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Activation-induced cytidine deaminase (AID) and its relative APOBEC3 cytidine deam-
inases boost immune response by mutating immune or viral genes. Because of their 
genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to 
highly charged surfaces, extensive non-specific protein–protein/nucleic acid interactions, 
formation of polydisperse oligomers, and general insolubility, structure elucidation of 
these proteins by X-ray crystallography and NMR has been challenging. Hence, almost 
all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, 
we reported a functional structure for AID using a combined computational–biochemical 
approach. In so doing, we described a new regulatory mechanism that is a first for 
human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the 
catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by show-
ing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic 
pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. 
We focus on three sub-topics: first, we propose that variable pocket closure rates 
across AID/APOBEC3s underlie differential activity in immunity and cancer and review 
supporting evidence. Second, we discuss dynamic pocket closure as an ever-present 
internal regulator, in contrast to other proposed regulatory mechanisms that involve 
extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray 
and NMR, with that of emerging computational–biochemical approaches, for structural 
elucidation specifically for AID/APOBEC3s.

Keywords: lymphoma, antibodies, DnA mutations, leukocytes, enzymes and coenzymes, Hiv infections

iMPORTAnCe AnD CHALLenGeS OF SOLvinG AiD/APOBeC 
STRUCTUReS

Activation-induced cytidine deaminase (AID) is a 198 amino acid DNA-editing enzyme that deami-
nates deoxycytidine (dC) to deoxyuridine (dU) in single-stranded DNA (ssDNA) (1–6). It acts on 
immunoglobulin (Ig) loci initiating hypermutation and recombination events that lead to improved 
and class-switched antibodies (1, 7–9). However, AID is loosely targeted to Ig loci, and hence, it 
induces genome-wide mutations and double-strand breaks which can lead to tumors (10–16). In 
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addition, continued AID expression increases genetic plasticity of 
tumors thereby accelerating disease progression (17, 18).

Activation-induced cytidine deaminase is a member of 
the apolipoprotein B RNA-editing catalytic component (AID/
APOBEC) family of cytidine deaminases, a Zn-dependent fam-
ily with 11 members in humans: AID, APOBEC1, APOBEC2, 
the APOBEC3 sub-branch (A-H, excluding E), and APOBEC4 
(9, 19, 20). The APOBEC3 (A3) sub-branch members are anti-
retroviral/retroelement restriction factors thereby also playing an 
immune function (21, 22); however, in the last few years, a role in 
cancer initiation has also emerged for the A3 sub-branch of the 
family, in particular, A3A, A3B (23–32), and more recently A3H 
haplotype I (33).

Given their intimate links to immunity and cancer, much 
effort has been placed on understanding the molecular structures 
of AID/APOBECs over the last decade. A major hurdle in this 
effort has been the isolation and purification of native AID/
APBOEC proteins to absolute purity. To different measures 
for each individual family member, the challenges include cel-
lular genotoxicity, highly charged surfaces mediating extensive 
non-specific protein–protein, protein–DNA/RNA interactions  
(9, 34), and polydisperse oligomerization (35, 36). Consequently, 
in most cases, structure resolution by the traditional method-
ologies of X-ray crystallography and NMR has necessitated 
substantial alterations to stabilize protein charge and enhance 
solubility or crystallization. Therefore, the vast majority (22 of 
24) of APOBEC structures solved by X-ray or NMR are of trun-
cated and/or mutated versions, necessary to enhance solubility 
(Table 1) (37–57). Nevertheless, it has become clear that AID/
APOBEC family member enzymes share the core structure of a 
central β-sheet with 4 or 5 β strands sandwiched between 6 and 
7 α-helices, connected by 12–13 flexible loops of variable lengths 
(Figure 1A). Second, they all have highly charged DNA-binding 
grooves, necessary to bind negatively charged polynucleotides. 
The arrangement of core catalytic residues in the catalytic pocket 
is also conserved, consisting of a Zn-coordinating triad of two 
cysteines and a histidine, atop a catalytic proton-donor glutamic 
acid (C87, C90, H56, and E58 in AID) (9, 19, 20, 58).

