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Abstract

Motivation: Population-level genetic variation enables competitiveness and niche specialization in microbial com-
munities. Despite the difficulty in culturing many microbes from an environment, we can still study these commun-
ities by isolating and sequencing DNA directly from an environment (metagenomics). Recovering the genomic
sequences of all isoforms of a given gene across all organisms in a metagenomic sample would aid evolutionary
and ecological insights into microbial ecosystems with potential benefits for medicine and biotechnology. A signifi-
cant obstacle to this goal arises from the lack of a computationally tractable solution that can recover these sequen-
ces from sequenced read fragments. This poses a problem analogous to reconstructing the two sequences that
make up the genome of a diploid organism (i.e. haplotypes) but for an unknown number of individuals and
haplotypes.

Results: The problem of single individual haplotyping was first formalized by Lancia et al. in 2001. Now, nearly two
decades later, we discuss the complexity of ‘haplotyping’ metagenomic samples, with a new formalization of Lancia
et al.’s data structure that allows us to effectively extend the single individual haplotype problem to microbial com-
munities. This work describes and formalizes the problem of recovering genes (and other genomic subsequences)
from all individuals within a complex community sample, which we term the metagenomic individual haplotyping
problem. We also provide software implementations for a pairwise single nucleotide variant (SNV) co-occurrence
matrix and greedy graph traversal algorithm.

Availability and implementation: Our reference implementation of the described pairwise SNV matrix (Hansel) and
greedy haplotype path traversal algorithm (Gretel) is open source, MIT licensed and freely available online at
github.com/samstudio8/hansel and github.com/samstudio8/gretel, respectively.

Contact: s.nicholls.1@bham.ac.uk

that did not seem to catch on in the literature. A full discussion of

1 Introduction
the history of human (and by extension, diploid) haplotyping is out-

The problem of single individual haplotyping (SIH) was first
described by Lancia et al. at Celera Genomics in 2001. In the wake
of the announcement of Celera’s first human genome, it became
clear that the next big research problem was not only to analyse the
millions of single point variants that populate our genomes, but how
to assemble the two haplotypes that make up a single individual’s
genome (Lancia et al., 2001). This 2001 work introduced the first
terminology and notation for ‘computational SNPology’, a phrase

©The Author(s) 2021. Published by Oxford University Press.

side the scope of this work [although for an expanded discussion see
Nicholls (2018)], but it is important to introduce this first descrip-
tion of the problem, as it formed the foundation for many other
approaches and algorithms that followed.

The computational problems involved with haplotyping arise be-
cause genomic assembly algorithms typically achieve accuracy
through the availability of high sequencing coverage. Although it is
now possible to assemble high quality, contiguous sequences of
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entire genomes, even for a complex community sample (Nicholls
et al., 2019), such sequences only represent a consensus of the true
haplotypes that exist in a sample. This is problematic for the study
of metagenomes where the objective of consensus generating assem-
bly methods is at odds with our desire to explore the individual hap-
lotypes that provide the population-level diversity of natural
microbiomes. Specialized metagenomic assemblers like flye
(Kolmogorov et al., 2019) and metaSPAdes (Nurk ez al., 2017) do
not aim to reconstruct haplotypes from a microbial community. Not
only it is technically challenging to sequence every true haplotype to
a depth sufficient for confident assembly, but also even high-quality,
single-molecule, long-read sequencing platforms fail to achieve per-
fect recall and perfect precision on the single read level, and are
therefore not capable of single-molecule haplotype identification
(Ebler et al., 2019). Even high-accuracy sequencing techniques such
as circular consensus sequencing still produce a per-base error rate
of around 1% (and a higher error rate for insertions and deletions)
that will be indistinguishable from low-frequency haplotypes
(Wenger et al., 2019). Ideally, large-scale culturing projects would
aim to culture and sequence every genome from every individual in
a microbial community. However, such endeavors would be incred-
ibly laborious and even large international projects such as the
Hungate Collection (Seshadri et al., 2018) and Human
Gastrointestinal Bacteria Culture Collection (Forster et al., 2019)
generally produce a subset of representative genomes for each spe-
cies. Despite these difficulties, in this article, we propose a method
to reconstruct haplotypes. First, we must define the problem, then
explain how solutions can be generated efficiently. Lancia et al.’s
work first described the problem for a diploid individual as:

