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Abstract

Background: Metabolic phenotyping has become an important ‘bird’s-eye-view’ technology which can be applied to higher
organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping
technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-
down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of
metabolite mixtures in plant and animal systems.

Methodology/Principal Findings: The analysis method includes a stable isotope labeling technique for use in living
organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed
HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy;
Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The
database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical
physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori,
we systematically detected .450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87
cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has
allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher
organism extracts.

Conclusions/Significance: Overall physiological changes could be detected and categorized in relation to a critical
developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways
related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites.
Based on the observed intensities of 13C atoms of given metabolites on development-dependent changes in the 56
identified 13C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and
nitrogen metabolism.
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Introduction

The tremendous advances in DNA sequencing technologies that

have taken place over the last few years have made large-scale

sequencing and genome comparison studies accessible for many

applications. For example, the cost of human genotype charac-

terization is now about $1000 per genome [1]. These technologies

have also made comparative metagenomic analyses of complex

microbial communities sampled from diverse environments

possible [2]. However, methods are still needed to tie function to

sequence, a step that is necessary to efficiently identify proteins

that might serve as drug targets [3], or enzymatic activities that

could be used to produce valuable products such as biofuels or

other biomaterials [4]. Because cellular metabolic contents or

byproducts are good indicators of both genetic and environmental

factors, metabolic phenotyping has found a place in the post-

genomics and proteomics era [5,6]. Therefore, technological

developments in both nuclear magnetic resonance (NMR) and

mass spectrometry (MS) have provided key insights into metabolic

phenotypes over the last half decade [7,8]. Versatile sampling and

robust 1H-NMR methods have improved disease diagnosis [9–12]

and personalized healthcare [13–15], and have provided an

important tool for the characterization of genetic variations [16].

The use of high-resolution magic angle spinning methods has had

an especially beneficial effect on measurements in intact tissues

and in whole organisms [17–19].
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The introduction of stable isotope (SI) labeling techniques [20]

has turned out to be an essential development for NMR analyses

of metabolism. SI labeling-based metabolic analyses have been

widely used in bacterial systems [21], and in higher plants and

animals [22,23]. Metabolic flux analysis is a powerful method for

following an incorporated 13C, or 2H nucleus through specific

metabolic pathways in mammalian systems [24–26]. Furthermore,

recent increases in the sensitivity of NMR detection with a

dynamic nuclear polarization technique combined with in vivo 13C

labeling have allowed metabolic imaging assays to be completed

on a much faster time scale and with finer spatial resolution

[27,28].

Although these methodological advances have widely contrib-

uted to metabolic analyses in plant and animal systems, a key

component of the overall technology is the accurate identification

of metabolites in unpurified samples, including in vivo measure-

ments. Using comprehensive SI labeling of metabolites in plants,

we have recently shown that heteronuclear single quantum

coherence (HSQC)–based 2D-NMR [29] enables higher resolu-

tion and sensitivity than classical 1D-NMR–based approaches

[30–32]. The use of comprehensive SI labeling results in better

signal-to-noise ratios for metabolites present in low concentrations,

and makes 13C–13C through-bond connectivity experiments

possible (i.e. HCACO) [33]. Another strategy for identifying

metabolite signals in crude biological mixtures involves the use of a

standardized chemical shift metabolomics database [34,35]. This

sort of database can only be reliably used if the quality of the

datasets is assured by eliminating chemical shift data that have not

been generated in a standard buffer and at a constant temperature.

For example, the chemical shift data in conventional public [36] or

commercial databases are inadequate for NMR-based metabo-

lome studies because they were compiled with the main goal being

to collect information on the largest possible number of

compounds, but were measured under different solvent, temper-

ature, pH, and ionic strength conditions, resulting in the potential

for significant identification errors. The use of SI-labeled

metabolites and an HSQC-based chemical shift database would

allow the comprehensive detection of large numbers of metabolites

in a metabolic network study.

SI-based metabolic flux analyses have been used to identify

metabolic networks at the atomic level [24–26]. However, this

‘bottom-up’ approach [37] could be complemented by the analysis

of macroscopic systems such as biological fluids, cells, or even

tissues. This sort of ‘top-down’ metabolite analysis, or metabolic

phenotyping, currently employs Principal Components Analysis

(PCA) or its variations. As a result, complicated metabolic systems

can be visualized by ‘birds-eye-view’ technology with quantitative

multivariate calculation, whereas previous ‘‘bottom-up’’ approach-

es employ a focused, microscopic view of specific reactions and

molecules. These ‘‘top-down’’ methods, and presumably others in

various stages of development, can and will be employed in higher

systems-level approaches. For example, invertebrate models are

versatile systems which can be used for chemical phenotyping

applications, such as drug discovery [38]. Compared with bacterial

or animal cell-line assays, invertebrate-based or fish-based assays

can be used to identify physiological changes at the tissue or organ

level, and can be used for large-scale metabolic screening of

bioactive compounds [39,40] to provide a coarse-grained view of

complicated biological networks [41–43].

