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Abstract

Background: Computational modeling of Red Blood Cell (RBC) flow contributes
to the fundamental understanding of microhemodynamics and microcirculation.
In order to construct theoretical RBC models, experimental studies on single RBC
mechanics have presented a material description for RBC membranes based on
their membrane shear, bending and area moduli. These properties have been
directly employed in 3D continuum models of RBCs but practical flow analysis
with 3D models have been limited by their computationally expensive nature. As
such, various researchers have employed 2D models to efficiently and qualitatively
study microvessel flows. Currently, the representation of RBC dynamics using 2D
models is a limited methodology that breaks down at high shear rates due to
excessive and unrealistic stretching.

Methods: We propose a localized scaling of the 2D elastic moduli such that it
increases with RBC local membrane strain, thereby accounting for effects such as
the Poisson effect and membrane local area incompressibility lost in the 2D
simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was
achieved by comparing the predicted RBC deformation against the 3D model from
literature for the case of a single RBC in simple shear flow under various shear rates
(dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38%
Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1)
was then simulated with our proposed model and the popularly-employed 2D
neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model.

Results: The validation set indicated similar RBC deformation for both the 2D-LD and
the 3D models across the studied shear rates, highlighting the robustness of our model.
The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like
RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible
RBC deformations.

Conclusion: The ability of the 2D-LD model to limit RBC strain even at high shear rates
enables this proposed model to be employed in practical simulations of high shear rate
microfluidic flows such as blood separation channels.
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Introduction
The transport behavior of blood in microcirculatory flows can be characterized by

the mechanical response of the two major constituents of the blood mixture to the

fluidic stresses driving the bulk flow. The first major constituent of blood is

plasma, which under physiological conditions has Newtonian properties and a vis-

cosity similar to water. The second major component is the red blood cells (RBCs)

that make up about 35% to 45% of the systemic blood volume for an average indi-

vidual [1]. The RBC phase contributes significantly to the complex behavior of

blood in micro-flows, such as shear-thinning, the Fahraeus effect and the Fahraeus-

Lindqvist effect. Due to these significant contributions to blood microrheology, the

mechanical characteristics of RBCs have been studied extensively. The shape of the

RBC can be defined by a membrane that separates the inner fluid (cytoplasm) from

the suspending fluid (blood plasma). The most notable properties of the RBC mem-

brane are its hyperelastic and viscoelastic response to high shear stress, membrane

area incompressibility and the ability to recover its initial shape with the removal

of external stress [2,3].

In accordance with these properties, many previous studies [4-12] have been under-

taken to describe the mechanical behavior of RBCs in silico. In these studies, the

various numerical discretization techniques for the RBC model range from the

mesoscale approach with cytoskeletal network models [4,5] and particle method

models [6] to the macroscopic approach of viscoelastic spring network models [7,8],

finite element method (FEM) models [9] and the boundary integral method (BIM)

models [10]. With regards to the macroscopic RBC modeling approach, most previ-

ous studies have assumed either the neo-Hookean [10-13] or the Skalak constitutive

relations [3,14-16] to describe the non-linear stress-strain shear response of the

RBC membrane deformation. In general, the membrane shear response is considered

to be the most dominant deformation modality in the RBC membrane mechanical

response. Although 3D simulations based on the macroscopic RBC models have pre-

viously been performed, the usefulness of such 3D simulations may be very limited

due to the extremely high computational cost; consideration of the RBC interactions

(aggregation and disaggregation) in high hematocrit flows for a 3D simulation is not

feasible without employing sophisticated parallel computing techniques. Conse-

quently, many previous numerical studies have instead utilized 2D RBC models to

simulate physiological blood flows [6-8,13,17].

In the 2D modeling approach, the neo-Hookean and Skalak constitutive relations

have been reformulated for 2D by removing a principle strain direction from the

original 3D formulation [18]. However, employing the 2D formulations without

modifying the effective moduli can overpredict the extent of deformation in the

RBC membrane due to the disappearance of the Poisson’s effect contributed by the

second principle strain direction. Furthermore, one important membrane feature

that has been considered in the 3D simulation but not in the 2D simulation is the

surface area incompressibility of the RBC membrane attributed by its incompressible

lipid bilayer. Essentially, the extensional resistance of the RBC cross-section is not

entirely a result of the membrane’s shear resistance. Consequently, the significant

loss of these two deformation modalities in the 2D simulation severely limits the

accurate prediction of the RBC 2D cross-sectional profiles under complex flow
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conditions such as high shear rates, crowded cell-cell interactions under high he-

matocrits and multi-directional RBC strain. This inaccuracy has limited 2D studies

in the literature to the low flow regime models where shear rates are typically less

than 300 s-1 [7,8].

In the present study, we propose a modification of the 2D neo-Hookean relation to

compensate for the apparent softening of the RBC membrane in 2D. The modified

membrane model is coupled with the lattice Boltzmann method (LBM) flow solver

through the immersed boundary method (IBM) [19]. For the membrane model devel-

opment, a large deformation scaling coefficient is applied to the neo-Hookean mem-

brane model and its several complementary constitutive relations to introduce a strain

hardening effect on the RBC membrane at high strain rates.