‘Given a set of fragments obtained by DNA sequencing from the
two copies of a chromosome, reconstruct two haplotypes that
would be compatible with all the fragments observed.’—Lancia
et al. (2001)

It is important to note that even in an ideal scenario with error-
free read fragments, lack of coverage across the haplotypes (be it a
chromosome, or region of interest) necessitates a problem definition
where at best, one can only recover the two haplotypes that are
most ‘compatible’ with the observed fragments. Perhaps more im-
portantly for the context of this work, Lancia also defined a com-
mon notation to formally describe the problem of single individual
haplotyping. The ‘SNP matrix’ (typically denoted M) is an m x n
matrix encoding the binary allele observed at each SNP site 1,...,7n
on each read fragment 1,...,m. That is, M]i][j] is one of two pos-
sible alleles (typically labelled 0, 1 or A, B), or a gap (denoted -)
observed at the jth SNP site on the ith read fragment (Fig. 1).

Although unstated, it would appear the inspiration for Lancia’s
SNP matrix in 2001 is likely from a data structure introduced by
Churchill and Waterman (1992). Churchill and Waterman described
a matrix with m read fragment rows and 7 base position columns.
An element in this matrix (which given the benefit of hindsight, we
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will denote as M), M[i, j] refers to the nucleotide observed ‘on a gel’
at position j on the ith read fragment. Of course, the problem a dec-
ade prior considers the accuracy of only one sequence: that of the
true DNA molecule that was sequenced, rather than untangling dip-
loid sequence data to recover a solution of two distinct haplotypes.
Lancia et al.’s work additionally define three optimization problems
to solve SIH, which involve identifying and mitigating different
types of ‘conflicts’ in the SNP matrix. A pair of read fragments 7;, 7;
are said to be in fragment conflict if they have opposing alleles on at
least one SNP. Similarly, a pair of SNPs sy, s; are said to be in SNP
conflict if reads 7,, and 7, are heterozygous at one SNP and homozy-
gous at the other. Although a conflict might indicate that a pair of
fragments originate from different haplotypes, Lancia et al. focus on
the idea that conflicts arise due to errors in the underlying sequence
data, arguing that ‘experiments in molecular biology are never
error-free’. An SNP matrix M which contains any conflicts is infeas-
ible, and the three optimization methods aim to resolve these con-
flicts to yield a pair of feasible haplotypes. This SNP matrix
influenced almost all haplotyping algorithms for the next twenty
years (Lancia, 2016; Nicholls, 2018).

Lancia et al.’s definition of the SNP matrix only permits binary
symbols (and gaps —) and so conflict resolution strategies that oper-
ate on this matrix are only valid under a diploid assumption, or
polyploid cases where only the major and minor alleles are consid-
ered (Aguiar and Istrail, 2013; Schrinner et al., 2020). Polyploid
haplotyping algorithms also make the assumption that the ploidy is
fixed and known in advance, and that the ploidy number can be
used to remove or correct conflicting data (He et al.,, 2018;
Moeinzadeh ez al., 2020). These assumptions will not hold when
analysing a microbial community, where a diverse population of in-
dividual organisms can specialize to produce an unknown number
of variants of the same gene (i.e. haplotypes) (Rubino et al., 2017).
Reconstructing this population-level diversity would be a significant
step towards a complete understanding of the evolutionary, eco-
logical and functional importance of microbial communities
(Kuleshov et al., 20165 Stewart et al., 2019; Zhang and Kim, 2010),
so there is a need to reformulate the problem of haplotyping such
that it can be applied to a microbial community. To do this, we take
inspiration from Lancia ef al.’s seminal work and offer a new data
structure and algorithmic solution to generalize the haplotype recov-
ery problem to individuals in a microbial community. We term this
the metagenome individual haplotyping (MIH) problem.