In this report, the concept of systematic NMR analysis of stable

isotope-labeled metabolite mixtures is described and tested. Our

concept consists of SI labeling of living plants and animals, and

systematic metabolite identification using an HSQC-based

metabolite chemical shift database combined with 2D and 3D

NMR. We applied these methods to the metabolic analysis of two

higher organisms whose genomes have been sequenced, Arabidopsis

T87 cultured cells, and the model invertebrate, Bombyx mori

(silkworm) larvae [44,45], both of which have been used for

studying physiological responses to pathogens and for screening

potential human drugs by observing their phenotypes [46]. An

additional goal was to devise a visual representation of silkworm

metabolic organization during a major developmental transfor-

mation by analyzing changes in 13C intensities of metabolites in a

pathway. A time-series NMR analysis of 13C-labeled metabolites

was used to represent metabolic changes as a coarse-grained view

of KEGG reference metabolic pathways [47].

Results

HSQC-based metabolite chemical shift database
An HSQC-based metabolite chemical shift database was

compiled that contains only NMR spectra of standard compounds

measured under standardized temperature, pH, solvent, and ionic

strength conditions. The database thus contains only highly

reproducible chemical shifts, which makes it a reliable source for

identifying metabolic products. Currently it consists of 1018 1H

and 13C chemical shifts corresponding to 142 metabolites. Each

chemical shift was derived from an NMR spectrum for one or a

few metabolites measured at 298 K and dissolved in 100 mM

potassium phosphate buffer at pH 7.0. Chemical shifts were

distributed from 0.6 to 9.4 ppm for 1H and from 10.4 to

155.7 ppm for 13C (Fig. 1a). The average number of 13C-HSQC

peaks per metabolite was 7.2. A linear regression of all 1018 peaks

indicated that a 13C chemical shift = 17.561H chemical shift – 2.5

(r2 = 0.892). The 1H and 13C chemical shifts were around 2 and

40 ppm in lipids, 3.5 and 70 ppm in sugars, and 7 and 130 ppm in

aromatic compounds, respectively. There were dense and sparse

regions along the regression line, with an especially dense region

near 3.5 ppm of the 1H shift, due mostly to sugars. On average,

however, 58% of the 13C-HSQC-derived chemical shifts per

metabolite did not overlap with any other metabolites in the

database if the tolerances for overlapping were set at 0.03 and

0.3 ppm for 1H and 13C chemical shifts, respectively. As a result,

130 (92%) of 142 metabolites included one or more chemical shift

markers, which we defined as chemical shifts that did not overlap

with any other metabolites in the database.

The robustness of the HSQC-based metabolite chemical shift

database was tested with actual biological extracts. Standard

reference compounds were dissolved in the standardized buffer

with and without added crude Arabidopsis T87 cell extracts and the

chemical shifts of the two solutions were compared. Sixteen

proteinogenic amino acids (16AA, excluding asparagine, gluta-

mine, cysteine, and tryptophan) along with succinate, fumarate,

and glucose were used as reference compounds. The distribution

of chemical shift fluctuations (n = 7, corresponding to more than

500 chemical shifts) in the solution with T87 extracts were all

within 0.03 ppm for both 1H and 13C (Fig. 1b, red), which is

comparable to the experimental resolution (0.01 and 0.5 ppm for
1H and 13C, respectively).

None of the samples fluctuated in pH (average 7.2; standard

deviation,0.1). Reference compound chemical shift fluctuations

in standardized buffer (pH 7) and in buffers from pH 3 to pH 9

were used as controls (Fig. 1b). There was a broad distribution of

chemical shift fluctuations in buffer solutions with a pH 3 to 7,

though 83.1% were still within 0.03 ppm. For example, the

chemical shifts of phenylalanine Cb, arginine Cd, and proline Cd

showed little pH dependence, but glycine Ca and histidine Cb

shifts were relatively pH-dependent (Fig. S1).

Coarse-Grained Metabolism
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Systematic batch identification of metabolites
An SI-labeling technique, the HSQC-based metabolite chem-

ical shift database, and heteronuclear multidimensional NMR

spectroscopy were combined in a systematic method for

simultaneously identifying a large number of metabolites. 13C-

HSQC spectra of crude silkworm and T87 cell extracts were

analyzed with an in-house program that consults the database and

compares 13C-HSQC spectra with the data. A large number of

metabolites were identified in a single batch experiment (Fig. 2).

However, although this system can only be used to identify

candidate metabolites by matching observed chemical shifts with

those in the database, it is capable of high-throughput, which

makes large-scale approaches possible. In the silkworm extract,

453 peaks appeared in the 13C-HSQC spectrum (Fig. 2a). 174 of

them had candidate matches in the database, corresponding to 95

metabolites, and 119 of the 174 peaks, corresponding to 57

metabolites, had a unique candidate match. The most abundant

identified metabolite by peak intensities was lysine, which is a hub

metabolite [48]. Other abundant metabolites were the hub

metabolite glycine, and glutamine. Further analysis using 3D

HCCH-COSY [49] (data not shown) also detected cross peaks

corresponding to trehalose, glucose, lysine, glutamine, alanine,

proline, threonine, leucine, ornithine, and 4-hydroxy proline. The

57 uniquely identified metabolites are related to 81 metabolic

pathways, according to the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database [47]. There were 544 13C-HSQC