SOLvinG THe STRUCTURe OF AiD AnD 
DiSCOveRY OF CATALYTiC POCKeT 
CLOSURe in AiD/APOBeCs

The biochemical properties of AID have been previously 
described. AID has an exceptionally high affinity (nM range) 
for binding ssDNA and an unusually slow catalytic rate of one 
reaction in several minutes (5, 60), ~2,000 times slower than a 
typical enzyme (61). We postulated that this catalytic lethargy 
and high-binding affinity to DNA had evolved to protect genomes 
from rampant AID activity (9). In direct support of this notion, 
mutants of AID with higher catalytic rates were shown to mediate 
higher levels of genome damage in cells (62). Although this body 
of work led to understanding AID’s behavior, the molecular basis 
behind these properties remained an enigma. AID is notoriously 
challenging to isolate to absolute purity and hence its native 
structure has remained unsolved by X-ray and NMR since its 

discovery in 1999, despite intense efforts. Thus, we posited that 
even if AID’s structure were to be solved by traditional methods 
of X-ray or NMR, it would most likely be of a truncated and/
or heavily mutated version. We proposed an alternative meth-
odology to gain insight into the functional and native structure 
of AID. We utilized eight recently solved structures of AID’s 
APOBEC relatives as templates to generate thousands of AID 
predicted model structures followed by identification of the low-
est energy clusters (58) (Figure 1A). Concurrently and guided by 
the computational predictions, we generated a library of 400 AID 
variants and carried out extensive biochemical characterization 
of catalytic function and DNA binding to rigorously test key pre-
dictions of models. This library included different point mutants 
for each residue along the length of AID, orthologous AIDs, and 
chimeras involving regions of other deaminases exchanged into 
the AID scaffold, or vice-versa. Our rationale for including AID 
orthologs was that divergent AID from distantly evolved species 
may have distinct biochemical properties and characterizing 
these through a combination of homology structural modeling 
and functional analysis of mutated and chimeric enzymes would 
generate structure:function insights. Differences among ortholo-
gous AIDs included catalytic rates, substrate preferences, DNA-
binding affinities, and thermosensitivity profiles (63–65). Since 
these differences are typically due to structural features, being 
reflective of catalytic motifs, surface composition, and overall 
protein flexibility, respectively, characterizing the basis of these 
differences among orthologs proved a valuable tool to gain insight 
into AID’s structure:function relationships. This computational–
biochemical approach led to the first relatively detailed 3D maps 
of AID’s functional structure with special focus on catalytic 
pocket architecture and ssDNA-binding motifs (9, 58, 63, 64).

The architecture and dynamics of an enzyme’s catalytic 
pocket are important determinants of its activity. In addition to 
the core catalytic pocket composed of the aforementioned triad 
Zinc-coordinating residues and a Glutamic acid, we identified 
an additional 21 amino acids that are not directly involved in the 
deamination reaction, but compose the pocket’s physiochemi-
cal microenvironment (58). These residues termed secondary 
catalytic residues form the “walls” and “floors” of the pocket and 
stabilize dC binding. We noted that the conformations of these 
secondary catalytic residues exhibited more variability than that 
of the primary catalytic residues among predictions, because these 
residues reside on several highly flexible connecting loops without 
secondary structures of their own, that surround the catalytic 
pocket (Figure 1B). Because of this placement, we observed that 
the catalytic pocket of AID appeared to be only marginally stable 
such that ~75% of conformations exhibit a occluded pocket unable 
to accommodate dC. Thus, we hypothesized that dynamic catalytic 
pocket closure is a built-in mechanism that limits AID activity.

There are several lines of indirect but strong evidence for the 
existence of catalytic pocket closure in AID/APOBEC3s. First, 
the fact that the majority of AID conformations exist in a state 
with closed catalytic pockets provides a mechanistic explanation 
for the relative catalytic lethargy of AID as discussed above (5). 
Second, it is mathematically compatible with known parameters 
of AID: AID binds ssDNA sporadically on its surface such that 
most ssDNA (~95%) neither pass over AID’s catalytic pocket, nor 
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TABLe 1 | All X-ray and nMR solution structures of the APOBeC family.