2 Theory

We begin with a naive de novo formulation of the MIH problem,
where the input is a collection of reads generated by a DNA sequen-
cer from an environmental sample, with an unknown number of
organisms. The ideal output from a solution to the MIH problem is
the collection of whole-genome sequences representing all the
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Fig. 1. An example SNP matrix. Read fragments represented by grey boxes (left) are aligned to some reference with known SNP loci. The alleles at the SNP loci are represented
by white and grey circles. These reads can be alternatively represented by an 7 x # SNP matrix (right). Each row of the matrix models one of the  read fragments and each
column corresponds to one of the 7 SNPs. Elements encode the allele at a given SNP for a particular read fragment as a 0 or 1, or a—if the read does not cover that position. A
column containing only one element indicates the corresponding SNP site is homozygous, otherwise it is heterozygous
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individual organisms in a microbial community. To illustrate fur-
ther, we require the following definitions:

* Q, a microbial community.

* O, a set containing each full genomic sequence, of each individ-
ual organism in environment Q. O is the ‘metagenome’ of Q:
encompassing all possible genomes in the environment.

Arguably one could consider O as a bag, allowing multiple cop-
ies of the exact same genome in the community. For the purposes of
haplotyping, we do not need to concern ourselves with recovering
duplicate genomes. We also require some definitions to denote how
the community is sampled:

* ¢ C Q,asample is taken from microbial community Q.
M
* A set containing the unique genomes m € M, from the indi-
vidual organisms captured in the sample o.
* M represents the metagenome that was captured in the sam-
ple o, and is our insight into O.
* As a subsample (M C O), M is not necessarily representative
of the entire metagenome O.

* R = Sequencing(o)

* R is the set of reads obtained from the sequencing of isolated
DNA from sample a.

* A read consists of a sequence of nucleotide bases
rilj] € {A,C,G, T,N},i € 1.|R|,j € 1..|r,].

* A read mfu : v] describes a fragment of some genome m € M,
covering positions u#, v € 1..|m|, with some degree of error.

* In addition, due to library preparation bias and sequencing
errors, R is unlikely to provide uniform and non-zero cover-
age of the bases across all m € M.

Formally, the goal of MIH appears to be the recovery of M from
R. However, to construct a form of SNP matrix, we must identify
the variants that comprise haplotypes, which in turn necessitates a
common frame of reference for the reads. In the context of SIH, this
would be a known reference sequence. Unfortunately for us, the
ideal frame of reference for MIH is M—the very thing we are trying
to recover. Thus, our naive definition of de novo MIH collapses to
an exhaustive, special case of the de novo assembly problem. A solu-
tion to MIH is confounded by five problems: (i) DNA from every
genome needs to be extracted and sequenced to a depth sufficient
for recovery, (ii) genomes share homologous regions that require
disambiguation, (iii) reads may be of an insufficient length to disam-
biguate repeats or resolve bridges between variants, (iv) sequencing
error can be indistinguishable from rare haplotypes and (v) the pres-
ence of an unknown number of haplotypes complicates the already
computationally difficult (NP-hard) (Cilibrasi et al., 2005) problem
of haplotyping. These issues all apply to both the metagenomic hap-
lotyping and metagenomic assembly problems, which is why there is
no metagenomic de novo assembler that attempts to exactly recover
M from R. Metagenomic de novo assemblers such as flye and
metaSPAdes still aim to recover consensus sequences. Recent experi-
mental developments to flye allow a user to retain ‘haplotigs’,
whereby bubbles in the graph structure are left uncollapsed, how-
ever, this still requires significant coverage for those alternative
sequences to be assembled in the first place, and comes at the cost of
assembly contiguity.