spectrum peaks in the T87 cultured cell extract, of which 192

correspond to 108 metabolites; and 124 of the 192 peaks,

corresponding to 61 metabolites, were uniquely identified in the

database (Fig. 2b). These 61 metabolites are related to 73

metabolic pathways. The most abundant identified metabolite was

choline, and other abundant metabolites were D-gluconic lactone,

glycerol, gamma-aminobutyric acid (GABA), lysine, uridine, and

glucose. Lysine and glucose were abundant in both silkworm and

T87 extracts, whereas other metabolites were abundant in one or

the other but not both. Peak intensities ranged from 1 to 1023 or

1024 in both silkworm and T87 cells, and we observed a power-

law relationship between the number of peaks and peak intensities

[50–52]; that is, the majority of metabolites were present in lower

concentrations, whereas a minority of metabolites were at higher

concentrations (Fig. S2).

Assignments in which the chemical shift matched more than

one candidate metabolite in the database could be refined or

avoided by using 3D HCCH-COSY spectra, a 3D heteronuclear

NMR experiment in which another dimension is added to 2D

(Fig. 3). Four 1H–1H planes cut the 3D 1H–1H–13C spectrum of

the T87 extract sample at various points along the 13C axis, which

allows the identification of 1H–13C–13C–1H bonds, thus confirm-

ing 13C-HSQC assignments by using 1H–13C–13C–1H informa-

tion to connect two 1H–13C HSQC peaks (Fig. 2b). For the first

time then, efficient 13C labeling provides reliable signal assignment

from 3D HCCH-type spectra in higher organism extracts. A

number of cross peaks were thus be identified which correspond to

89 HSQC peaks and 24 metabolites. For example, GABA,

asparagine, glucose, uridine, lactate, malate, choline, and ribose

could be used to verify the identification, thus resulting in a high

degree of accuracy (Table S2).

Pilot application: coarse-grained views of overall
physiological changes in silkworms fed with 13C-labeled
nutrient

A pilot 13C labeling experiment was conducted to test whether

our method could be used to visualize the metabolic state of a

model invertebrate. B. mori larvae were fed an SI-labeled diet

containing [13C6]glucose and [13C,15N]amino acids for 12 days, a

time which corresponds to the larval developmental course that

extends from the fourth instar through ecdysis into the fifth instar.

Extracts were sampled on days 2, 6, 7, 10, and 12. Duplicate 13C-

HSQC spectra were recorded on each of the five sampling days to

detect and identify metabolites. Peak intensities in each spectrum

gradually increased throughout the experiment, demonstrating

that 13C atoms accumulated in the larval bodies (Fig. 4a). There

were in all 56 different candidate metabolite matches that could be

used to follow metabolic changes (Table S3). Of the 56 candidate

metabolites, 71% were also found in the silkworm batch

Figure 1. HSQC-based metabolite chemical shift database. (a)
1018 HSQC peaks derived from 142 metabolites compiled in the
database are displayed as sugars (blue), nucleic acids (pink), metabolites
having aromatic rings (green), organic acids (orange), lipids (red), and
other metabolites (black). (b) The robustness of the database was tested
statistically in terms of both 1H and 13C (upper right) chemical shifts
(D1H and D13C, respectively). Chemical shift fluctuations of reference
compounds (16 proteinogenic amino acids, glucose, succinate, and
fumarate) with T87 crude extracts (red, 539 chemical shifts) were small
enough to be used as representative chemical shifts for comparison
with database records. Chemical shifts of reference compounds without
added extracts are shown in gray (553 chemical shifts). In contrast, the
chemical shifts of reference compounds at different pHs (blue, 525
chemical shifts) fluctuated over a wider range (compare blue and gray
bars). A chemical shift fluctuation was defined as the difference from
the average of the chemical shifts without added extracts.
doi:10.1371/journal.pone.0003805.g001

Coarse-Grained Metabolism
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experiment (compare Tables S1 and S3). The total peak

intensities of all 56 candidate metabolites in relation to sampling

days (Fig. S3) were converted to a 56656 (metabolite–metabolite)

correlation matrix (Fig. 4b). The matrix was analyzed by

principal components analysis (PCA) and PC loadings were

determined (Fig. 4c for PC1). The matrix showed clear positive

and negative correlations in peak intensities among the 56

metabolites. For example, L-ornithine (Fig. 4b, first row) was

positively correlated with asparagine (second row) but negatively

correlated with 3-phosphoglycerate (last row). These correlations

were interpreted as indicators of physiological changes that

accompany the developmental progress of silkworm larvae. On

the basis of the first two principal components (PC1 and PC2),

larval growth was divided into three phases: the fourth instar (days

2 and 6), just after ecdysis (day 7), and the fifth instar (days 10 and

12, Fig. 5a). The contribution ratios were 31.0% by PC1 and

25.4% by PC2. We selected the PC1 as the better indicator of

metabolic change from day 7 to day 12. Since PC1 loadings

(Fig. 4c) correspond to the metabolic change, all 132 KEGG

reference metabolic pathways were mapped to obtain a coarse-

grained view of the metabolic system of a silkworm at each of three

sampling stages (Fig. 5b–d). Each pathway could then be assigned

a defined total loading and a total intensity. Total loading was

defined as the sum of the loadings on PC1 of the detected

metabolites included in a pathway. Similarly, total intensity was

defined as the sum of the standardized intensities of the detected

metabolites in a pathway (see Fig. S3 for intensities before

standardization). Total loadings and total intensities can be

represented as colors and positions, respectively, so the same

pathway retains the same color throughout the time course.

