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The proportion of genes in a 
functional category is linked to 
mass-specific metabolic rate and 
lifespan
Kazuhiro Takemoto & Yuko Kawakami

Metabolic rate and lifespan are important biological parameters that are studied in a wide range 
of research fields. They are known to correlate with body mass, but their association with gene 
(protein) functions is poorly understood. In this study, we collected data on the metabolic rate 
and lifespan of various organisms and investigated the relationship of these parameters with their 
genomes. We showed that the proportion of genes in a functional category, but not genome size, 
was correlated with mass-specific metabolic rate and maximal lifespan. In particular, the proportion 
of genes in oxic reactions (which occur in the presence of oxygen) was significantly associated with 
these two biological parameters. Additionally, we found that temperature, taxonomy, and mode-of-
life traits had little effect on the observed associations. Our findings emphasize the importance of 
considering the biological functions of genes when investigating the relationships between genome, 
metabolic rate, and lifespan. Moreover, this provides further insights into these relationships, and 
may be useful for estimating metabolic rate and lifespan in individuals and the ecosystem using a 
combination of body mass measurements and genomic data.

Metabolic processes are essential for physiological functions and maintaining homeostasis in living 
organisms1,2. Therefore, understanding the factors that determine metabolic processes is an important 
topic of scientific inquiry, not only for researchers in the field of fundamental biology but also in ecol-
ogy3,4 and medical research5. In particular, metabolic rate (especially respiratory rate) is an important 
physiological parameter for investigators in the fields of biology and ecology because it can be used to 
estimate, and therefore understand, energy metabolism, lifespan6,7, and animal space use8.

Previous studies have reported that metabolic rate strongly correlates with body mass; in particular, 
the relationship between metabolic rate B and body mass M approximately obeys a power law4,9: B ∝ Mα 
In general, α = 3/4 (such a scaling law is known as Kleiber’s law4,6,9,10); however, several previous studies 
suggest that Kleiber’s law may be not universal. For example, White and Seymour10 reported that met-
abolic rate is proportional to M2/3 in mammals, as predicted from the allometric scaling between body 
surface and body mass, when considering body temperature, digestive state, and phylogeny. Reich et al.11 
observed a linear relationship between the rate of respiratory metabolism and body mass (i.e., B ∝ M) 
in plants. Similarly, the mean mass-specific metabolic rates observed across life’s major domains12 also 
implies that B ∝ M.

According to the rate of living theory, which predicts that animals with a greater rate of metabolism 
should die faster6, body mass is expected to be an important factor in determining lifespan. Indeed, 
several previous studies report an association between lifespan, body mass, and metabolic rate6,7,9,13, 
although other factors (e.g., ecological and phylogenetic) may also influence lifespan14.
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Genomic information may also reflect metabolic rate because metabolic networks, which are expected 
to determine metabolic rate, are encoded in the genome1,2. In particular, metabolic rate is considered 
to be the consequence of many different biological reactions15 that involve proteins encoded by genes. 
However, several previous studies suggest that there is only a limited association between genomic infor-
mation and metabolic rate/lifespan. For example, Kozłowski et al.16 and Starostová et al.17 reported that 
mass-specific metabolic rate is affected by cellular mass rather than by genome size or C-value (i.e., the 
amount of DNA in pg) in eyelid geckos. This may be because genome size has a weak correlation with 
cellular mass13. Although genome size is likely to positively correlate with lifespan in birds18 and fish19, 
some skepticism exists regarding the importance of genome size in fish (or homeotherms)20. In short, 
the association of genome size with metabolic rate and lifespan is controversial and is yet to be proven 
conclusively.

While previous studies imply that genomic information cannot be used to accurately estimate met-
abolic rate and lifespan, these studies themselves have limitations. In particular, they focused only on 
genome size or C-value as a measure of genomic information. The genome encodes several types of 
biological function, and the relationship between the number of functional genes and genome size dif-
fers according to functional category (e.g., defined by the Gene Ontology21) and species domain22,23. 
Therefore, in this study, we hypothesized that specific functional categories determine metabolic rate 
and lifespan rather than genome size. For example, genes related to oxic reactions or oxic metabolism24,25 
(see also Methods), which are involved in processes that occur in the presence of oxygen, (hereinafter 
called oxic genes) may be useful for determining metabolic rate because they are expected to be involved 
in oxygen consumption.