Numerical model
Lattice Boltzmann method (LBM)

LBM simplifies the original Boltzmann equation by discretizing time, space and

momentum [20,21] through the employment of a lattice grid. Its mesoscopic nature

arises from the fact that it considers microscale kinetic conditions of the fluid par-

ticles in relation to the macroscopic variables such as continuum mass and mo-

mentum. In a 2D discretization of space, the microfluxes are quantified on the

square lattice in 9 directions under the D2Q9 approach [22]. The key concept of

the LBM approach is that the microstates in the mesosystem evolve as a result of

the macroscale (continuum) conditions and the evolution is conducted in key

stages known as the streaming and collision stages. To represent the statistical con-

tribution of the 9 directions, the objective quantifiers of the microstates are given

by the density distribution function in the LBM formulation, summation of the 9

density distribution functions at a lattice grid point gives the local fluid density of

the macroscopic continuum.

The LBM equation with a general body force term [23] is expressed as:

f i x→ þc→i Δt ; t þ Δt
� �

−f i x→; t
� �

¼ −
1
τ

h
f i x→; t
� �

−f eqi x→; t
� �i

þ ΔtBi ð1Þ

where f i x
→
; t

� �
is the density distribution function of the particles moving with lattice

velocity c→
i
at position x→ and time t, Δt is the lattice time step, τ is the relaxation time

and Bi is the body force term discretized in the 9 lattice directions denoted by the sub-

script i. In Eq. (1), left-hand side terms represent the streaming stage for the 9 density

distribution functions f denoted by the subscript i. The first right-hand side term repre-

sents the collision contribution to the distribution functions [24] whereby microstates

are disturbed from their equilibrium states which is given by the equilibrium density

distribution function f eqi x
→
; t

� �
:
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where u
→

is the continuum fluid velocity, ωi is the weight factor, taking the value of 4/9

for ω0, 1/9 for ω1-4, and 1/36 for ω5-8. The lattice speed of sound is given by the form
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where h is the lattice cell (space step) size. The second right-hand side

term, which is the aforementioned body force term, includes all the fluid-structure

interaction (FSI) forces between the suspending fluid and the RBC membrane. Calcula-

tion of the body force term is given as:

Bi ¼
 
1−

1
2τ

ωi

!
c
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i − u

→

c2s
þ c

→
i ⋅ u

→

c4s
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where F
→

f
is the total FSI body force acting on the lattice (fluid) grid node due to on-

membrane forces.

Lastly, the macroscopic constrains imposed on the lattice Boltzmann system through

continuum fluid density ρ and continuum velocity u→ can be obtained from the funda-

mental equivalency between the macrostate quantities and the summation of micro-

state quantities (conservation of mass and momentum):

ρ ¼
X

i
f if

; u→¼
X

i
f i c

→
i =ρþ 0:5F

→

f Δt
� �

=ρ ð4Þ

The validity of the LBM transport equation is well-established since the Navier-
Stokes equations can be derived from Eq. (1) through the Chapman-Enskog expansion

[25]:

∂ρ
∂t

þ ∇ ρ u
→

� �
¼ 0 ð5Þ

∂ u→

∂t
þ u

→ ⋅∇
� �

u
→¼ −

1
ρ
∇P þ ν∇2 u

→ ð6Þ

where v ¼ τ− 1
2

� �
c2sΔt and P ¼ c2s ρ.

Immersed boundary method (IBM)

The IBM [26] was employed in our simulation to account for the acceleration effect of

a moving boundary on the fluid through the application of a distributed force density

evaluated from the boundary’s constitutive laws. In this method, the fluid domain is

represented by an Eulerian mesh where the globally referenced coordinates of the

fluid grid point are given by x
→
. The RBC membrane boundary is represented by a

Lagrangian mesh with body-fixed coordinates s→ used for the membrane force cal-

culations. The globally referenced coordinate location of a node on the moving

membrane can be given by X
→

s
→
; t

� �
.

To satisfy the non-slip boundary condition between the membrane and the adjacent

fluid, the membrane inherits the same velocity u→f as the fluid. Since a Lagrangian

membrane mesh node does not always coincide perfectly with the Eulerian fluid grid

points, the membrane velocity u→m is interpolated from the neighborhood of fluid grid

points around the membrane node:

u
→
m ¼

X
f

u
→
f x

→
; t

� �
ϕf x

→
f −X

→

m

� �
ð7Þ
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where ϕf x
→
f −X

→

m

� �
is the interpolation function and subscripts m and f denote the

membrane node and fluid grid point indices, respectively. It is given by the discrete

delta function:

ϕf r→
� �

¼ 1

4h2
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πrx
2h

� �
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πry
2h

� �
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In the coupling stage of the IBM routine, the resulting node displacement in a de-
formation induces a reaction force X
→

m s→; t
� �

back onto the Eulerian fluid through the

spreading of a fluid force density F
→

f x→; t
� �

given by:

F
→

f x
→
; t

� �
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X
m

F
→

m s
→
; t

� �
ϕm x

→
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→

m
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where ϕm x
→
f −X

→

m

� �
is the spread function, given by the same discrete delta function in

Eq. (8).