Positions were determined with a simulated annealing technique

by optimizing pathways that had large total intensities toward the

center and those having small total or null intensities away from

the center (Fig. 5b–d). By comparing the patterns in color and

position, we found that the positions of the pathways were

differently laid out at each sampling stage. The coarse-grained

pattern of metabolic pathways at day 2 (Fig. 5b) appears to be

random because it was not highly correlated with metabolic

changes along the PC1 axis. In contrast, days 7 and 12 show clear

patterns, indicating the emergence of organization among the

labeled metabolic pathways (Fig. 5c and d). Pathways that were

negatively correlated with the PC1 axis (cyan) crowded the center

of the figure at day 7 (Fig. 5c), but migrated away from the center

by day 12 (Fig. 5d). Similarly, pathways that were positively

correlated with the PC1 axis (yellow) were peripheral at day 7

(Fig. 5c), but crowded the center by day 12 (Fig. 5d). This

observation offers a coarse-grained view of metabolic changes

taking place along the PC1 axis, and suggests that the roles of some

pathways interchange along the PC1 axis during larval develop-

ment. The pathways in the KEGG database with the most positive

and most negative total loadings were glutamate metabolism

(contributed from GABA, glutamate, malate, oxalacetate, fuma-

rate) and glycolysis/gluconeogenesis (contributed from 3-phos-

phoglycerate, lactate, and pyruvate), respectively (see Table S4).

From the point of view of PC1 metabolite loadings, pathways

could be classified into two categories: those including detected

Figure 2. Metabolite identification using the HSQC-based metabolite chemical shift database. (a) A total of 453 peaks were detected in
the B. mori HSQC spectrum, of which 174 had candidate matches in the database (red), and 119 were uniquely identified (no more than one
candidate match, numbered in red; see Table S1 for the metabolite names), and 279 had no candidate matches (black). The spectrum was acquired
with 2048 points per 16 ppm of 1H, 32 transients per free induction decay, and 160 increments per 40 ppm of 13C. (b) A total of 544 peaks were
detected in extracts from T87 cultured cells, of which 192 had candidate matches in the database (red) and 124 were uniquely identified (numbered
in red; see Table S1), and 352 had no candidate matches (black). The spectrum was acquired with 1024 points per 16 ppm of 1H, 32 transients per
free induction decay, and 200 increments per 40 ppm of 13C.
doi:10.1371/journal.pone.0003805.g002
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metabolites of mostly positive PC1 loadings (yellow) and those of

mostly negative ones (cyan). Furthermore, contributions from

positive and negative loadings in the same pathway appear as

gradations of green (see Text S1 for specific methods used to

make these calculations). Observed 13C intensities for metabolites

in a given pathway can thus be viewed averagely as yellow for

almost metabolites increasing in terms of 13C, cyan for almost

decreasing ones, and greenish intermediate colors (i.e. combina-

tions of yellow and cyan) for combinations of increasing and

decreasing ones. These coarse-grained representations allow

visualization of the emergence of organization among cooperating

pathways starting around day 7 and reversed by day 12.

Conversely, there was little evidence for pathway organization at

day 2. Related pathways could be expected to have correlated

changes during development or other coordinated metabolic

changes. For example, glutamate metabolism, the urea cycle, and

metabolism of amino groups, which have positive total loadings,

are possibly correlated. Similarly, glycolysis/ gluconeogenesis and

cysteine metabolism, which have negative total loadings, should

also be correlated (Table S4).

Discussion

Our method of systematic metabolite identification using an

HSQC-based metabolite chemical shift database is practical.

Because of the tremendous number of both primary and

secondary metabolites in nature, a highly efficient strategy for

accumulating chemical shift data for many biological compounds

is required for high-throughput NMR-based metabolic analyses.

The HSQC-based database is a fast and cost-effective way of

accumulating information about a huge number of standard

compounds, although further specific analyses of NMR-based

atomic assignments using NMR spectra obtained by additional

methods such as COSY or total correlation spectroscopy

(TOCSY) are required. The requirement that HSQC spectra be

measured in a standardized buffer under physicochemically

constant conditions is critical for minimizing identification errors.

In general, crude extracts contain a mixed bag of biological

molecules such as metabolites, ions, and biopolymers. Although

these compounds have the potential to cause unpredictable

fluctuations in the chemical shifts of metabolites, all of the

reference compounds dissolved in standard buffer with crude T87

extracts had fluctuations within 0.03 ppm for both 1H and 13C

(Fig. 1b, red). This suggests that identifying metabolites in (ideally

dilute) crude extracts by using only standardized representative

chemical shifts is generally practical for most metabolites, although

the chemical shifts of some metabolites tend to fluctuate slightly.

Citrate, which has been discussed elsewhere [53], is one such

example (data not shown). In our experiment on pH dependence

(Fig. 1b, blue), more than 80% of fluctuations were small, also

indicating that metabolite identification with our method is

reasonable for in vivo NMR experiments.