Although the above previous studies mainly focus on C-value when considering genomic informa-
tion, several new technologies and high-throughput methods have generated a large amount of genomic 
data, and such data are collected in several databases in recent years. Thus, investigators have become to 
be able to evaluate the relationship between genomic information and biological features such as meta-
bolic rate and lifespan in more detail.

In general, such a relationship remains poorly understood. Therefore, here we investigated this rela-
tionship in more detail. Specifically, we collected data on metabolic rate and lifespan from published lit-
erature, selecting data from species for which a complete sequenced genome was available (see Methods). 
Using these data, we evaluated the usefulness of functional categories of genes for determining metabolic 
rate and lifespan.

Results
Genome size does not correlate with mass-specific metabolic rate. After the data collection 
and integration, we had obtained the genome, metabolic rate, and body mass data for 101 organisms, 
including 12 mammals, 9 protozoa, and 59 prokaryotes (see Methods and Supplementary Table S1).

A previous study17, Starostová et al. reported a limited effect of genome size, defined as the C-value, 
on mass-specific rate in eyelid geckos. However, this conclusion is limited to a specific family. Thus, we 
re-evaluated the correlation between genome size, defined as genome length (i.e., number of base pairs), 
and mass-specific metabolic rate (i.e., metabolic rate per body mass) in a wider range of species. Note 
that the definitions of genome size were different in our study and that of Starostová et al.17.

We found a negative correlation between genome size and mass-specific metabolic rate (Spearman’s 
rank correlation coefficient rs = –0.31, p = 0.0013) (Fig.  1). However, we observed a significant positive 
correlation between body mass and genome size (rs = 0.83, p < 2.2 × 10–16). It remains possible that this 
observed relationship is a spurious correlation because it is well known that mass-specific metabolic rate 
shows a negative correlation with body mass9,13, despite some criticism12, In fact, in our dataset, we also 
found that there was a negative correlation between them (rs = –0.42, p = 1.0 × 10–5). Especially, such a 
relationship between mass-specific rate q and body mass M is believed to follow a power law9,13: q ∝ M−β. 
Although β is expected to be 1/4 according to the Kleiber’s law4,6,9,10, a regression analysis (see Method) 
indicates that β is not zero but smaller than 1/4: β = 0.035 ± 0.008. This result is because of the fact that 
mean mass-specific metabolic rates are strikingly similar across life’s major domains12.

Additionally, we performed partial correlation analysis and found no correlation between genome size 
and mass-specific metabolic rate when body mass was kept constant (partial Spearman’s rank correlation 
coefficient rs

p = 0.076, p = 0.45). In contrast, a negative correlation was observed between mass-specific 
metabolic rate and body mass when genome size was kept constant (rs

p = –0.31, p = 0.0014).
This result implies a limited association between genome size and mass-specific metabolic rate, which 

provides evidential support for the findings of Starostová et al.17.
Temperature also affects metabolic rate4,15; therefore, we also considered temperature-corrected 

mass-specific metabolic rate (see Methods). In particular, we first evaluated the mass-specific metabolic 
rate at 25 °C (q25). Note that we only focused on approximately 80 organisms for which data on tempera-
ture was available (see Methods and Supplementary Table S1). We found no association between q25 and 
genome size both in a simple correlation analysis (rs = –0.051, p = 0.66) and partial correlation analysis 
(rs

p = 0.16, p = 0.16). However, we need to consider a lower temperature because the organisms used in 
this study were primarily prokaryotes (see Supplementary Table S1) In particular, a lot of prokaryotes 
show optimal growth temperatures lower than 25 °C26. Thus, we next evaluated mass-specific metabolic 
rate at 10 °C (q10) (see Methods). Again, we confirmed no correlation between q10 and genome size in a 
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simple correlation analysis (rs = –0.13, p = 0.25) and partial correlation analysis (rs
p = 0.13, p = 0.23). These 

results suggest that a limited association between genome size and mass-specific metabolic rate can be 
also concluded when considering the effect of temperature on metabolic rate.