The force density spreading and membrane node velocity interpolation are performed

on a 4h × 4h region [26]. To describe the different properties of blood plasma and

cytoplasm within the RBCs, an indicator field approach was employed to update the mov-

ing topology of the plasma domain and RBC interior cytoplasm domain at every time-

step. By utilizing our recently developed method (flood-fill method) [27], we have assigned

a viscosity of 6.0 and 1.2 cP to the cytoplasm and plasma respectively, thereby capturing

the viscoelastic response of the membrane deformation due to the RBC interior-exterior

viscosity ratio. The details of the flood-fill algorithm used to update the fluid properties

during the simulations can be found in our earlier work [27].

RBC model

The shape of the RBC is maintained by four main deformation modalities which govern

the mechanics of the membrane. Figure 1 summarizes all the internal forces considered
Figure 1 Schematic diagram of the 3 types of membrane forces implemented in the RBC model.
(a) Extensional force which restricts the elongation of the RBC perimeter. (b) Bending force which controls
the local curvature of the RBC. (c) Dilation force which maintains the RBC internal area.
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in the RBC membrane for our 2D model. The RBC circumference is discretized into a

Lagrangian mesh with several membrane nodes connected by non-linear spring seg-

ments. The internal forces considered for the RBC model are the membrane shear,

bending and RBC volume conservation forces.

Membrane in-plane shear

The constitutive shear behavior of the RBC membrane is non-linear and exhibits a de-

gree of strain-hardening. Under the 2D neo-Hookean model formulation [27-29], the

membrane shearing stress-strain relation is linear in the small deformation range and

non-linear in the large deformation range as shown in Eq. (10):

τ ¼ ES

λ3=2
λ3−1
� �

whereλ ¼ lm
l0

ð10Þ

where Es is the shear elastic modulus of the membrane and λ is the stretch ratio on

the local membrane segment given by the ratio of the current membrane segment

length lm over the initial membrane segment length l0. The shear elastic modulus in

this study is set at 6 × 10-3 dyn cm-1, which is within the physiological range for RBC

elastic properties [30].

As discussed earlier, the limitation of applying the 2D neo-Hookean model is the un-

restricted stretching of membrane perimeter (circumference). Previous studies [31,32]

have shown that use of the neo-Hookean model alone is unable to restrict the mem-

brane surface area changes in 3D capsules from exceeding 7.8% at shear rates above

300 s-1. Conversely, the changes in global RBC membrane surface area should be less

than 5% under physiological conditions due to the incompressibility of the lipid bilayer

in the membrane [31]. The stretching of the RBC membrane is expected to be overpre-

dicted for the case of 2D simulations where the extension of a 1D surface (line) is unre-

stricted due to the lack of the Poisson’s effect from the second principle strain

direction.

In the present study, a 2D large deformation (LD) neo-Hookean model is pro-

posed to account for membrane area incompressibility observed in experimental

and 3D simulation studies and to also compensate for the lack of the dilatory re-

striction. The neo-Hookean model for 2D capsules is therefore modified by the

large deformation scaling coefficient α, which is a function of the local RBC mem-

brane stretch ratio λ. The 2D-LD neo-Hookean model developed in this study can

be presented as follows:

τ ¼ ES

λ3=2
λ3−1
� �

α λð Þ ð11Þ

where α(λ) is given by:

α λð Þ ¼ 1þ DLD e
λβLD−e

βLD
� �

ð12Þ

where DLD and βLD are constants. It is of note that the value of α from Eq. (12) ap-

proaches unity at very low strains and Eq. (11) reverts back to its original form in Eq.

(10) under such conditions.
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Membrane bending

To control the curvature of the RBC, a bending force is implemented on the RBC

membrane as follows:

Tb κð Þ ¼ Eb κ−κ0ð Þα λð Þ ð13Þ

where Eb is the bending modulus of the RBC membrane, κ is the current membrane

curvature and κ is the spontaneous curvature of the un-deformed RBC. The bending

force is similarly scaled by the large deformation coefficient α presented in Eq. (12).

The scaling of the membrane flexural resistance is necessary to prevent membrane

buckling under high compression which instigates numerical instabilities.

Cytoplasmic volume conservation

As the membrane shear and bending models only consider the surface of the RBC

membrane, the RBC internal volume (internal area in 2D) is not implicitly conserved;

since the bulk of cytoplasm in an RBC does not exit its membrane, the internal volume

conservation needs to be enforced in the deformation dynamics of the membrane.

Hence, an interior pressure force pint is introduced to act on the RBC membrane,

thereby strictly imposing the conservation of the RBC internal volume and mass. The

pressure penalty model for a 2D capsule can be expressed as follows:

pint ¼ kp 1−A=Aref
� �

α λCð ÞwhereλC ¼ LC
L0

ð14Þ

where kp is the incompressibility coefficient and the argument λC is the RBC perimeter

extension ratio given by ratio of the current RBC circumference LC over the initial cir-

cumference of the circular RBC L0. A is the internal area of the deformed RBC, and Aref

is the initial internal area of the RBC. The internal area of the RBC is calculated using

Green’s theorem:

A ¼
Z
C

xmdym−ymdxm ð15Þ

where xm and ym are the coordinates of the points on the RBC membrane curve C.

By taking a sufficiently large incompressibility coefficient kp and by considering the

growing restriction under large deformation using the α(λC) term, we can engage a suf-

ficiently large internal pressure pint to maintain the constant RBC size in the simula-

tion. The maintenance of a constant RBC area is a necessary constraint in order to

satisfy the conservation of cytoplasmic mass in the channel flow. Accordingly, the cyto-

plasmic mass is not allowed to arbitrarily swell or disappear from the movement of the

RBC membrane. Consequently, by including the cytoplasmic conservation in our

model, the RBC area and 2D hematocrit in the channel can be maintained at a constant

value throughout the entire simulation.