Our HSQC-based detection method (Fig. 2) offers more

reliable metabolite identification than detection based simply on
1H 1D NMR spectra, which are frequently used in NMR-based

studies on drug toxicity and gene function [6]. A previous report

described a 1H-NMR-based method which was used to identify 53

metabolites, GC/MS was used to identify 40 metabolites, and LC-

FT/MS was used to identify 17 [54]. Recent reports using 1H-

NMR-based methods indicate that somewhere between 40 to 60

metabolites can be identified [55–58], but 1H-NMR-based

methodology has its limits [54]. The introduction of 13C nuclei

offers more accurate metabolite identification, but does not

necessarily increase the total number of identifiable compounds

Figure 3. 3D HCCH-COSY spectrum. A heteronuclear 3D NMR spectrum of crude 13C-labeled T87 cultured cell extracts. 2D 1H–1H planes at
57.702, 62.702, 72.077, and 77.701 ppm of 13C cut through the 3D HCCH-COSY spectrum are shown (for each spectrum, the relative position of each
cut is shown in a 3D box at the upper left corner). Red lines connect detected cross peaks of the named metabolites. In total, 89 HSQC peaks
corresponding to 24 metabolites were confirmed. The spectrum was acquired with 1024 points per 14 ppm in the 1H direct dimension, accumulating
16 transients per free induction decay, 100 increments per 40 ppm in the 13C dimension, and 48 increments per 8 ppm in the indirect 1H dimension.
doi:10.1371/journal.pone.0003805.g003
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[59–61]. It is likely, however, that expansion in the contents of the

database will improve this situation.

One apparent shortcoming of our method, however, is false

positives, which might occur when the number of database records

or user query peaks is very large. This is because there are more

metabolites when the concentration of each is lower (Fig. S2 and

related studies supporting these results [50–52,62]). A false positive

is an observed peak that has been wrongly identified as belonging

to a particular metabolite. One solution to this problem is to use

defined chemical shift markers. For example, our database

includes more than 90% of metabolites that had one or more

internal chemical shift markers [i.e. those having tolerances of 0.03

Figure 5. Coarse-grained views of metabolic pathways computed from 13C-labeled B. mori during the developmental changes
associated with fourth to fifth instars. (a) PCA score plot. The sample stages were classified into fourth instar (days 2 and 6); post ecdysis (day 7);
and fifth instar (days 10 and 12). Note that incorporated nutrients are stored toward metamorphosis after the fifth instar stage. (b–d) Coarse-grained
representations of silkworm metabolic pathways. The loadings on PC1 of the 56 metabolites were mapped onto all 132 KEGG metabolic pathways as
total loadings and the positions of the pathways in a plane were calculated by a simulated annealing technique with total intensities. Total loadings
are represented by yellow, cyan, or their intermediates, by linearly superimposing colors corresponding to the loadings of metabolites included in
each pathway. Yellow (or cyan) pathways have mostly positive (or negative) metabolites in loading on PC1, and green pathways result from the linear
mixture of yellow and cyan. Gray pathways contained no identified metabolites. The simulated annealing technique used the total intensities at each
sampling stage rather than total loadings, which optimized the locations of pathways with larger (or smaller) total intensities toward the center
(outside). Movement of the metabolic state from negative to positive on the PC1 axis, caused a coincident movement of yellow (cyan) pathways,
reflecting actively accumulating (dispersing) 13C atoms. The plot may include implicit coarse-grained information about the metabolic system that
includes higher-dimensional correlations, or organization, among metabolic pathways.
doi:10.1371/journal.pone.0003805.g005

Figure 4. 13C labeling of B. mori larvae as a pilot application in an invertebrate animal model. (a) Fourth instar silkworm larvae were
reared on 13C-labeled diets for 12 days through ecdysis to the fifth instar stage, resulting in the gradual assimilation of 13C-labeled metabolites. Two
bars per sample stage are shown. (b) Correlation matrix of 56 commonly selected metabolites used for the analysis of metabolites detected during
the 12 days of the feeding experiment. Positively correlated metabolites are in red and negatively correlated metabolites are in blue. The metabolites
are sorted by their loadings on PC1. (c) Loadings of the metabolites on the PC1 axis.
doi:10.1371/journal.pone.0003805.g004
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(1H) and 0.3 ppm (13C)]. Even using tolerances of 0.1 (1H) and

1.8 ppm (13C), which are significantly larger than what is normally

used, this calculation reaches 40%, suggesting that, by knowing

which peaks are chemical shift markers, peaks can often be used to

discriminate between metabolites, greatly helping to preclude false

positives. This validation can be accomplished merely by knowing

which peaks can be uniquely identified by our definition. Any

increase in the content of the defined conditions database improves

the reliability and utility of the chemical shift markers. Expanding

the database thus increases both the range and accuracy of

metabolite identification. We are currently developing a method

for predicting candidate compounds from unknown chemical shifts

in HSQC-spectra of biological extracts. New methodologies like this

one, and empirical tests will likely contribute toward truly

comprehensive metabolite identification, and thus overcome the

problem of simultaneously identified metabolites.