Although such de novo consensus sequences do not represent the
entire metagenome of M, and typically collapse regions with shared
homology into single broken contigs, we suggest that they provide a
suitable approximation against which to align reads and construct a
SNP matrix for the purpose of haplotyping. We, therefore, redefine
the input to the MIH problem as a collection of sequencing reads R,
their alignment to a set of de novo assembled contigs (and/or any

existing references) and the variants determined by inspecting that
alignment:

* C = Assemble(R)

* Contig set C (assembly) constructed de novo from the reads R
by some Assemble operation.

* ¢l €{A,C,G,T,N} fork € 1..|C|,j € 1..|ci].

* Assemble attempts to construct a set of consensus sequences
representative of genomes in M, from the reads R. It should
be noted that Assemble does not try to recover M, and typic-
ally fails to distinguish between similar sequences that should
create distinct ¢ € C.

* A= Align(R,C)

* Alignment A is generated by aligning read set R to contig set
C with operation Align.

* An alignment a € A defines a correspondence between some
subsequence of read 7 € R and a subsequence of contig ¢ € C.
Note that the length of the subsequences with correspondence
between r and ¢ may not necessarily be equal.

e A, is the set of all alignments to contig c;.

* A_ij is the subset of alignments to contig c, where any cor-
respondence in R was found between positions i and j on con-
tig k.

* S, =Call(A,,)

* The list of positions on contig ¢; € C determined to be het-
erogeneous by the operation Call.

*  We will henceforth refer to these positions as single nucleo-
tide variants (SNVs) rather than SNPs in our descriptions to
make it clear that there are no assumptions on variant fre-
quency or validity.

* Call may simply consider each ‘column’ A, [i] for i € 1..|¢;|
and determine position 7 as a variant if there is a disagreement
on the nucleotide at that position across the aligned reads.
Call may also be a more complex variant prediction
algorithm.

To enable computational tractability and reduce the reliance on
the quality of the assembly, we can consider the local MIH problem.
The input to the local MIH problem is constrained by selecting a
contig from C and filtering for alignments in A between positions i
and j:

* cpli:j], aregion of contig ¢, identified as biologically interesting

* A_ij, the alignments of reads R that map to the contig region
celi: )

* S} the list of positions determined to be variants over the re-
gion ¢pli :j]

As cpli : j] was assembled from R, it is an approximation of one
(or more) genomes in the sampled metagenome M. In the same way
that an assembler can collapse multiple genomes with shared se-
quence into single contigs, or several broken contigs, an aligner may
be unable to determine whether read 7 truly belongs to a single
assembled contig in C. We cannot guarantee that reads aligned to
cgli : j] originate from the same genome 2 in the sampled metage-
nome M.

We use this to our advantage for local MIH. Consider first:

* /, a biologically interesting genomic feature such as (but not lim-
ited to) a gene or operon

* Mjy, the subset of the genomes in the sampled metagenome M
that have feature f
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* my, some genome in My

* myli:jl], a region i..j on my, that has concordance with feature £,
with appropriate length j — i & |f]

o Ty=set({mli:f] | k € 1. My, i,j € 1.Jmy|}). Ty is the set of
haplotypes of fin M.

Now let ¢[i : j] have concordance to a feature f. The output of
local MIH is the set of haplotypes I'z. Although the ambiguity in the
alignments A, i enable the variation in T's to be captured, the evi-
dence they provide does not readily resolve to haplotypes. The
Lancia et al. SNP matrix is not suitable for MIH, as the only infor-
mation stored about a variant site on a read is whether it belongs to
one of two haplotypes. In order to recover haplotypes that actually
exist, we must define a new data structure that is capable of consid-
ering evidence from non-adjacent variant sites, and is agnostic to the
number of potential haplotypes in I'z.