Oxic genes are associated with mass-specific metabolic rate. As a simple measure of ‘func-
tional category’, we considered the proportion of genes in a functional category (i.e., the number genes in 
the category divided by the total number of genes or proteins)22,23. This measure is well used to evaluate 
the predominance of genes in a functional category (i.e., function) between gene sets of different sizes 
(organisms with different genome sizes, in this case), in the context of functional enrichment analysis27. 
Note that the use of the number of genes in a functional category or the total number of nucleotides of 
genes in the category is not suitable for comparing the predominance between organisms with different 
genome sizes because genome size influences these parameters.

We found a positive correlation between the proportion of oxic genes and mass-specific metabolic 
rate (rs = 0.52, p = 2.0 × 10–8) (Fig. 2). Because the proportion of oxic genes was also associated with body 
mass (rs = 0.55, p = 1.7 × 10–9), we performed a partial correlation analysis, correlating metabolic rate and 
the proportion of oxic genes while keeping body mass constant, and found a positive partial correlation 
(rs

p = 0.38, p = 4.3 × 10–5). Having removed the effect of the proportion of oxic genes, a negative trend was 
observed between metabolic rate and body mass; however, the partial correlation was not highly signif-
icant (rs

p = –0.19, p = 0.058). This result implies a limited effect of body size on mass-specific metabolic 
rate when considering the proportion of oxic genes in this dataset.

We also observed a positive correlation between the proportion of oxic genes and temperature-corrected 
mass-specific metabolic rate in both cases of 25 °C (rs = 0.37, p = 7.2 × 10–4) and 10 °C (rs = 0.37, p = 5.4 ×  
10–4). Furthermore, a positive correlation was found when the effect of body size was removed using par-
tial correlation analysis in both cases of 25 °C (rs

p = 0.30, p = 0.0054) and 10 °C (rs
p = 0.27, p = 0.011). This 

tendency was also observed when focusing only on prokaryotes, in both cases 25 °C (rs
p = 0.28, p = 0.029) 

and 10 °C (rs
p = 0.28, p = 0.027). In contrast, there was no significant correlation between metabolic rate 

and body mass when the proportion of oxic genes was kept constant, in both cases of 25 °C (rs
p = –0.072, 

p = 0.53) and 10 °C (rs
p = –0.13, p = 0.22).

However, this general finding may be biased by the organisms examined in this study, which were 
primarily prokaryotes (see Supplementary Table S1). For example, when focusing only on higher organ-
isms (i.e., mammals and birds), we found a negative correlation between mass-specific metabolic rate 
and body mass (rs

p = –0.96, p < 2.2 × 10–16) and a positive correlation between metabolic rate and the 
proportion of oxic genes (rs

p = 0.55, p = 0.0025). This finding suggests that there are some effect of taxon-
omy on the observed association between the proportion of oxic genes and mass-specific metabolic rate. 
However, in general, our results imply that oxic genes are associated with mass-specific metabolic rate, 
independent of body mass and temperature.

The association between other functional categories and metabolic rate. Other functional 
categories are probably associated with mass-specific metabolic rate. To explore these, we evaluated 
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Figure 1. Scatter plot of mass-specific metabolic rate versus genome size. Vertical and horizontal axes are 
on logarithmic and base-10 logarithmic scales, respectively. Symbol color indicates base-10 logarithmic body 
mass. The mass-specific rate negatively correlates with genome size (Spearman’s rank correlation coefficient 
rs = –0.31, and p = 0.0013); however, it has no association with genome size when body mass is kept constant 
(partial rank correlation coefficient rs

p = –0.31, p = 0.0014).
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Spearman’s rank correlations between the proportion of genes in functional categories, defined as a the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) BRITE Functional Hierarchy28 (see Methods), and 
mass-specific metabolic rate. Additionally, we used partial correlation analysis to evaluate the association 
between functional categories and metabolic rate when body mass was kept constant.

Table 1 shows functional categories correlated with mass-specific metabolic rates (p < 0.05, using the 
partial rank correlation test). According to the effect sizes (i.e., correlation coefficients), oxic metabolism 
was the best estimator of mass-specific metabolic rate.