RBC-RBC interaction

Blood microrheology can be significantly affected by the cell-to-cell interactions occur-

ring within the carrying vessel. RBCs in physiological flows can aggregate due to the

presence of large molecules such as fibrinogen, this attraction between aggregating cells

typically occurs over the sub-micron to nano length-scales. Conversely, RBCs can repel
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one another when brought within interacting distance of the glycolayx due to steric

hindrance and repulsion between like negative charges on the RBC membranes. In the

present study, the depletion theory is employed to describe the aggregation and repul-

sion between the RBC membranes [33]. The total interaction energy φ can be

expressed using the Morse-type potential energy function [34]:

ϕ rð Þ ¼ De e2β r0−rð Þ−2eβ r0−rð Þ
h i

ð16Þ

where r [μm] is the separation distance between the pairing membrane nodes and r0
[μm] is the zero force distance specified in the model. De [μJ μm

-2] is the surface energy

and β [μm-1] is the scaling factor that determines the rate of interaction energy decay

with distance. In this study, r0, β and De were set with the values of 0.49, 3.84 and

1.3 × 10-7 respectively as reported in previous studies [27,35]. The total interaction

force between the membrane nodes is expressed as the negative derivative of the inter-

action potential from Eq. (16):

Fagg rð Þ ¼ −
∂φ
∂r

α rð Þ ¼ 2βDe e2β r0−rð Þ−eβ r0−rð Þ
h i

α rð Þ; where α rð Þ ¼ 1; r > r0
α λCð Þ; r≤r0

�
ð17Þ

In Eq. (17), a negative Fαgg value when r > r0 indicates an aggregating (attraction)

force while a positive value when r ≥ r0 represents a repulsion force. Additionally, the

LD coefficient scales only the repulsion force between pairing RBC membranes to pre-

vent cell to cell overlap from the increase in internal forces from the shear, bending

and dilatory modalities.

The interaction between RBCs as dictated by Eqs. (16) and (17) is illustrated in

Figure 2. A querying region is defined around every RBC membrane node to locate

the nearest membrane node on the neighboring RBC for the paired interaction. When

the distance between the paired membrane nodes is less than r0, the node-pair experi-

ences a repulsion force. However, when the distance between the two nodes is within

the R to r0 range, the node-pair experiences an attraction force.

Simulation setup

We have performed two sets of simulations: 1) a single cell in a simple shear flow to

validate our large deformation (2D-LD) model and 2) multiple cells in a channel flow.

In the single cell study, a velocity field of u = ky is imposed where the strain rate k can

be obtained by the simple relation k = U/Y. Y is the half-height of the simulation

domain and U is the maximum magnitude of the velocity at the top and bottom of the

simulation domain as presented in Figure 3. The deformation of the capsule is de-

scribed by the Taylor deformation index Dxy which is given by:

Dxy ¼ L−B
Lþ B

ð18Þ

where L is the major diameter of the RBC and B is the minor diameter as shown in

Figure 3. Notably, this characterization of the RBC deformation only works for RBCs

that adopt a 2D ellipse profile and the value of Dxy is highly sensitive to the major

and minor diameters at low deformation states.



Figure 2 Schematic diagram of an RBC membrane node with the two regions of interest. Beyond
the active distance R, the interaction force decays to zero.
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In our multi-cell channel flow simulations, we highlight the efficacy of the 2D-LD

model for predicting RBC deformation under moderate to high shear rates by compar-

ing its deformation result against the 2D neo-Hookean model. Furthermore, we investi-

gated the importance of the scaling relationship for the strain-hardening between the

four deformation modalities acting on the RBC membrane. To achieve these compara-

tive investigations, we utilized three sets of conditions that have been summarized in

Table 1. Case I represents the original neo-Hookean model in 2D since the LD scaling
Figure 3 Schematic illustration of a simple shear flow condition on the suspended circular RBC
(left) and an elliptical shape of the deformed RBC (right).



Table 1 Multi-cell channel flow simulations

Case LD scaling applied

Shear Bending Vol. Cell-cell

conservation interaction

I X X X X

II √ X X X

III √ √ √ √
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coefficient was not implemented to any constitutive model. In Case II, the LD scaling

coefficient was only applied to the membrane shear constitution. This approach is simi-

lar in concept to earlier studies where the non-linear stiffening behavior is not consid-

ered for the membrane bending and cell-to-cell interactions [18]. Finally, Case III

represents the full 2D-LD model whereby the LD scaling coefficient was applied to all

four RBC mechanical constitutions.

In the initial condition, twelve circular RBCs were suspended in a periodic arrange-

ment inside a channel of 80 μm by 20 μm to achieve a physiological hematocrit level

(38%). The circular RBC cross-sectional profile was chosen for simulation as this 2D

profile represents the most extreme shearing orientation for the RBCs in a narrow

channel. Pressure boundary conditions were prescribed for the pressure-driven flow to

obtain the pseudoshear rates (mean velocity/channel width) of 50, 150, and 500 s-1 for

each of the three cases. Periodic translations were implemented on the RBCs at the in-

let and outlets such that RBCs leaving the simulation domain re-enter from the inlet,

thereby maintaining the same number of 12 RBCs for the entirety of the simulation.