3 Data structure

3.1 The pairwise SNV co-occurrence matrix

We present a new form of SNP matrix: the pairwise SNV co-
occurrence matrix, denoted H. Consider two positions i and 7, on an
assembled contig c,. With a read r aligned to this contig, let « be the
nucleotide on 7 at i, and § be the nucleotide at j. We say that the
read supports an observation that symbol o; co-occurs with symbol
p;. His a rank 4 tensor (which we will refer to as a four-dimensional
matrix for convenience) such that an individual element
Hle, B, i, j] records the number of such observations supporting a
co-occurring pair of symbols (o;, ;). Note that the reads are aligned
with respect to the contig as a reference such that «, f are in the al-
phabet £ ={A,C,G,T,N,—}, where — denotes a deletion in the
read. We do not consider insertions.

This representation differs from the typical SNP matrix model
(Lancia et al., 2001) that forms the basis of many haplotyping
approaches. Rather than a matrix of columns representing variants
and rows representing reads, we discard the concept of a read entire-
ly and aggregate the evidence seen across all reads with pairs of sym-
bols and positions.

More importantly, H can be exploited to build other structures.

3.2 H as a simple graph
Consider H[x, B, 1, 2] for all symbol pairs («, ). One may enumer-
ate the available transitions from position 1 to position 2. Extending
this to consider Hla, B, i, i+ 1] for all (o, ) and i€ 1.2 —1
(where 7 = |S,, | is the number of SNVs identified on contig c), one
can construct a simple graph G of possible transitions between all
symbols. G would represent a graph of transitions observed between
SNVs, across all reads. A node in G represents a state, pairing a sym-
bol to a position (e.g. an ‘A’ at position 1). An edge between a pair
of nodes in G represents two adjacent SNVs (4, i+ 1) and can be
labelled with a weight using the number of corresponding co-
occurrence observations in H. Figure 2 shows how H records infor-
mation about SNV pairs, and how a simple graph can be derived
from this information.

Formally, H can be considered as a graph G = (V,E). Here, we
define E and V as:

E=Ui=1.n—1{(o4, Bir1) | Ho, B, iy i+1] >0, 0, B =} (1)

V={v|@ww)eE}U{v|(w,v)ecE} (2)

Intuitively, one may traverse a path through G by selecting the
edges most highly supported by the corresponding evidence in H, in
order to recover a series of symbols representing an ordered se-
quence of SNVs that potentially constitutes a haplotype. We can
now formalize a haplotype / as a sequence of nodes (v € V) encoun-
tered in this graph:

snp

sl 52 s3

(a)

(b)

(c)

s1 s2 s3

Fig. 2. Three corresponding representations, (a) a set of aligned reads 71.r4, with called
variants s1.s3, (b) the pairwise SNV co-occurrence matrix H where each possible pair of
symbols (00, 01, 10, 11) has a matrix storing counts of occurrences of that ordered sym-
bol pair between two positions across the aligned reads, (c) a simple graph that can be
constructed by considering the evidence provided by adjacent variants. H is represented
by an upper triangular matrix, as it is unnecessary to store the same observations with
reversed positions in the lower diagonal nor observations of transitions to self along the
main diagonal. Note for simplicity this example uses an alphabet of only two symbols,
but in practice we consider an alphabet £ = {A,C,G, T,N, -}

CO0e
OO0 @ =
@00

OO0 O O
ce O e

Fig. 3. Considering only adjacent SNVs, one may create paths for which there was
no actual observed evidence. Here, the reads {0011, 0001, 0100} do not support ei-
ther of the results {0000, 0101}, but both are valid paths through a graph that per-
mits edges between pairs of adjacent SNVs

h=vi,02,...,Vp 1,Vp. (3)

Although the analogy to a graph helps us to consider paths, the
available data in H cannot be fully represented with a graph such as
that seen in Figure 2 because it includes data about co-occurrence of
non-adjacent SNV positions. A graph representation constrains our
representation as edges can only be drawn between adjacent SNVs
(i, + 1). Without considering information about non-adjacent SNVs,
one can traverse G to create paths that do not exist in the observed
dataset, as shown in Figure 3. To prevent construction of invalid
paths and recover genuine paths more accurately, a SNV matrix for
MIH must be able to consider evidence observed between non-
adjacent symbols when determining which edge to traverse next.