Along with oxic metabolism, mass-specific metabolic rate was associated with other functional cate-
gories. In particular, the observed association with cell motility is related to metabolic rate because cell 
motility corresponds to energy consumption in the context of flagellar motility and actin cytoskeleton 
dynamics. In addition, the association with energy metabolism, in which adenosine triphosphate (ATP) 
is generated, is directly linked to metabolic rate because the efficient generation of ATP requires oxygen 
in aerobes. The observed association with membrane transport may be linked to the fact that a large 
part of standard metabolic costs are spent preserving ionic gradients in cell membranes16,29,30. In addi-
tion to this, this result may also support the membrane pacemaker hypothesis of metabolism31,32, which 
proposes fatty acid composition of membrane determines metabolic rate.

However, the associations with xenobiotic biodegradation and metabolism and biosynthesis of other 
secondary metabolites are more difficult to interpret. They could be explained by the concentration of 
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Figure 2. Scatter plot of the proportion of oxic genes versus mass-specific metabolic rate. Vertical 
axis is on a logarithmic scale. The solid line is a linear regression fit to the data. Symbol color indicates 
base-10 logarithmic body mass. Both simple rank correlation analysis (rs = 0.52, p = 2.0 × 10–8) and partial 
rank correlation analysis (rs

p = 0.38, p = 4.3 × 10–5), in which body mass is kept constant, indicate a positive 
association the proportion of oxic genes between the mass-specific rate.

Functional category rs rsp

Oxic metabolism 0.52 (p = 2.0 × 10–8) 0.38 (p = 4.3 × 10–5)

Cell motility 0.33 (p = 7.3 × 10–4) 0.35 (p = 2.7 × 10–4)

Xenobiotics biodegradation and metabolism 0.42 (p = 9.9 × 10–6) 0.27 (p = 0.0069)

Biosynthesis of other secondary metabolites 0.45 (p = 2.9 × 10–6) 0.23 (p = 0.020)

Energy metabolism 0.43 (p = 8.7 × 10–6) 0.20 (p = 0.043)

Membrane transport 0.42 (p = 1.1 × 10–5) 0.20 (p = 0.048)

Table 1.  Correlations between the proportion of genes in functional categories and mass-specific 
metabolic rate. Spearman’s rank correlation coefficient (rs) and partial (i.e., body mass-controlled) rank 
correlation coefficients (rs

p) are shown. The functional categories are displayed in descending order of rs
p. 

Parenthetic values indicate the p-values.
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oxic reactions in such peripheral metabolic pathways24,33; thus, these associations may be artifacts caused 
by the primary observed association between oxic metabolism and mass-specific metabolic rate.

Oxic metabolism, but not genome size, is associated with lifespan. According to the rate of 
living theory, metabolic rate is linked to lifespan. Consequently, we could hypothesize that gene function 
(specifically, the proportion of oxic genes) is also associated with lifespan. To test this hypothesis, we used 
data on the lifespan of 30 organisms, including 23 mammals and 7 birds, for which complete genome 
sequences were available (see Methods and Supplementary Table S2 for details). Based on our earlier 
observation of an association between the proportion of oxic genes and mass-specific metabolic rate in 
mammals and birds, we hypothesized that a negative correlation would exist between the proportion of 
oxic genes and lifespan in these animal groups.

As expected, we found a negative correlation between the proportion of oxic genes and maximum 
lifespan (rs = –0.42, p = 0.021) (Fig. 3). In several previous studies6,7,14, lifespan positively correlates with 
body mass. Here, we also observed a similar positive correlation (rs = 0.58, p = 0.00074); thus, we per-
formed a partial correlation to remove the effect of body mass. Independent of body mass, we still found 
a negative correlation between the proportion of oxic genes and lifespan (rs

p = –0.51, p = 0.0022). Note 
that this result does not directly indicate a limited effect of body mass on lifespan. We observed a pos-
itive correlation between body mass and lifespan when the proportion of oxic genes was kept constant 
(rs

p = –0.63, p = 1.8 × 10–5).
Ecological factors or mode-of-life traits can also affect lifespan. For example, Healy et al.14 reported 

that flight capability is the most important factor for longer lifespan in addition to body mass because 
volant species can more easily evade predators and unfavorable conditions. To test the effect of flight 
capability on the observed association between the proportion of oxic genes and lifespan, we separately 
evaluated a body mass-corrected partial correlation according to flight capability (volant/non-volant) 
(see Supplementary Table S2). We found negative correlations between the proportion of oxic genes and 
lifespan of 10 volant organisms (rs

p = –0.69, p = 0.012) and 20 non-volant organisms (rs
p = –0.48, p = 0.023). 