In the case of molecules, or types of molecules with overlapping

chemical shifts (e.g., sugars generally tend to overlap in the database),

other techniques will be required. One possible solution is to

combine data from our method with those of other 2D NMR

experiments, which are used to identify compounds in complex

mixtures [59,60]. Additionally, we demonstrated that the number of

ambiguous assignments could be reduced by the introduction of a

third dimension, that is, by using heteronuclear 3D NMR spectra

(Fig. 3). HCCH-COSY spectrum analysis is a good example of the

use SI labeling techniques in living organisms, since the natural

abundance of 13C–13C bonds is very low (1/10061/100 = 1/

10000), making them impossible to detect without SI amendment.

Currently, heteronuclear 3D or higher-dimensional NMR experi-

ments are standard methods in protein NMR spectroscopy [63], and

one point of emphasis in this current work was to test the feasibility of

using heteronuclear 3D NMR spectroscopy in NMR-based

metabolome analysis. In addition to the problem of false positives,

there is a general lack of confidence in the reproducibility of correct

metabolite identification in crude biological extracts. In fact, there

were frequent fluctuations in the observations of metabolites from

individual silkworm extracts (for example, compare Tables S1 and

S3). Such fluctuations may be due to individual genetic differences,

subtle heterogeneous growth or developmental conditions, or

artifacts introduced during sample preparation. Another challenging

problem associated with the use of NMR techniques in metabolome

analysis is low sensitivity, but some possibilities for resolving these

shortcomings have been proposed [64,65].

Based on a new type of metabolomic analysis, we have presented a

method for coarse-grained representation of changes in a metabolic

network in developing silkworms (Fig. 5b–d), whereas classical SI-

labeled metabolic studies are based on targeted analyses of specific

metabolic pathways, such as glycolysis or gluconeogenesis. [24–26].

Recent metabolomics/metabonomics progress using unlabeled

biological fluids [9–16] or intact tissues [17–19] has made an

NMR approach a leading tool in the post-genomics and proteomics

era [5,6]. A combination of SI-labeling with multidimensional NMR

analysis opens a new avenue of metabolic phenotyping in higher

organisms, and allows complicated metabolic networks to be

visualized with ‘birds-eye-view’ graphics technology, whereas

classical targeted approaches focus on specific molecules. We have

proposed using a coarse-grained view of metabolic pathways as a

method of metabolic phenotyping, in which the overall changes in

organization among metabolic pathways can be appreciated.

Historically, General System Theory (GST) [66] as expounded by

Ludwig von Bertalanffy was an early attempt to understand the

interactions between natural phenomena which tend to organize

large numbers of independent components, like very large numbers

of cells, tissues, organs and organ systems. Currently, many

researchers are dedicating significant resources to systems biology

approaches [67–73], with the fundamental principals of GST as

their foundation. A coarse-grained representation based on a top-

down approach must contain information about organization of the

system to shed light on biological changes or interactions. In another

words, a complex system like a living organism is essentially

dependent on higher-dimensional correlations (i.e. organization)

among a large number of elements. Coarse-grained representations

are widely used in various scientific disciplines [42,74–77], and in

this work we have successfully discriminated the patterns of

metabolic pathways associated with developmental stages in a

model invertebrate.

For convenience, we supposed that PC1 reflected a specific

phenomenon, possibly ecdysis, because there was a relatively large

difference in PC1 scores before and just after ecdysis (Fig. 5a).

However, starvation might be a better interpretation of PC1,

because silkworms do not eat during ecdysis. Either way, the

loading of a metabolite on PC1 was interpreted to reflect the

correlation between the change of 13C intensities in the metabolite

and ecdysis or its associated behaviors. The optimized relative

positions of KEGG metabolic pathways based on the total

intensities of metabolites within each pathway thus provides a

relatively robust coarse-grained pattern of silkworm metabolic

activity around ecdysis (Fig. 5b–d). The shift from ecdysis to fifth

instar resulted in a reduction in 13C intensities in negatively

correlated pathways (Fig. 5d, toward the perimeter, cyan), and in

an increase in positively correlated pathways (Fig. 5d, in the

center, yellow), suggesting that metabolic activities can be detected

at the metabolic pathway level as well as at the metabolite level.

Simultaneous identification of multiple metabolites, and informa-

tion about their coexistence within a single pathway can provide

clues about the relationship between development or environ-

mental interactions, and the metabolic adjustments that accom-

pany such events. Further, our coarse-grained view may offer

information about correlated pathways.

The identified pathways could be classified into two categories

and assigned colors, making changes in their activities relatively

easy to follow during ecdysis (Fig. 5b–d). The color of a pathway

is determined by the superimposition of the two weighted colors

with green as the intermediate indicator of increasing or

decreasing relative 13C intensities during ecdysis from day 7 to

day 12. These two metabolic categories exhibited weak tendencies

of energy and nitrogen metabolism in the insect hemolymph [78].