3.3 H as a probabilistically weighted graph
We may take advantage of the additional information available in H
and build upon the graph G. Rather than directly setting the edge
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weights to values from H, we define a formula to weight edges based
on the support of pairs between a path of visited nodes and any poten-
tial next node. That is, a decision to move to a symbol at position i + 1
is informed not only by observations in H supporting (i, i + 1), but also
the non-adjacent observations (i—1,i+ 1), (i—2,i+ 1), and so on.

Here, we formalize a Bayesian probabilistic framework to deter-
mine the edge weights in G, based on a path of already visited nodes.
We define the probability of selecting v;,1, conditioned on the path
observed so far, as:

P(Z/H'[ | 1/1,1/2,...71/,’,1,1/,‘)
X P(vl,vz,...,ui,uiﬂ)
=P |v2...vig1) x P2, .. vig1)
= P(IM ‘ l/z...l/,‘+1) X P(Uz ‘ l/3.4.1/,’+1) X P(Z/3,..Al/,'+1)
=P |v2. o) x Pz [ w3 vi1) x - x P(vicy | vj,vi41)
xP i | vig1) x Pvig1).
“)

Clearly, evaluating the equation becomes more computationally
expensive and risks compounding estimation errors as the path
length increases. To construct a path from vy .. .v,, the upper bound
for the number of operations will be |Z|x 7 with calculations
becoming increasingly complex as i increases. We can reduce com-
plexity with two assumptions: (i) conditional independence between
variants and (ii) one can limit the number of elements in the prior
path without loss of accuracy because the reads providing this co-
occurrence support are limited in length. This simplifies our previ-
ous equation as we only need to consider the pairwise appearances
of each v; encountered thus far against v;, 1; and limit the number of
variants to consider, from the current position in the path i, back
some small and sensible number of steps L:

10g 10(P(Ui+l | VieLy«-+ 3y Vi-2,Vi-1, Vi))

L-1
~ log10(P(vis1)) + Y logio(P(viy | vis1))- (5)
1=0

As a minor implementation detail, to overcome inaccuracies
encountered through floating point error when performing mathem-
atical operations on very small fractional values, we provide these
definitions with log probabilities instead. We define L as the ‘look-
back’ size, the number of variants of the current path to consider
when selecting v;1.

We use H to estimate the marginal and conditional probabilities.
Equation 6 provides an estimate for the marginal distribution of a
symbol B appearing at position j. As a minor implementation detail,
we expand our alphabet X to include a dummy symbol ¢f. When
constructing H, the last SNV y; on a read , is automatically linked
to J;4q (. H[y, &, j, j+ 1] is incremented). This allows the span
between j and j+ 1 to be calculated even in the case where j is the
last observed position on a read.

_ Number of reads with symbol fat position j

Number of reads spanning position j

_ SeesHIB it ©
Zyez Zﬁe): H[V’ 57 i> j+ 1}

Equation 7 provides an estimate for the conditional distribution of
symbol « appearing at position i given that § was observed at position
j. To avoid the potential of dividing by 0 in cases where a suitable read
spanning 7 and v; = 8 does not exist, we apply Laplace smoothing, add-
ing one dummy read that will provide support for each possible pair of
SNV symbols (including ones that were not observed).

(vi=o | vj=p)

14+ Number of reads featuringo at 7 and f at j

(v =$)

~Variants at i+ Number of reads spanning 7 featuring symbol f at j
_ 1+H[O{, Bs i7 l]
{7 | H[y, a7i,i+1]>O,y€27062}|+Z.}.EZH[y,ﬁ,i,j]4

7

4 Algorithm
4.1 A greedy graph traversal algorithm for local MIH

We have formulated the above ideas into an algorithm for finding
solutions to local MIH. Here, we interpret the problem of MIH as a
search problem rather than an optimization problem. Unlike Lancia
and Lippert’s algorithms where changing or removing evidence from
the SNP matrix formed the solution to SIH, the method we intro-
duce will use the pairwise SNV co-occurrence matrix (H) as a data
structure to calculate the probabilities of edge traversals in the
graph. Our algorithm traverses the haplotype space represented by
the graph G in a greedy manner, selecting the edge with the highest
likelihood (given the path traversed so far) in order to recover the
highest likelihood haplotypes. The core of the algorithm is as
follows:

1. Given cg[i :j], the location of a feature of interest (f) in the de
novo assembly, parse the read alignments (A,j;;;) and construct
the pairwise SNV co-occurrence matrix H

2. Initialise a haplotype / =[], i = 0 and assign L to be the mean
number of SNVs per read

3. Representing H as a graph G;

* Query for the available edges from current position 7, to the
next position 7 + 1

* Calculate the probabilities for each available edge using
Equation 5, given I;[z —L:

* Traverse the most likely edge and append the new node to h,
increment i; however, if there are no edges that can be trav-
ersed, terminate the algorithm

e Ifi < |S.,| repeat step 3; else proceed to step 4

4. Report path b asa haplotype, and modify H to reduce the evi-
dence supporting h.

5. Repeat (3—4) until encountering a node with no edges that can be
traversed, or an additional stopping criterion has been reached.

4.2 Reweighting H to find multiple haplotypes

Given H, the algorithm will behave deterministically and return the
same haplotype for any traversal. However, the goal of local MIH is
to recover I': the set of haplotypes corresponding to feature £, rather
than just one haplotype. To recover more than just one haplotype,
our algorithm must modify H to remove evidence for that haplo-
type, in order to weight the calculation of edge probabilities in fa-
vour of alternative haplotypes on the next traversal. We achieve this
by using the smallest marginal distribution from path / as a ratio ()
to decrease the observations in H that directly support the path h.
The intuition is that the least supported node in » estimates the pro-
portion of evidence supporting the entire haplotype.

Jo=min({P(h[i) | i =1.IS.}). (8)

This ratio is used to decrease the evidence for all adjacent entries
in H that correspond to h.

H[b[i], bli+1], i, i+ 1] = H[b[i], bli+ 1], i, i+ 1]
— (Ax HIpl], bli+1], i, i+1]). (9)

After multiple iterations of path finding and subsequent reweight-
ing, elements in H will begin to approach 0, causing edges in the
graph to become unavailable for traversal. At this point the algorithm
will terminate. Alternatively, if this criterion is not reached after some
predefined number of iterations, the algorithm will terminate.

4.3 Using H to score and rank haplotypes
We can use the estimated probabilities to also score and rank the
haplotypes recovered. For a completed haplotype, /, we compute its
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likelihood based upon the sum of the marginal log probabilities for
each element of » given the state of H prior to reweighting.

=[1Pw=hl) o
i S HIb v, i i 1]
71‘:127622&2}[[77 o, 4, i+1]

To overcome the potential for floating point arithmetic error, we
calculate and report the log likelihood.

. n e Hl’;‘,}'; i, i+1
log 10(L(h)) = leogw (zi:; j@é!ﬁ[% a i+]11> .

5 Discussion

Like most common bioinformatics problems, haplotyping (STH dip-
loid, polyploid and now MIH) falls into the hardest class of compu-
tational problems (NP-hard), necessitating the use of heuristic
algorithms. Heuristics sacrifice an element of optimality in favour of
speed or feasibility and are an inevitable compromise in order to
find candidate solutions to a problem at all. Our graph traversal al-
gorithm is a greedy heuristic; selecting the highest likelihood edge to
a variant at position i + 1 given some path leading up to i. A greedy
traversal will pick the optimal option for the current fork in the
path, regardless of whether that will cause the search to be steered
away from paths with future branches that would lead to a better
path overall. Although a heuristic cannot guarantee optimality, our
approach of reweighting (Equation 9) before starting a new path
mitigates the problem of finding haplotypes from a local minima—
as changes in the evidence available will force selection of different
paths. The resulting haplotypes can be then be ranked by their
assigned likelihoods (Equation 10) in order to filter out less probable
haplotypes.