This result implies that the observed association between oxic metabolism and lifespan is independent of 
flight capability as a mode-of-life trait.

Using similar body mass-controlled correlation analysis, we found an association between lifespan 
and the sensory system including phototransduction and olfactory transduction (rs

p = –0.41, p = 0.020) 
and metabolism of cofactors and vitamins (rs

p = –0.38, p = 0.032). Several previous studies have shown 
that the sensory system is related to lifespan (reviewed in Refs.34,35). For example, Alcedo and Kenyon36 
showed that gustatory neurons inhibit longevity. Our result is consistent with these previous studies. The 
latter association could be explained by the fact that oxic reactions or enzymes are known to frequently 
require iron, heme, and vitamins such as ascorbic acid as cofactors33. Similar to mass-specific metabolic 
rate, according to the effect size, the proportion of oxic genes was the best estimator of lifespan.

An association between genome size and lifespan is debatable because both positive18,19 and neg-
ative results20,37 have been reported. Thus, we re-evaluated this association using our dataset. Body 
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Figure 3. Scatter plot of the proportion of oxic genes versus maximal lifespan. Symbol color indicates 
base-10 logarithmic body mass. The solid line is a linear regression fit to the data. Both simple rank 
correlation analysis (rs = –0.42, p = 0.021) and partial rank correlation analysis (rs

p = –0.63, p = 1.8 × 10–5), in 
which body mass is kept constant, indicate a positive association the proportion of oxic genes between the 
mass-specific rate.
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mass-controlled partial rank correlation analysis indicated that there was no association between genome 
size and lifespan (rs

p = 0.014, p = 0.94) (Fig. 4).

Discussion
Although metabolic rate and lifespan are well known to correlate with body mass4,6,7,9,10, their association 
with genomic information is unclear. Several previous studies16,17,19,20,37 have suggested that genome size 
or C-value correlates with metabolic rate and lifespan; however, such a correlation is controversial and 
has received criticism (e.g., Refs.13,20). Therefore, in this study, we performed a more detailed genomic 
analysis using several organisms with sequenced genomes, and demonstrated that the proportion of 
genes in functional categories was associated with mass-specific metabolic rate and lifespan. Conversely, 
we found that genome size was less informative for explaining metabolic rate and lifespan.

In particular, we found that the proportion of oxic genes was the best estimator of metabolic rate and 
lifespan because it is associated with both metabolic rate and lifespan. Because oxic genes are related to 
reactions that occur in the presence of oxygen, their association may reflect the importance of oxygen 
consumption in metabolic rate and lifespan. In addition, other functional categories such as cell mortal-
ity, membrane transport, and sensory systems were also associated with metabolic rate and lifespan, and 
the observed associations are is consistent with previous studies, as mentioned in Results.

However, more careful examinations are required to conclude what functional categories dominantly 
determine mass-specific metabolic rate and lifespan because we only performed correlation analyses. In 
particular, the result that multiple functional categories are linked to metabolic rate and lifespan may be 
because genes are overlapped among functional categories (i.e., multicollinearity). Ideally, we may need 
to perform a higher-level statistical analysis such as stepwise regression analyses. However, assumptions, 
such an analysis requires, (e.g., linearity and normality) are not satisfied in this study. In particular, sev-
eral studies reported no universal scaling relationship in genome22,23. In addition to this, some outliers 
are observed. We were afraid that linear model-based analyses result in misleading conclusions. Thus, 
we could not considered linear model-based analyses. Although our results are consistent with biological 
understanding, they are still debatable. To avoid this problem, we need to consider a higher-level analysis 
and collection of biological data (details will be described below).

Our results do not entirely discount the possibility that genome size is associated to lifespan. Rather, 
they highlight the need for more detailed examination of relationships between genomic information and 
lifespan. In particular, we emphasize the importance of considering the biological functions encoded by 
the genome when exploring these relationships.