APOBeC experimental 
method

Truncations Mutations PDB iD

Hs-A2 X-ray Truncated (Δ1–40) N/A 2NYT
Mouse-A2 NMR solution Truncated (Δ1–45) N/A 2RPZ

Hs-A3A NMR solution N/A N/A 2M65

Hs-A3A X-ray N/A E72A, C171A 4XXO

Hs-A3A X-ray Truncated (Δ196–199) E72A 5SWW

Hs-A3B X-ray Truncated (Δ1–186, Δ242–248) F200S, W228S, L230K, Y250S, F308K 5CQK

Hs-A3B NMR solution Truncated (Δ1–186) N/A 2NBQ

Hs-A3B X-ray Truncated (Δ1–186, Δ205–207, 
Δ242–249)

F200S, V205G, L209I, R210G, R212H, Q213K, W228S, L230K, 
Y250S, E255A, F308K

5TD5

Hs-A3C X-ray  N/A N/A 3VOW

Hs-A3F X-ray Truncated (Δ1–184) Y196D, H247G, C248R, C259A, F302K, W310D, Y314A, Q315A, 
K355D, K358D, F363D

4IOU

Hs-A3F X-ray Truncated (Δ1–217) N/A 4J4J

Hs-A3F X-ray Truncated (Δ1–186) N/A 3WUS

Hs-A3F X-ray Truncated (Δ1–184) Y196D, H247G, C248R, C259A, F302K, W310D, K355D, K358D, 
F363D

5HX5

Hs-A3F 
(Zn-depleted)

X-ray Truncated (Δ1–184) Y196D, H247G, C248R, C259A, F302K, W310D, K355D, K358D, 
F363D

5HX4

Hs-A3G NMR solution Truncated (Δ1–197) L234K, C243A, F310K, C321A, C356A 2JYW

Hs-A3G X-ray Truncated (Δ1–196) N/A 3E1U

Hs-A3G NMR solution Truncated (Δ1–192) N/A 2KBO

Hs-A3G NMR solution Truncated (Δ1–190) L234K, C243A, F310K, C321A, C356A 2KEM

Hs-A3G X-ray Truncated (Δ1–194) L234K, C243A, F310K, C321A, C356A 3IR2

Hs-A3G X-ray Truncated (Δ1–194) L234K, C243A, F310K, C356A 3V4K

Hs-A3G X-ray Truncated (Δ1–192) D370A 4ROW

Hs-A3G NMR Truncated (Δ1–11, Δ78, 
Δ143–146, Δ197–384)

Y13D, R14P, Y22N, L62D, F71L, H72S, W73L, F74V, T101A, A109Q, 
D110P, P111T, K112H, F126A, C139A, K141A, R142G, M149I, R169G, 
E170A, L171P, E173Q, N176D, N177G, P179D, K180E, Y181H, 
Y182S, I183Q, L184A, H186S, I187G, M189R

2MZZ

Primate-A3G X-ray Truncated (Δ139–146, Δ197–384) (C139-Q140-K141-R142-D143-G144-P145-H146) replaced with (A-E-
A-G) residues

5K83

Hs-AID X-ray Truncated (Δ1–4, Δ20–22, 
Δ184–198)

N7D, R8P, R9H, K10I, L12T, Y13S, Q14N, K16N, V18G, R19I, R25H, 
E26K, V32E, K34E, R36L

5JJ4

Most APOBEC structures are heavily modified through mutations and/or truncations. Δ denotes the amino acids that were deleted from the structure. In cases where a study has 
reported several protein databank IDs of highly similar structures, a representative PDB code is listed.
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position dC for catalytic pocket entry. The proportion of catalyti-
cally viable AID:DNA complexes (~5%) multiplied by the ratio 
of open pockets (25%) yields (1.25%). This correlates closely with 
our own estimates of active AID complexes based on Michaelis–
Menten parameters (5) and with other studies that carried out 
mathematical modeling of AID’s substrate catalysis (66).

Direct proof for existence and significance of catalytic pocket 
closure came from two sources: one functional, and the other 
structure-based. First, we designed a panel of AID variants in 
which the secondary catalytic loops and surrounding regions 
were replaced with their equivalents from other APOBECs or 
orthologous AIDs to alter predicted pocket dynamics such that 
the pocket would spend either more or less time in the open 
conformation. We then observed that the proportion of time 
the pocket was predicted to assume an open conformation cor-
related exquisitely with catalytic rate differences among said AID 
variants some of which became up to 100 times more active than 
wild-type AID because of a catalytic pocket that spends more 

time in the open conformation. This provided direct functional 
evidence that pocket closure limits activity. The second proof 
came from direct observation of closed pockets in several siblings 
of AID: in APOBEC3A by NMR (40), in APOBEC3B by X-ray 
crystallography (42, 57), and by NMR (43) (Figures 1C,D).