Similarly for any algorithm, data quality will also impact the op-
timality of generated solutions. The construction of the pairwise
SNV co-occurrence matrix H is based on alignment of sequenced
reads to a contig set generated by de novo assembly. Clearly, the
quality of the contigs is a factor for the read alignments, which in
turn affects the quality of the data inserted into H, which is why we
consider the local MIH problem. Restricting the problem to shorter
regions rather than full-length contigs significantly reduces the reli-
ance on assembly quality. Even so, misassemblies should be poorly
supported by the read alignments, indicating that the region in ques-
tion is not suitable for haplotype recovery because it does not actual-
ly exist. Of course, the alignments are critical to the quality of the
observations stored in H, and like any algorithm based on read evi-
dence, a lack of coverage is a lack of evidence and will constrain the
generation of solutions. Our approach requires every identified vari-
ant position to be linked to the next by at least one read (although
ideally more). The graph traversal algorithm will abort upon finding
a ‘hole’ in the graph—a position i where there are no outgoing edges
to reach a new variant at position i + 1. In a case where variants are
sparse and the reads are too short to span them, the algorithm will
stop during the first traversal. In a case where the read coverage is
very low for a region under investigation, the algorithm will likely
stop after a small number of traversals, as successive rounds of
reweighting will quickly exhaust the little evidence available. In add-
ition, the transition probabilities should be robust to noisy or lower
quality reads where the noise is distributed non-uniformly, as errors
should be unsupported by the reads in aggregate, yielding small
numbers of observations in H that will not be chosen over more
well-supported transitions.

Our approach is a fair compromise, offering a sensible heuristic
that can run in reasonable time with reasonable resources, that should
find approximately optimal haplotype solutions for local MIH.

6 Conclusion

With recent technical advancements reducing the cost and complex-
ity of sequencing environmental samples researchers are turning
their attention to focus on the population-level variation within mi-
crobial communities. However, the field is hampered by a lack of
consensus in terminology. Segata recently analysed the terminology
used for metagenomic strains and for the diversity present in micro-
biomes (Segata, 2018). He discussed the difficulties and misunder-
standings that arise from a lack of strict definitions and states that it
is ‘crucial for this line of research to at least define practical and op-
erational definitions’ to address the open problem of characterizing
unknown genomes within the human microbiome. More recently,
Van Rossum et al. (2020) highlighted the ‘overwhelming number of
methods and terms to describe infraspecific variation’ in a review.
Their work provides much needed clarification to the terminology
for metagenomic analyses. Figure 2 in their article depicts a pro-
posed hierarchy of terms from species, through to sub-species, strain
and down to the individual genome level. Even though they have
provided copious terminology definitions, a formalization of the
haplotype in the context of a metagenome is still absent. Our work
clarifies further by providing a formal definition for the ‘metage-
nomic individual haplotype’.

We have defined the pairwise SNV co-occurrence matrix that
packs sequencing reads into a structure compatible with metage-
nomic haplotyping. Our SNV matrix can be used to build a graph,
reducing the problem of local MIH to that of recovering the highest
weighted paths from a graph. We provide a probabilistic framework
to weight the edges in this graph based on the path observed so far,
while also considering evidence from non-adjacent SNVs in the
underlying read data. We provide a free and open implementation
of this SNV matrix (Hansel) at github.com/samstudio8/hansel.

In addition, we propose a greedy solution to the problem of local
MIH, using a graph representation of H to traverse paths through a
graph to output haplotypes. Our algorithm requires no configur-
ation, has no user-facing parameters and requires no pre-processing
of reads, other than alignment. The haplotypes recovered with our
algorithm can be scored and ranked by their likelihood. We provide
a free and open implementation of this algorithm (Gretel) at github.-
com/samstudio8/gretel.

Our work extends the SIH problem introduced by Lancia et al.,
to define the MIH problem. We offer our data structure and algo-
rithm in the hope that they will form a foundation for future
approaches to haplotyping microbial communities.
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