-synaptic Mechanisms of STP in ACC
The stimulus protocols applied in all preceding experi-
ments involved consecutive pulses applied to the same
synaptic pathway. This paradigm shows the effects of
potentiation via single (homosynaptic) inputs. This
approach, however, does not allow for the differentiation
of STP generated by presynaptic and/or postsynaptic
mechanisms. To identify the role of postsynaptic mecha-
nisms, we employ a paradigm in which two separate pop-
ulations of afferent axons are stimulated independently
and the resulting potentiation must be due to the postsy-
naptic neuron rather than the afferents themselves.

A two-site stimulation protocol was used in which two
consecutive stimulus pulses were delivered to different
axon populations in the subcortical white matter that
were separated by a knife cut between the two stimulation
sites as shown in Figure 8A. One stimulating electrode is
termed the test electrode (S1) and the other is used for
conditioning (S2). The evoked-potential amplitude was
calculated in ACC that produced half the maximal
response evoked by S2. In all sampled recording sites, the
majority responses (93%) were facilitated; i.e. the percent
change of the fPSP-S2 proceeded with S1 and the fPSP-S2
stimulated alone was greater than 110%. The time course

of this effect was also examined, in which facilitation was
shown from 20 ms to 60 ms after S1 site stimulation (Fig.
8B). The maximal facilitation effect (ratio = 1.34 ± 0.056)
was obtained with a 20 ms interval (Fig. 8C).

Our recent studies have shown that the post-synaptic
mechanism of short-term synaptic facilitation in the ACC
may be mediated by postsynaptic AMPA and GABAA
receptors [82,83]. These findings are inconsistent with
results obtained in experiments using the lateral amygdala
and hippocampal area CA1 [84,85]. Regulation of STP,
especially PPF, has been associated with a migration of
AMPA receptors [86]. This mechanism would require that
AMPA receptors migrate rapidly in the postsynaptic mem-
brane to a position near the glutamate releasing point. In
concordance with this hypothesis, Li et al. [87] showed
that CNQX binding to AMPA receptors changes their
molecular structure and surface charges. Additionally,
postsynaptic effects on GABAA receptors during PPF may
be mediated through a change in the intrinsic membrane
excitability triggered by inhibitory post-synaptic, poten-
tial-induced hyperpolarization. Hyperpolarization of the
neuronal membrane, induced by the GABAAinhibitory
receptor system, can result in an increase in the second
excitatory response during paired-pulse stimulation
[77,88].

The facilitation effect observed from multi-site synaptic
input was smaller than that from homosynaptic inputs in

STP in the ACC evoked by two-site stimulation testFigure 8
STP in the ACC evoked by two-site stimulation test. A. A pre-cut slice was tested with a two-site (S1 and S2) stimula-
tion protocol. B. Averaged and superimposed sweeps generated in response to S2 alone or S1 and S2 paired at varying inter-
stimulus intervals (averaged from 5 sweeps). C. Normalized responses evoked by S2 sit stimulation plotted as a function of 
paired stimulation interval between S1 and S2. Data are expressed as means ± s.e.m (n = 5) (Modified from 66).
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the same recording area. Our spatial recordings also
revealed that not all post-synaptic neurons in the record-
ing area were facilitated by the two-site stimulation proto-
col. Thus, homosynaptic facilitation may play a major
role in modulating information from the same synaptic
inputs. On the other hand, multi-site synaptic facilitation
may play a role in the convergence of information from
different synaptic inputs. Multi-site synaptic interactions,
such as depression and facilitation, may differ depending
upon the inputs stimulated and the target neurons
affected. Post-synaptic facilitation driven by multi-site
synaptic inputs may represent an additional signal
processing mechanism in the ACC. Both homosynaptic
and multi-site synaptic facilitation effectively transfer sig-
nals and each has distinct facilitation properties which
may be used to distinguish signals received from different
origins.