Results and discussion
2D large deformation (2D-LD) model validation

To characterize the deformation of the 2D RBC in relation to the shear condition,

the dimensionless shear rate G was used. G provides a normalized indication of the

stress condition on the cell by comparing the estimated fluidic shear stress applied

on the RBC membrane (numerator) to the inherent elastic property of the mem-

brane (denominator) [12]:

G ¼ μka
Es

ð19Þ

where μ is the dynamic fluid viscosity, k is the shear rate, and a is the equivalent radius

of the RBC. Breyiannis and Pozrikidis [11] have compared the deformation of 2D soli-

tary capsules against the deformation of 3D spherical capsules and have reported a

good correlation. They established a Dxy correspondence between the G values for cir-

cular capsules and 3D spherical capsules by using their cross-sectional profiles. Conse-

quently, the empirical equation relating the 3D G to 2D G was reported to be:

G2D ¼ −0:008417þ 0:45073G3D þ 0:75662G2
3D ð20Þ

Based on this relation, we have validated our 2D capsule deformation results with the

3D spherical capsule deformation reported in a previous study by Eggleton and Popel

[31]. Figure 4 shows the results of the validation. Comparing the Dxy values obtained

for the dimensionless shear rates G of 0.05, 0.1, 0.2 and 0.5, we observed a reasonable



Figure 4 Validation of the LD neo-Hookean (2D-LD) model on a circular capsule against the 3D
spherical capsule results [31].

Ye et al. Theoretical Biology and Medical Modelling 2014, 11:19 Page 11 of 21
http://www.tbiomed.com/content/11/1/19
correspondence between our 2D results and the 3D model results of Eggelton and

Popel. While the discrepancy is close to 50% at the lowest shear rate, the 2D-LD model

can sufficiently limit the RBC deformation to agree with the 3D model data at higher

shear rates. It is likely that the low shear rate discrepancy arises as a result of Eq. (20)

presenting non-sensible G values for the 2D equivalent at very low shears. For example,

conversion of the 3D G at a value of 0.01 using Eq. (20) results in a 2D G value

of -0.00383. Thus, this conversion may not be accurate under very low shear conditions.

RBC deformation in a multi-cell channel flow

While the Taylor deformation index has been used to describe the deformation of a sin-

gle cell in simple shear flow, it cannot be used to represent the deformations of the

multiple cells in a channel flow since the non-uniform strain rate in a channel flow

produces eccentric deformations in the RBCs. Consequently, the determination of the

major and minor axes for the eccentric-ellipse is subjective and prone to various inter-

pretations. Hence, we propose the use of the cell perimeter to calculate the RBC mem-

brane circumferential strain ε and the earlier introduced perimeter extension ratio λC
to describe the overall deformation of the cells in the channel flow; ε is given by:

ε ¼ λC−1 ¼
X lm

L0

� 	
−1 ð21Þ

Model comparison, 2D-LD against 2D-neo-Hookean
A comparison of the predicted RBC deformation between the three cases demonstrat-

ing the efficacy of the 2D-LD model is shown in Figure 5. The RBC deformation was

quantified by taking the ensemble average of the 12 cells’ perimeter extension ratio λC.

At 50 s-1, there was no statistical difference among the three cases (λC = 1.049 ± 0.013

for Case I, 1.048 ± 0.002 for Case II, and 1.044 ± 0.043 for Case III). However, at 150 s-1,

there was a ~13% difference (P < 0.001) in the average extension between Case I

(1.225 ± 0.070) and Case III (1.083 ± 0.033), but no significant difference between Case II

(1.088 ± 0.037) and Case III. Similarly at 500 s-1, there was a ~135% difference (P < 0.001)

between Case I (2.688 ± 0.835) and Case III (1.125 ± 0.040), but no statistical difference

between Case II (1.125 ± 0.031) and Case III. The pronounced difference in perimeter

extension between Case I and the other two cases was expected since the LD model

imposes a larger restrictive force on the membrane when it stretches beyond a



Figure 5 Comparison of the perimeter extension ratio λC with varying degrees of the LD scaling
coefficient application in Cases I, II and III. *P < 0.001
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stipulated limit. Thus, even in a very high shear condition of 500 s-1, the RBC perim-

eter does not extend by more than 12% of the original length for the 2D-LD model in

Case III whereas Case I’s RBCs have stretched in length by more than two times of

their original perimeter. Figure 6 shows the deformation profiles of the RBCs for

Case I – III in the channel flow at a particular instant in time. As observed in

Figure 6a, all three cases were initialized from the same symmetrical arrangement but

the RBC flow developed differently with time (Figures 6b–d). Due to the over-extension

of RBCs in the simulation, the RBC flow for Case I never reached a developed flow

condition for the simulation conducted at the highest shear condition of 500 s-1

(Figure 6b). Subsequently, simulation failure occurred before the RBC flow structure

could break its initial symmetric arrangement which typically occurs within 0.1 s of

RBC flow as observed for Cases II and III in Figures 6c and d. Interestingly, the de-

formation profiles of cells observed in Case I for Figure 6b indicate that the extensive

stretching of RBCs into “noodle-like” profiles occurs predominately for cells located

in the high shear rate regions near the channel walls. From this evaluation of Case I’s

result, it can be concluded that the 2D neo-Hookean model has a limitation in per-

forming RBCs flows at high shear rates typical to microfluidic devices (> 1000 s-1).