Nitrogen is a major constituent of many major metabolites, such as

L-ornithine, asparagine and GABA, which increased toward day

12 (yellow in Fig. 5b–d, see also Table S3). These metabolites,

along with fumarate and glutamate, are synthesized and

catabolized as part of the general urea cycle, and the metabolism

of amino groups. Furthermore, GABA, glutamate, malate,

oxalacetate, fumarate and glutamine relating to glutamate

metabolism also exhibited similar tendencies. Nitrogen metabo-

lism is the common thread between these structurally diverse

compounds from assimilation to elimination [78]. The metabolites

belonging to metabolic pathways in positive total loadings of PC1,

e.g. L-ornithine, asparagine, oxalacetic acid, or GABA, which had

higher positive loadings, exhibted non-linear (V-shaped) time-

dependence of signal intensities in which the intensities all went

down at ecdysis (day 7) and up during the fifth instar stage (day

10–12). Related metabolic pathways tended to be organized

toward the center rather than in the periphery at day 12 (Fig. 5d).

A previous report also discussed the strong regulation of nitrogen

metabolism (especially re-assimilation of ammonia) during the

development of B. mori larvae [79]. The silkworm is in a fasting

state during metamorphosis (after day 12), so these key metabolites
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may be stockpiled in the hemolymph in anticipation of nutrient

deprivation. On the other hand, 3-phosphoglycerate, acetate,

lactate, serine, and pyruvate increased only at day 7, by which

time ecdysis (starved state) would be finished. These metabolites

are a part of the glycolysis/gluconeogenesis pathways and cysteine

metabolism (blue in Fig. 5b–d). Since the insect can derive energy

from the catabolism of lipids during its starvation periods [80],

these metabolite levels might be increased at day 7. Incorporated
13C can be highly accumulated in lipid bodies (Nishihara, T.,

unpublished results). Overall, these physiological changes in

silkworm growth were well-characterized by our method.

One of the limitations of applying this method to higher

organisms is the ability to label with SI at high concentrations,

especially in chemoheterotrophic organisms. However, our

experience with SI labeling in a wide range of higher organisms,

indicates that invertebrates, and insects in particular, tend to be

easily labeled by incorporation of glucose and/or amino acids.

Hence omnivores, such as rodents, might become important

model organisms in metabolomics as well as in other meta-

analytical fields for comparisons with humans. We have recently

reported SI labeling in mouse intestine, resulting in the successful

in vivo detection of the anti-bacterial metabolite reuterin [81].

Another limitation is that there is no direct evidence linking an

identified metabolite with a unique pathway if the connection is

limited to the methods reported here, because many metabolites are

substrates or products of several pathways. Coincident detections of a

metabolite in the same pathway, and correlation on the PC1 axis

lend some support. Combining SI-labeling techniques can also

support them. For example, 13C-labeled positions inside a molecule

offer a hint about paths of molecular conversions.

Our graphic representation may not be adequate to serve as a

quantitative tool for understanding these higher dimensional

correlations, but the apparent coarse-grained patterns of increas-

ing and decreasing 13C intensities in metabolites and pathways

occurred coincidently throughout related metabolic pathways

during the period from ecdysis to the fifth instar. This method can

thus be used to screen physiological changes in organisms by using

coarse-grained views of metabolic pathways in which it would be

useful to have an overview of several specific metabolic states.

Methods

Chemicals and biological samples
SI-labeled compounds were purchased and fed to Bombyx mori

fourth instar larvae (Ehimesansyu Co. Ltd., Ehime, Japan) or T87

Arabidopsis thaliana cells (RIKEN BioResource Center, Tsukuba,

Ibaraki, Japan) to examine chemical shifts (see Text S1). T87 cells

were incubated and subcultured every 7 days in 20 mL of JPL

medium [82] supplemented with 0.5% (v/v) glucose in a 100-mL

baffled Erlenmeyer flask on a rotary shaker at 100 rpm and 24uC
under a 16-h light / 8-h dark cycle unless otherwise noted. Cells

were labeled with [13C6]glucose as described elsewhere [31]. B.

mori larvae were grown on 1 g of a semi-synthetic diet medium

(Katakura-kogyo Co. Ltd., Hachioji, Japan) supplemented with

200 mL of an aqueous solution containing 2% (w/w) [13C6]glucose

and 1% (w/w) [13C,15N]amino acids (AA) at 26uC under a 10-h

light/14-h dark cycle for 12 days. The hemolymph from SI-

labeled silkworms was sampled on days 2, 6, 7, 10, and 12.

Standard buffer for NMR
Chemical shift reference buffer (100 mM, pH 7.0, 1.0 mM

DSS) was made from 1 M aqueous potassium phosphate stock

solutions (KH2PO4 and K2HPO4), and 2,2-dimethyl-2-silapen-

tane-5-sulfonate (DSS) in deuterium oxide (D2O) water.

NMR extracts
Non-labeled T87 cells were washed twice with water,

lyophilized, and ground to powder. 5 mg of the powder was

suspended in 600 mL of the standard buffer, heated to 50uC for

5 min, and centrifuged at 100006 g for 5 min. 500 mL of

supernatant was decanted into a 5-mm ø NMR tube. 13C-labeled

T87 extracts were prepared essentially as described elsewhere

[31]. 13C- and 15N-labeled silkworm hemolymph was extracted

from one or a few silkworms by centrifugation of hemocytes at

40006g for 5 min. 162 mL of each hemolymph sample was added

to 18 mL of 1 M potassium phosphate buffer (10% D2O, 5 mM

DSS), and then transferred to a 5-mm ø Shigemi NMR tube.