Although metabolic rate may be the result of many different biological reactions15, the specific reac-
tions are not entirely clear. Our study suggests that the contribution of biological reactions to metabolic 
rate differs according to the reaction types. This finding is similar to a previous study, which reported that 
the body mass–metabolic rate relationship results from the sum of the influences of multiple contributors 
to metabolism and control38. Based on our results, oxic reactions are particularly useful for investigating 
metabolic rate and its association with environmental factors.

Metabolic rate is a primary focus in ecology because it is useful for estimating values such as animal 
space use8, lifespan14, and feeding rate4. In particular, the body mass–metabolic rate relationship has been 
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Figure 4. Limited correlation between genome size and maximal lifespan. Horizontal axis is on a base-
10 logarithmic scale. Symbol color indicates base-10 logarithmic body mass. A body mass-controlled (i.e., 
partial) rank correlation analysis indicated no association between genome size and lifespan (rs

p = 0.014, 
p = 0.94).
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actively investigated4,6,7,9,10. Our study suggests a possibility that genomic data are also used to estimate 
these ecological parameters. For example, machine learning methods (e.g., support vector machine and 
neural networks) may be useful. Support vector machine and neural networks are supervised learning 
models, and they are well used when predicting parameters from multidimensional data. Especially, 
these models are also applicable to nonlinear regression. For these reasons, machine learning methods 
have already been widely applied to predict biological features using genomic data in bioinformatics39. 
These methods require variables explaining (e.g., well correlated with) an objective variable (metabolic 
rate or lifespan, in this case). Thus, it is important to explore such explanatory variables. Indeed, we 
found that the proportions of genes in the several functional categories, including oxic metabolism, are 
associated with metabolic rate and lifespan. Using the patterns of functional gene contents (i.e., vectors 
of the proportions of these functional genes), machine learning methods may estimate metabolic rate 
and lifespan. Sequencing analyses are now beginning to be applied in ecology (e.g., in population ecol-
ogy40 and for identification of species–species interactions41). This approach, in which genomic data are 
used to investigate the ecosystem, is known as reverse ecology42,43. We suggest that the findings in our 
study may be usefully applied in such research fields. However, more careful examinations are required 
to complete the prediction of ecological parameters using genomic data. This study merely reported an 
association between genomic data and ecological parameters, and it does not show the cause-effect rela-
tionship between them. In such a case, a prediction of ecological parameters from genomic data may be 
ineffective in real-world cases because of overfitting problem. To avoid this problem, we need to consider 
better methods of data analysis and data collection (details will be described below).

We acknowledge that the analysis we present here has some limitations. For example, the definition of 
functional categories is controvertible. Our conclusions are limited to the context of functional categories 
defined by the KEGG BRITE Functional Hierarchy28, and these definitions may be somewhat arbitrary 
(i.e., they depend on the database administrators). For a deeper understanding of the association between 
biological functions and metabolic rate and lifespan, better definition of functional categories will be 
required. For example, several studies focus on detecting functional modules (i.e., categories) using bio-
logical networks. This challenge is related to graph clustering or community detection of networks44–46. 
In addition, it is important to consider biological information such as reaction mechanisms, direction 
of reaction (i.e., reversible vs. irreversible), chemical structure of metabolites, and gene clusters. In this 
context, methods for finding biologically meaningful modules of biological networks based on gene 
clusters and chemical transformation patterns47,48 may be useful.

In contrast to some other functional categories, oxic genes or reactions24,25 have been defined by 
considering biological information using Scope49, a computational framework used to characterize the 
biosynthetic capability of a network when it is provided with certain external resources. Therefore, 
these genes/reactions may be more useful for explaining metabolic rate and lifespan. An extension of 
the method for detecting metabolic scope will also be important for exploring the association between 
genomic information and metabolic rate/lifespan.

The definition of the predominance of functional genes is controversial. In this study, we considered 
a simple measure: the proportion of genes in a functional category. It is still datable that this measure 
really reflects the predominance of functions. Ideally, we may need to consider the expression and activ-
ity of functional genes and metabolic enzymes using microarray and mass spectrometry50 because several 
previous studies51,52 have reported that activities of specific enzymes are linked to metabolic rate (i.e., 
oxygen consumption rate).