Through a comparative investigation of multi-cell simulations with (Cases II and III)

and without (Case I) LD augmentation, we have established that LD augmentation is

required for 2D RBC models to maintain physiological 2D RBC deformations, particu-

larly for the cells travelling in close proximity to or impinged against the channel wall

(see Figure 6b). A very recent study [13] on 2D multiple RBC flow simulations in a

bifurcation also showed this limitation of the 2D RBC deformation simulation. They

have illustrated that even at 100 s-1, non-physiologically over-stretched RBC shapes

(“noodles”) were obtained in the model simulation due to wall impingement and

multi-directional strain near flow bifurcation corners, similar “noodling” of RBCs

in vivo has not been reported.

While the presentation of deformation data in Figure 5 indicates that the overall per-

imeter remains statistically the same in Case II and Case III, the shapes of the RBCs
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were considerably different in these two LD-applied cases as evidenced by the images

in Figures 6c and d. This may be due to the lack of strain-hardening on the remaining

three constitutive models for the RBCs in Case II (as summarized in Table 1). The im-

plication of this omission in Case II will be discussed in the following subsection.

Significance of bending resistance and contact forces for large deformations

As mentioned earlier, our RBC model has a bending resistance modality that maintains

the curvature of the RBC membrane. In Case II, the LD scaling coefficient was applied

only to the membrane shearing resistance, while the cell-to-cell interaction forces and

the bending resistance were left un-scaled in the simulation model. This means that while

the constitutive bending behavior of the RBC and contact mechanics between cells are
Figure 6 Instantaneous snapshots of the RBC deformation profiles for the three cases under the
highest pseudoshear rate of 500 s-1. (a) Initial arrangement of RBCs for all three cases. (b) Simulated
result from Case I. This case presents pronounced RBC stretching under the high shear condition whereby
cells near the wall undergo “noodle-like” transformations. It should be noted that the simulation failed at
t = 0.0025 s due to the non-physiological deformation of RBCs near the channel wall. (c) and (d) Simulated
results from Case II and Case III. Case II exhibits higher incidences of “pinched” RBCs with sharp-edged
profiles than those of Case III, thus demonstrating the effect of the bending treatment for large deformation
applied in Case III but absent in Case II.
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included in Case II’s model, their influence on the RBC membrane deformation diminishes

with the increasing strain since only the shear component is augmented for strain-

hardening. Eventually, at large deformation conditions, shear forces dominate the en-

tire deformation behavior of the membrane in Case II. From the comparison between

the mechanical constitutions in Case II and Case III, we can observe in Figures 6c

and d that simply applying strain-hardening for the membrane shear stiffness alone

without scaling the other constitutive moduli might generate an imbalance in the in-

ternal energies of the membrane that leads to physical instability of the membrane

deformation. Accordingly, the results from Case II indicate a regular occurrence of

the membrane buckling phenomenon. Figure 7 shows the instantaneous snapshots of

the RBC membrane in the various stages of buckling. The increasing force vectors on

the RBC membrane acting in an adverse direction leads to a compounding instability.

This manifests as a twisting and apparent “pinching” of the membrane, leading to

simulation failure. The cause of this instability is the high compressive forces that

build up in the progressively shortened membrane segments in the pinched region of

the membrane. This is portrayed in Figure 8 where the resultant force of two com-

pressed segments calculated from the membrane shear model is exerted in the direc-

tion opposite to the spontaneous curvature. Without scaling the bending force to

counter this large shear force, the membrane is allowed to buckle into non-

physiological shapes with pinched areas of sharp curvature. Additionally, as the RBC-

to-RBC interaction forces are not scaled, RBCs can impinge into one another due to

insufficient repulsion, thus resulting in pairing membranes penetrating and over-

lapping each other. Conversely, when the three other constitutive models were

scaled with the LD scaling coefficient as done so for the simulations performed in

Case III, these two scenarios for membrane instability were successfully avoided.
Figure 7 Instantaneous profiles of the RBC membrane buckling under channel flow conditions. The
progression of the membrane pinching is shown in sequential frames as indicated by the dimensionless
time kt. θ denotes the time at which the onset of pinching was observed. The bottom panel of images
provide a zoomed-in view of the pinched region where an increasing force in the adverse direction
contributes to the growing instability that finally leads to membrane buckling and twisting.



Figure 8 Schematic diagram of the internal forces in the membrane segments that gives rise to a
resultant force at each membrane node. Under a combination of high compression and sharp curvatures
between two membrane segments, the resulting force on the node shared between the segments can
have a very large normal component, leading to an unrestricted “pinching” of the RBC membrane.
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The comparison of RBC shapes and the differences in membrane curvature stability

between the models implemented in Case II and III therefore highlight a major ad-

vantage of the present 2D-LD model. Unlike other non-linear models for large mem-

brane deformation that only augment the membrane shear response, the large

deformation coefficient α used in the 2D-LD model is a simple multiplicative oper-

ator that can be used to apply the same order of strain hardening to all elastic moduli

involved in the RBC membrane’s constitutive response to deformation.