Implications of Short-Term Plasticities to Nociception in 
the Thalamocingulate Pathway
Short-term modifications in cortical synapses appear to
regulate afferent signals and this regulation is likely
important to the transition from acute nociceptive stimu-
lation to chronic pain conditions associated with persist-
ent peripheral noxious stimulation. Our studies have
shown that the input-specific, short-term synaptic plastic-
ity in the ACC can enhance signals originating in the
MITN. Thus MITN discharges within a certain frequency
range are amplified and effectively stimulate cingulate
cortical neurons. The thalamic drive of ACC is not a stable
event, but rather changes over time depending upon the
nociceptive history of the organism. Our studies have
shown that cingulate circuits, in addition to being facili-
tated by regular and repetitive impulses, can be activated
by irregular bursting thalamic impulses and that the later
impulses within each burst are more likely to elicit action
potentials for further signal propagation.

The potential role of STP in the ACC in nociceptive sign-
aling involved in acute and chronic pain states is pre-
sented in a diagram in Figure 9. The synaptic response
(e.g. EPSP) of ACC neurons to thalamic input is enhanced
by spikes with regular frequency (Fig. 9A.). These
enhanced synaptic responses can also be measured as
potentiated extracellular field potentials or localized sink
currents. Synaptic responses are further potentiated by
irregular thalamic bursting, resulting in multiple action
potentials (Fig. 9B.). STP of ACC pyramidal neurons in
layer V regulates nociceptive signaling relayed from the
MITN under normal conditions. Facilitated synaptic
responses may lead to a few action potentials in the neu-
ron (blue dashed lines Fig. 9C). These cingulate cortical
output signals may be greatly enhanced following the acti-
vation of abnormal thalamic bursting in chronic pain
conditions and thus influence subcortical targets such as

the periaqueductal grey (PAG) and striatum (Fig. 9C.,
solid red lines).

Considerable effort has been made to understand the
mechanisms underlying high-frequency bursting of tha-
lamocortical impulses. It has been shown, for example,
that initial impulses of each burst have a greatly enhanced
ability to elicit cortical action potentials, and later

Diagrams of nociceptive inputs and STP in the ACC under acute normal and abnormal chronic pain conditionsFigure 9
Diagrams of nociceptive inputs and STP in the ACC 
under acute normal and abnormal chronic pain con-
ditions. A. Synaptic responses of ACC neurons to regular 
discharging thalamic afferents. B. Responses of ACC neurons 
to bursting thalamic afferents. C. ACC circuit organization 
during two conditions of thalamic output (cortical layers 
shown on right). In the acute pain state, the nociceptive sig-
nals are conveyed to the ACC through normal thalamic 
activity to dendritic targets of pyramidal neurons in layer V 
(blue dashed lines) and evoke a weak discharge. STP in these 
synapses regulates ACC neuron output to the striatum and 
PAG. In contrast, abnormal thalamic bursting occurs follow-
ing persistent nociceptive inputs from the periphery (solid 
red lines) and these bursting impulses initiate and facilitate 
multiple action potentials in ACC neurons. The enhanced 
and maintained activities in these neurons facilitate the intra-
cortical nociceptive transmission and descending outputs 
which further influence ACC targets in other brain regions.
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impulses in the burst further raise the probability of elic-
iting spikes [89]. Moreover, the interval preceding each
burst is crucial for generating the enhanced cortical
response. The properties of thalamic burst mode have led
to suggestions that bursts could serve as wake-up calls to
cortex for potentially dangerous stimuli. The bursting
activity has been reported in the medial thalamus of rats
in normal condition and with chronic inflammation [90].
If STP in ACC regulates the acute nociceptive input signals
from the thalamus, then this property may play an impor-
tant role when abnormal thalamic bursting occurs in
pathological pain conditions. Thus, the potentiation
induced by bursting patterns of stimulation indicate that
short-term synaptic plasticity in the cingulate neurons
enable them to process specifically the nociceptive infor-
mation relayed from MITN.