Here, we investigated only organisms for which genomes were complete and available; thus, our study 
was somewhat biased toward lower organisms such as prokaryotes. The observed correlation between 
genomic information and metabolic rate may, therefore, be more applicable to prokaryotes. However, 
we also observed a positive correlation between these factors in higher organisms such as mammals and 
birds. Additionally, we took steps in our methodology to reduce phylogenetic signals. Thus, we believe 
that the effect of taxonomy is unlikely to change our conclusion; however, we acknowledge that further 
careful examination will be required. The importance of phylogeny for evaluating associations between 
biological features is well known in terms of comparative phylogenetic analysis53–55. For example, several 
previous studies10,12 have reported that Kleiber’s law may be not observed when considering phyloge-
netic information. However, comparative phylogenetic analysis generally assumes a simple evolutionary 
model, which deems random Brownian-motion-like traits to be change on a phylogenetic tree with 
accurate branch lengths, and may, therefore, result in misleading conclusions. For instance, Griffith et 
al.19 pointed out the loss of statistical power that occurs when a dataset reduces in size because of phy-
logenetic corrections. Because our dataset contained only a few samples for higher organisms and, thus, 
falls into condition described by Griffith et al., we did not consider comparative phylogenetic analysis.

The results of our study also depend on the quality of genome annotation. Furthermore, it is possible 
that our results are influenced by the percentage of functionally-unknown proteins in the study organisms. 
For metabolic networks, we already confirmed the difference in the fraction of functionally-unknown 
proteins between species categories in our previous study25. Thus, we believe that the quality of genome 
annotation would affect our conclusions; however, further research is required in this area. For example, 
metabolic networks are not fully understood. In particular, the existence of enzyme promiscuity56, which 
implies that enzymes can catalyze multiple reactions, act on more than one substrate, or exert a range 
of suppressions57, suggests the possibility of many hidden metabolic reactions, which may be related to 



www.nature.com/scientificreports/

8Scientific RepoRts | 5:10008 | DOi: 10.1038/srep10008

metabolic robustness against changing environments58. Consideration of these hidden metabolic reac-
tions will be important for designing metabolic pathways and for developing our understanding of met-
abolic evolution.

It will also be necessary to test the association between gene (protein) functions and metabolic rate 
and lifespan using additional organisms. Therefore, the continued sequencing of genomes from a wide 
range of organisms (including microorganisms such as extremophiles, mammals, fish, and insects) is 
obviously important. The development of high-throughput sequencing techniques will enable the col-
lection of such data. For example, metagenomic techniques can now help to complete the sequencing of 
an organism’s genome.

Despite the limitations of our data analysis, our findings enhance the current understanding of the 
relationship between genomic information and the parameters metabolic rate and lifespan. Furthermore, 
they may be usefully applied in future research for estimating metabolic rate and lifespan using genomic 
data.

Methods
Data on metabolic rate, lifespan, and genome. We obtained data on metabolic rate and 
mass-specific metabolic rate from previously published literature12,14,59, which comprehensively reported 
the relationship between metabolic rate and body mass. We also extracted data on body mass and tem-
perature from this literature.

The data on maximal lifespan were obtained from Healy et al.14. Additionally, data on body mass 
and species’ mode-of-life traits (i.e., volancy, fossoriality, foraging environment, and daily activity) were 
collected.

To prevent redundancy and reduce phylogenetic signals, we averaged the biological parameters (i.e., 
metabolic rate, body mass, and temperature) according to genus after unit conversion. The units of 
metabolic rate, mass-specific metabolic rate, body mass, and maximal lifespan were watts [W], watts per 
gram [W/g], grams [g], and years, respectively. We selected organisms for which genomes were available 
in the KEGG database28. We selected one species as a representative of a genus according to the year in 
which the species genome was first completely determined, and we used this genome for investigating 
the association between the biological parameters and the genomic information.

For investigating the association between metabolic rate and genomic information, we obtained data 
on 101 organisms including 12 mammals, 6 birds, 4 ectothermic vertebrates, 5 insects, 9 protozoa, and 
59 prokaryotes (see Supplementary Table S1 for full details). In this dataset, the data on temperature 
were available for 84 organisms, including 12 mammals, 4 ectothermic vertebrate, 9 protozoa, and 59 
prokaryotes.