Cell-free layer width and relative apparent viscosity

The cell-free layer (CFL) and its role in influencing the apparent viscosity of blood is

an important characteristic in quantifying microvessel and microchannel flows. Due to

the shear-induced migration of RBCs towards the center of the vessel, the formation of

a CFL along the vessel wall significantly lowers the apparent viscosity of blood in

microvessel flows when compared against the uniform bulk viscosity of blood [1]. Ac-

cordingly, we validated our channel flow simulations by comparing the CFL width and

the apparent viscosity predictions of our 2D-LD model in Case III (for the pseudoshear

rate of 50 s-1) against the earlier work of Zhang and coworkers [29,30]. Our predicted

CFL width was ~26% of the total channel width which is in good agreement with the

value (27% – 32% at 58 s-1) reported in their study [29] where the simulation condition

was similar to ours.

The apparent viscosity μapp of blood in our channel flow simulations was calculated

using the Poiseuille formula:

μapp ¼
ΔPH3

12QLchannel
ð22Þ

where ΔP is the pressure difference applied across the channel length Lchannel, H is the

channel width and Q is the resulting flow rate. For comparison against the literature,

the apparent viscosity was normalized by the plasma viscosity μplasma to provide the

relative apparent viscosity μrel:

μrel ¼
μapp

μplasma
ð23Þ
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Our result (1.10) falls within the range of the simulated results by Zhang and col-

leagues: 1.05 in a 20-μm channel [30] and 1.29 in a 12-μm channel [29]. Although the

comparisons of the CFL width and the relative apparent viscosity indicate reasonable

agreement between our results and theirs, it should be noted that circular RBC profiles

were considered for our 2D flow model while they have represented the 2D flow of

RBCs using biconcave RBC profiles. Subsequently, even though we have a higher 2D

hematocrit of 38% in comparison to their 30.5% [29], our actual number of RBCs in

the simulation is much fewer (12 circular RBCs vs. 27 biconcave RBCs). As a result of

this, it may be limited to directly compare our relative apparent viscosity and cell-free

layer width with the values reported by them.

It is of note that the CFL width and relative apparent viscosity are dependent on

rheological factors such as the pseudoshear rate, hematocrit and channel width. In the

present study, we have considered only a single channel configuration with a width of

20 μm and a hematocrit of 38% under various pseudoshear rates. Hence, our analysis

of the RBC dynamics in terms of the CFL width, apparent viscosity and RBC deform-

ation may be limited to the present channel configuration. In accordance with the

Fahraeus-Lindqvist effect, the CFL width as a fraction of the channel width (fractional

CFL width) is expected to increase with a reduction in channel width as reported in

the earlier work by Kim and et al. [36]. With regards to the RBC deformation, when

the channel width is increased, the corresponding decrease in the fractional CFL width

would result in an increase in the RBC perimeter extension ratio λC. This is in accord-

ance with the result shown in Figure 9 where the RBC deformation increases when the

distance between the RBC and the channel wall is reduced.

RBC stress and strain

A number of previous studies [1,28,37-39] have used pseudoshear rate in replacement

of the actual shear rate to quantify the shear condition on RBCs in microvessel flows.

This assumption does not hold since RBCs travelling near the channel wall experience
Figure 9 Relation between cell perimeter extension ratio λC and its transverse location rchannel in
the channel. RBCs further away from the channel centerline undergo larger deformations due to the
higher shear rates near the channel walls.
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higher shear stress (strain) than RBCs located in the center of the channel. Conse-

quently, evaluation of G using the pseudoshear rate for k in Eq. (19) could be a poor

representation of the actual shear condition applied on the RBCs in a channel flow.

Therefore, in this study, we introduce a new dimensionless shear rate parameter G* to

provide a better approximation of the local shear condition in the channel flow as

follows:

G� r→min

� �
¼

τmax r
→
min

� �
LC

Es
ð24Þ

where τmax is the time-averaged maximum shear stress on the RBC membrane and it is

a function of the the minimum RBC membrane to channel wall distance r
→
min.τmax was

obtained by recording the maximum shear stress exerted on the RBC membrane for

each successive time-step and thereafter performing a time-averaging calculation on

the maximum stress over the period of analysis. In the present study, we have analyzed

the RBC mechanics over 10 material transit cycles. The material transit time represents

the average time it takes for a cell entering the simulation domain to exit at the channel

outlet and this was estimated using the bulk flow velocity and the channel length. Since

both τmax and the cell perimeter LC are dependent on the RBC trajectory in the chan-

nel, G* can provide a closer approximation of the spatially and temporally varying shear

condition than the traditional G for a channel flow study.

With this G*, the deformation state of RBCs in a general flow condition can be char-

acterized and compared by using the relation between G* and the membrane circum-

ferential strain ε. To prove the validity of the G* and membrane strain relation, both

parameters were calculated for the two different simulation sets performed in this

study. In Figure 10, the relation between the two parameters is compared for the

single-cell in simple shear and the multi-cells in channel flow conditions. An
Figure 10 Relation between cell circumferential strain ε and the local dimensionless shear rate G*.
A nonlinear regression fit of results for the single cell in simple shear flow and multi-cells in channel flow
indicates the validity of the ε and G* characterizations for general shearing conditions on the 2D RBC

profile ε ¼ −0:1771e−0:0611G� þ 0:1771; R2Single ¼ 0:996 andR2Multi ¼ 0:939
� �

.
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exponential curve (ε = – 0.1771e-0.0611G* + 0.1771) was fitted by non-linear regression

to both the single cell deformation results and multi-cell deformation results to ob-

tain the empirical expression for circumferential strain against varying G*. The re-

gression curve produced high R2 values of 0.996 and 0.939 for the simple shear and

channel flow data sets respectively, indicating that the two different shear conditions

can be described by the same relation between G* and ε. This implies that by using

G* and ε, we can relate the single-cell simple shear flow results to the multi-cell chan-

nel flow results.