Several groups have reported the existence of thalamic
neurons in chronic pain patients that fired in a bursting
pattern similar to the low-threshold calcium spike-medi-
ated bursting activity and such firing may be the result of
and/or cause of chronic pain. Recent results indicate that
T-type Ca+2 channels are responsible for burst spike dis-
charges in response to visceral pain and support the idea
that burst firing plays a critical role in sensory gating in the
thalamus [91]. Unit studies by Rinaldi and co-workers
[92] in patients with deafferentation pain found thalamic
cells with high frequencies of spontaneous bursting dis-
charge activity. The receptive fields of these units were very
large and often bilateral. An increase in the relative rates
of spontaneous activity in the thalamus has been reported
for central pain patients as compared to non-pain patients
[93]. A study by Jeanmonod and coworkers [94] shows
that 50% of thalamic units in chronic neurogenic pain
patients showed random and rhythmic bursting activities.
The rhythmic bursting units were characterized by inter-
burst intervals between 200 and 300 ms. Random burst-
ing units showed a more or less marked rhythmic
tendency toward these frequencies. The first spike of each
burst was often of higher amplitude, and interspike inter-
vals within a burst increased with each successive interval
(from 2 to 8 ms). The shorter the first interspike interval
in a burst, the larger the number (4 to 10) of spike was
found within this burst. All of these characteristics are the
hallmark of low-threshold, calcium spikes (LTS) bursts
[95]. Much of the increase in these activities in these
reports may be accounted for by increased spontaneous
bursting activities of medial thalamic cells. For example,
the bursting activity patterns found by Rinaldi et al. [92]
was concentrated to the lateral aspect of the mediodorsal
nucleus, the central lateral nucleus and only a small part
of the central medial-parafascicularis complex. The ana-
tomical distribution of the bursting units in Jeanmonod's
study shows a clustering in and around central lateral and
ventrocaudal part of the mediodorsal nucleus.

The significance of the bursting pattern found by these
authors has been interpreted to occur by a mechanism
attributed to intra-thalamic interactions. Jeanmonond et
al. proposed that the spinal inputs to medial and lateral
thalamus are excitatory, and that the excitation of each
region is limited by inputs of each area to the reticular tha-
lamic nucleus which then produces a reciprocal inhibition
of the medial thalamus by the lateral thalamus and vice
versa. They suggested that most injuries resulting in
chronic pain tend to deprive the lateral more than medial
thalamus of peripheral inputs. Thus, the lateral thalamus
becomes over inhibited by a combination of loss of spinal
excitatory inputs and increase of inhibitory inputs from
the thalamic reticular nucleus. These combined influences
produce over-inhibition of lateral thalamic cells produc-
ing low-threshold calcium spikes. This spiking activity
then over activates the reticular thalamic projection back
to medial thalamus which finally produces low-threshold
calcium spiking in this region and so closes a self sustain-
ing loop of over activity through inhibition. In this model
calcium spike associated bursting requires the combina-
tion of excitatory amino acid antagonists with GABA ago-
nists.

Although the medial thalamic LTS bursting activity
emphasizes the thalamic mechanism of chronic pain, the
potential pathophysiological relevance of thalamo-cor-
tico-thalamic reverberating and/or synchronizing loops
should not be underestimated. The medial thalamus was
shown to be preponderant in the genesis of rhythmic tha-
lamic oscillations [96]. The widespread cortical projec-
tions of the medial thalamic nuclei have been shown to
influence the activity of a large number of cortical areas
when functioning in bursting mode [97]. Thus, the spe-
cific short-term facilitation of the thalamocingulate path-
way will likely enable the enhancement of the transferring
of the abnormal thalamic bursting activities to the cingu-
late cortex. These activities will result in a resonant inter-
action between thalamus and cingulate cortex and thus
sustained nociceptive activities.

The STP time scale is relatively short, on the order of sec-
onds and minutes, and thus it cannot produce entirely the
processes underlying chronic pain conditions. It is crucial
to note that STP plays a transitional role in transferring the
nociceptive signal mediating acute traumatic injury to the
formation of long lasting changes in the ACC. Long-term
enhancement of synaptic transmission after peripheral
injury has been demonstrated in several studies in which
the potentiation of the peripherally evoked field and EPSP
in the ACC lasted 90 ~120 min or longer. [98,99]. These
long-term effects were further validated in experiments in
genetically modified mice showing that immediate early
genes were activated in ACC neurons after peripheral
inflammation or amputation [100,101]. The expression
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of the immediate early gene expression involved activa-
tion of NMDA receptors and two subtypes of adenylyl
cyclase (AC1 and AC8) [101,102]. The molecular mecha-
nism underlying the long- term plastic changes in the ACC
were found to be related to the NMDA receptors and L-
type voltage-gated calcium channels, which are responsi-
ble for the induction of the long-term potentiation (LTP)
of ACC synaptic responses [103,104]. NMDA receptors
without Ca2+ permeable GluR2 subunits were found to be
critical to LTP stabilization and maintenance [105].