NMR spectroscopy
All HSQC [29] and 3D HCCH-COSY [49] spectra were

acquired at 298 K on a Bruker AVANCE DRX 500 (AVANCE

DRU 700) NMR spectrometer operating at 500.13 (700.15) MHz

and equipped with an 1H inverse cryogenic probe with Z-axis

gradients (see Text S1). Spectra were processed using the

NMRPipe software package [83] with window functions, zero-

fillings, linear predictions, and polynomial baseline corrections.
13C-HSQC peaks were identified by an automated algorithm

embedded in the software and refined manually. Peak intensities

were determined with peak heights.

Metabolite chemical shift database
Each purchased standard compound for compiling into the

database was measured by NMR under standardized conditions.

Chemical shift fluctuations with and without the addition of

unlabeled T87 cell extracts from seven different cultures were

examined. One of the extracts was from cells grown under a 24-h

light (LL) cycle. The pH of samples was determined (model B-212

Horiba pH meter) and 13C-HSQC spectra were recorded in

standard buffer only (control), standard buffer with non-labeled

T87 extract, or in standard buffer with labeled T87 extract.

Chemical shift fluctuations were defined as the differences in

chemical shifts between labeled and control. The chemical shifts of

labeled compounds were derived by comparing labeled and non-

labeled spectra. Chemical shift fluctuations for succinate and

fumarate in T87 extracts were examined by 13C-HSQC and

identified by their chemical shift values and visual inspection.

Chemical shift fluctuations due to very small differences in buffer

preparation (artifacts) were determined by a comparison of control

spectra using standardized buffers from different lots but having

the same composition. The pH dependence of chemical shifts for

16AA, glucose, succinate, and fumarate was examined by 13C-

HSQC at seven different pH values in citric acid–phosphate buffer

at pH 3; acetate–sodium acetate or succinate buffer at pH 4 and

5; potassium phosphate buffers at pH 6 and 7; and sodium

hydroxide–boric acid buffers at pH 8 and 9. Our chemical shift

data are continuously updated and are available on the PRIMe

website [84] (http://prime.psc.riken.jp/).

Systematic batch identification of metabolites
The metabolite chemical shift database was implemented with

an in-house Java program which allows systematic batch

identification of large numbers of metabolites by simply matching

the queried observed 13C-HSQC peaks with peaks in the

implemented metabolite chemical shift database. It also allows

aliased chemical shifts. Each of the queried observed peaks was

defined as identified or assigned when the chemical shift difference

in each dimension between the observed peak and that of the

database was less than some tolerance value. Typically, tolerances
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of 0.03 to 0.04 ppm for 1H and 0.3 to 0.4 ppm for 13C were used

in this study. An identification or assignment was defined as

unique if there was only one candidate in the database within the

specified tolerances for an observed peak.

Coarse-grained views of metabolic networks
Sequential 13C-HSQC spectra for silkworms in a 13C-feeding

experiment were obtained twice daily on five different days. The

resulting 56 uniquely identified metabolites common throughout

these ten spectra were converted to a 56656 (metabolite–

metabolite) correlation matrix in which an element of the matrix

was defined as Pearson’s coefficient of correlation between the

representative intensity of a metabolite and that of any other

metabolite (Fig. 4b). The representative intensity of a metabolite

was defined as the ratio of the summation of the intensities of all of

the 13C-HSQC peaks for a metabolite to that of DSS, and

corresponds to the abundance of 13C atoms to the metabolite.

Principal Components Analysis (PCA) was performed on the

correlation matrix by Eigenvalue decomposition with Mathema-

tica software (Wolfram Research), and the principal component

scores and loadings on PC1 and PC2 were determined. Using a

simulated annealing technique and 132 KEGG Markup Language

files (KGML, version 0.6) obtained from KEGG [47] (http://

www.genome.ad.jp/kegg/), we computed coarse-grained repre-

sentations of metabolic pathways. The simulated annealing

algorithm first allocated a total intensity value to each pathway,

consisting of the summation of the representative intensities of the

identified metabolites in the pathway. The color of a pathway was

computed on the basis of total loadings on the PC1 of the pathway

(see the Pilot Application section in the Results section). Next, all

of the pathways were randomly scattered within the area of the

figure, and Metropolis Monte Carlo simulations were sequentially

performed by gradually cooling the temperature to calculate a

coarse-grained representation of the metabolic pathways. The

total energy of the system was defined in terms of the distance of

each pathway from the center, overlapped areas between two

pathways, and between a pathway and the periphery of the figure

(see Text S1). The algorithm was designed to minimize overlaps

between pathways and to place the pathways that have a larger (or

smaller) total intensity toward the center (or outside) (see the Pilot

Application section). Since a simulated annealing technique is a

heuristic procedure, it was performed 3 times for each sampling

stage, resulting in 15 coarse-grained views. Although similar views

were obtained at each day stage, we selected one of the views by

visual inspection in which the positions of the pathways were

maintained according to their colors (Fig. 5b–d). Since this layout

algorithm only includes general parameters such as the sizes of

components or intensities, it does not include any specific

parameters dependent on only KEGG database. However, the

results can vary slightly if the definition of a metabolic pathway, or

a component of a pathway, is slightly different from that used in

our method.
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