For investigation of the association between lifespan and genomic information, we obtained data on 
30 organisms, including 23 mammals and 7 birds (see Supplementary Table S2).

Temperature-corrected mass-specific metabolic rate. To remove the effect of temperature15, 
mass-specific metabolic rate q obtained at different temperatures T [°C] was transformed to 25 °C: 
q25 = q × 10–3 × 2(25 – T)/10, according to a previous study12. In our study, we did not consider ectothermic 
vertebrates because these organisms do not live at a body temperatures of 25 °C12. Our dataset include 
only 4 (5% of the total) ectothermic vertebrates; thus, the exclusion of these organisms does not affect 
the conclusion. We can confirm that the similar conclusions can be obtained even if these ectothermic 
vertebrates using the dataset (Supplementary Table S1).

In addition to this, according to a previous study15, we also considered to transform q at observed 
at different temperature T [°C] to a given temperature X [°C]: qX = q × exp[–E/k {1/(X + 273.15) −1/
(T + 273.15)}], where E and k indicate an average activation energy [eV] for enzyme-catalyzed biochem-
ical reactions and Boltzmann’ constant (i.e., k = 8.6173 × 10–5 [eV/K]). According to a previous study15, we 
considered E = 0.65 although E ranges between 0.4 and 0.8; but, we confirmed that similar conclusions 
can be obtained when E = 0.4 and 0.8.

Identification of the oxic genes of each species. According to a database24 (prelude.bu.edu/O2/
networks.html), we obtained an oxic reactions list based on Enzyme Commission (EC) numbers and 
metabolic reaction notations (i.e., reaction or ‘R’ numbers such as R00010) in the KEGG database28. 
Via the KEGG FTP site (ftp.bioinformatics.jp/kegg/xml/kgml/metabolic/organisms), on March 17, 2014 
we downloaded XML files (version 0.7.1) containing the data on gene–reaction (i.e., gene identifier–R 
number) relationships of 111 organisms from the KEGG database. Based on this data, we defined oxic 
genes as genes associated with at least one oxic reaction.

Functional categories of genes. In this study, we used the second level of KEGG BRITE Functional 
Hierarchy of the KEGG metabolic map (www.genome.jp/kegg-bin/get_htext?br08901.keg) for identifying 
functional categories of genes. We downloaded the data on functional category–gene identifier relation-
ships of species S from the KEGG FTP site (ftp.bioinformatics.jp/kegg/brite/organisms/S/S00001.keg) on 
17 March 2014, where S indicates the KEGG organism identifier (see Supplementary Tables S1 and S2).

http://www.genome.jp/kegg-bin/get_htext?br08901.keg
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In this study, we did not consider Gene Ontology21 as a definition of functional category because 
of fewer organisms whose GO annotations were completed, compared to KEGG BRITE Functional 
Hierarchy.

Functional genome size. We computed the number of genes in a functional category and functional 
genome size (i.e., total number of nucleotides of genes in the functional category) (Supplementary Tables 
S1 and S2). For 111 organisms, we downloaded the nucleotide sequence data of species S from the 
KEGG FTP site (ftp.bioinformatics.jp/kegg/genes/organisms/S/) on 17 March 2014. On the basis of the 
functional category–gene identifier relationships, obtained as above, we calculated these two parameters.

Note that the KEGG FTP site was available only to paid subscribers as of 1 July 2011. Because the use 
of our data may be desirable to ensure reproducibility, our datasets are available upon request.

Statistical tests. For measuring statistical dependence between parameters, we computed the 
Spearman’s rank correlation coefficient rs (a non-parametric measure, which is relatively robust to outli-
ers and can be used to analyze nonlinear relationships) and its associated p value using R version 3.1.1 
(www.r-project.org).

To ensure that the results of the Spearman’s rank correlation analysis were robust, we also performed 
partial Spearman’s rank correlation analysis using R software. Specifically, we used the function pcor, 
available in the R package ppcor version 1.0.

To estimate the exponent of a power-law relationship, we performed a linear regression analysis using 
logarithmic values. In particular, we used the function lm in R software.
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