The short-term and long-term plastic changes in the ACC
may facilitate the acute nociceptive activities to become
persistent. Enhanced and maintained nociceptive activi-
ties may have an adverse effect in cingulate cortex. Studies
have shown that excessive activation of NMDA receptors
which are the most widely and densely distributed of the
glutamate receptor subtypes in the cingulate cortex, plays
an important role in the pathophysiology of acute CNS
injury syndromes [106]. NMDA antagonists are being
used or evaluated for use in chronic conditions like neu-
ropathic pain [107]. Although there are clinical reports
suggesting a role of NMDA-antagonists in chronic neuro-
pathic pain [108,109], the exact clinical role of NMDA-
blockade remains to be investigated. Experimental evi-
dence points at a substantial role of the NMDA-receptor
initiating central sensitization that possibly lead to per-
sistent pain-states [110,111]. Therefore, the use of NMDA-
receptor antagonists in the early post-injury phase, may
pre-empt central sensitization and the subsequent devel-
opment of chronic pain. From this point of view, the ther-
apeutic efficacy of NMDA-antagonists may not act on
central sensitization once chronic pain is established. It is
possible that it may instead act in the regulation of the
excessive cortical excitation of NMDA receptors involved
in other pathophysiological events.

Thalamic T-type calcium channels are critically involved
in the generation of burst firing and oscillatory behavior
in synaptically interconnected relay and reticular neurons.
Of particular note, CaV3.1 channels in the thalamus have
been implicated in processing of noxious stimuli [91].
The presence of a thalamocortical dysrhythmia is due to
the generation of low-threshold, calcium-spike bursts by
thalamic cells. The presence of these bursts is directly
related to thalamic cell hyperpolarization, brought about
by either excess inhibition or disfacilitation. Thus, it will
be particularly important to know how to regulate such
changes in thalamic firing patterns that may influence the
transmittal of nociceptive information to the ACC. One
approach of the thalamic firing modification may be the
application of calcium channel blockers. For instance, it is
possible that selective targeting of CaV3.3-expressing neu-
rons in the reticular nucleus could inhibit γ-aminobutyric
acid release. In turn, this would lead to less hyperpolariza-

tion of neurons in the relay nuclei with decreased availa-
bility of their T-type calcium channels. The consequence
could be a switch from phasic to tonic firing with inter-
ruption of pathological rhythmic and oscillatory electrical
activity.

Conclusions and Unresolved issues
Short-term synaptic plasticities play an important role in
the processing of input signals by enhancing or filtering
signals at particular frequencies. In the ACC, unlike the
primary sensory cortical areas, paired-pulse facilitation is
predominant. The STP features, including homo-, hetero-
synaptic facilitation and augmentation, keep neuronal
activity propagation within local circuits. Thus, the poten-
tiation induced by bursting patterns of stimulation indi-
cate that short-term synaptic plasticity in the cingulate
neurons enable them to process specifically the nocicep-
tive information relayed from the MITN. Short-term mod-
ifications in cingulate cortical synapses appear to regulate
afferent signals and this is likely very important to the
transition from acute nociceptive stimulation to chronic
pain conditions associated with persistent peripheral nox-
ious stimulation.

Enhanced and maintained nociceptive activities in cingu-
late cortex may have an adverse effect. Thus, it has been
suggested to use NMDA antagonists in chronic conditions
like neuropathic pain. Thalamic, T-type calcium channels
are critically involved in the generation of burst firing and
oscillatory behavior in thalamocortical dysrhythmia.
Thus, it will be particularly important to know how to reg-
ulate such changes in thalamic firing patterns that may
influence the transmittal of nociceptive information to
the ACC. One approach of the thalamic firing modifica-
tion may be the application of calcium channel blockers.
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