On the other hand, using the original dimensionless shear rate G to relate between

the two sets of flow conditions demonstrates the limitation of the G parameter as a

universal tool for relating the applied shear to the RBC elastic resistance. RBCs in a

channel flow under the pseudoshear rate of 150 s-1 (G = 0.125) exhibited a wide range

of deformation ε (0.05 – 0.11) that is dependent on the cell location as seen in Figure 9

where the RBC perimeter extension ratio λC was plotted against RBC center of mass lo-

cation. Corresponding to this range of ε, the RBC in a simple shear flow exhibited simi-

lar values of 0.05 and 0.11 when the applied G was 0.2 and 1.0, respectively. Hence, it

can be concluded that while the stress-strain relation between G and ε is valid for the

simple shear flow, it is weak for the case of channel flows since a single value of G

presents multiple strain possibilities depending on the cell location in the channel

(Figure 9).

The case for using G* presented in Figure 10 to signify RBC stress-strain behavior be-

comes particularly favorable when we wish to provide a more accurate estimation of

shear stress acting on the RBC at high shear rates. Using Eq. (24), we can obtain τmax

acting on the RBC in experiments by obtaining circumferential strain ε and RBC per-

imeter Lc through imaging and measurement techniques and G* by reading off its cor-

responding value against ε in Figure 10. Therefore, Figure 10 and Eq. (24) can be used

to predict the maximum shear stress on an RBC for a given profile in the channel flow

for experimental studies where shear stress cannot be obtained through direct measure-

ment of the shear stress quantity. For our particular study, the maximum pseudoshear

rate considered was 500 s-1 for a channel of 20-μm width. The corresponding time-

averaged maximum shear stress on the RBCs in the flow was approximately 10 Pa

(G* = 47). This is well below the reported shear stress (300 Pa for 120 s of shear)

for RBC lysis [40] or even sub-hemolytic damage to the RBC membrane [41]. Hence,

even though strain hardening is expected of the RBC at shear rates > 500 s-1, this is by

no means suggestive of mechanical damage to the RBC.

Potential limitations of the 2D-LD model

One possible limitation of our 2D-LD model can arise from the chosen 2D RBC profile

for the channel flow simulation. Firstly, a similar simulation on the 2D biconcave RBC

profile may give a different set of results due to its higher bending and flexing capabil-

ity than the circular RBC. While the LD scaling model will not be different in form for

biconcave cells, a calibration of the model terms and coefficients would be required.

Furthermore, we have assumed that the cross-sectional area remains constant in the

2D plane of investigation. This is necessary for the 2D model to maintain the channel

hematocrit and to enforce the 2D conservation of mass. This model is therefore limited

to flow situations where 2D RBCs remain in the plane of observation. However, such
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flow conditions can easily be found in most microfluidic flows where the Reynolds

number is very low.

Additionally, our present 2D-LD model lacks the inclusion of the membrane vis-

cosity and its effect on the dynamic deformation behavior of RBCs. It is likely that

the membrane viscosity will affect the dynamic behavior of RBCs that are subjected

to ever-evolving shear rates due to the variation in their transverse location as they

travel along their respective trajectories within the channel. Membrane viscosity is

likely to delay the deformation response of RBCs to fluctuations in the shearing

condition as a result of the changes in RBC position and orientation. However, our

present model does include the effect of cytoplasmic viscosity (6.0 cP) and the

plasma viscosity (1.2 cP), and our earlier work [27] has shown that the inclusion of

the difference in viscosity between the two fluids can similarly delay the RBC mem-

brane deformation response.
Conclusion
In the present study, we have presented a 2D large deformation (2D-LD) model to aug-

ment the elastic moduli of the RBC membrane in the high shear rate flow regimes. The

efficacy of the model and the predictive accuracy of the resulting 2D deformation states

were tested on a single circular RBC profile under a simple shear condition and the re-

sults were found to be in good agreement with the 3D data. Furthermore, this study

highlights the importance of sufficiently scaling the various membrane mechanics

models to prevent numerical instabilities in the simulation. In our analysis of the stress-

strain relation for the membrane, we have also proposed a new dimensionless shear rate

term G* to generalize the shear condition on a RBC so as to predict the extent of deform-

ation regardless of flow conditions.

Therefore, our 2D-LD model can be applied to blood flows in practical microfluidic

studies involving channel bifurcations and cell mechanical partitioning [37] where high

and multi-direction strain can be applied on the RBCs at flow dividing locations. These

studies would need robust mechanical models to predict the RBC deformation without

incurring the high computational cost that is generally required for 3D simulations.

Thus, by utilizing our LD model, it would be possible to simulate a blood flow in a

microfluidic system, and such a model would enable us to optimize a microfluidic

channel structure for biomedical applications at relatively low computing cost.
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