DiFFeRenTiAL CATALYTiC POCKeT 
STATeS MeDiATe vARiABLe BiOLOGiCAL 
ACTiviTieS AMOnG AiD/APOBeCs

From an evolutionary perspective, regulation by catalytic pocket 
closure provides an effective means to fine-tune variable levels 
of enzymatic robustness across the AID/APOBEC family, as well 
as impart varying types of activities among orthologous versions 
of each family member. This is because the same high degree of 
movement freedom in the secondary catalytic loops that lead to 
the fluidity of catalytic pocket dynamics in each AID/APOBEC3 
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enzyme also allows for a high level of sequence and length 
divergence in these loops among individual AID/APOBEC3s, to 
impart a unique range of open/closed breathing dynamics to the 
catalytic pocket of each member (Figure 1).

To elaborate, in each APOBEC3, the catalytic pocket “walls” 
and “floor” are composed of residues contributed by four second-
ary catalytic loops (Figure 1B). The highest structural variation 

among the AID/APOBEC family appears in loop 2 (L2), loop 4 (L4), 
and loop 8 (L8) with respect to sequence homology, length, and 
compaction relative to the core enzyme structure (Figures 1B,C) 
(58). L2 contains residues involved in ssDNA-binding, catalytic 
pocket and dC stabilization, substrate specificity, and 5-mC toler-
ance (58, 67–69). L4 contains residues critical to catalysis and 
catalytic pocket occlusion (58). Recently, an allosteric regulatory 
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FiGURe 1 | Continued  
Core architecture, catalytic pocket occlusion, and computational/biochemical approaches to solving activation-induced cytidine deaminase 
(AiD)/APOBeC structures. (A) Representative ribbon structure (left) and surface topology (right) of AID modeled from APOBEC templates. In the ribbon 
structure, N- to C-termini progression is shown from blue to red and the gray sphere depicts active site zinc. In the surface topology, positive, negative, and 
neutral residues have blue, red, and white surfaces, respectively. The Zn-coordinating residues and catalytic glutamic acid surface are colored purple. A distinct 
feature of AID among the APOBECs is its high positive charge at neutral pH, concentrated along two single-stranded DNA (ssDNA)-binding grooves that pass 
over the catalytic pocket. (B) Ribbon structures of A3A (transparent) and AID (non-transparent) were superimposed. In each protein structure, the secondary 
catalytic loops 2, 4, 6, and 8 are colored red, orange, green, and blue, respectively. (C) Catalytically accessible (left), partially occluded (middle), and catalytically 
restricted (right) conformations of A3A (top), A3B-CTD (center), and AID (bottom). The surface of secondary catalytic loop 2, 4, 6, and 8 were colored red, 
orange, green, and blue, respectively, to correspond with the ribbon structure shown in panel B. Catalytically accessible conformations are shown with bound dC 
in the catalytic pocket. Conformations were deemed catalytically accessible if they bound dC in a deamination-feasible configuration in the catalytic pocket via 
molecular docking [AutoDock VINA (59)]. In catalytically restricted conformations, the secondary catalytic loops adopt a configuration that block the pocket. (D) 
Proportion of catalytically restricted (red), partially occluded (purple), and catalytically accessible (green) conformations in A3A (top), A3B-CTD (center), and AID 
(bottom). A3A showed a dramatically higher proportion of catalytically accessible conformations in comparison to A3B-CTD and AID. NMR conformations of A3A 
(PDB: 2M65), A3B (PDB: 2NBQ), and previously reported structures of AID (58) were used. (e) Combinatorial computational/biochemical approach for solution of 
functional and native enzyme structures. A library of thousands of predicted structures is generated through homology modeling with a range of suitable template 
structures, generating multiple low energy conformations. The resulting conformational ensemble is then evaluated mathematically (e.g., Ramachandran and 
other means of evaluating model quality). Models are also checked for concordance with known biochemical properties of the enzyme. Molecular docking can 
be used to determine the substrate binding regions of the active site and surrounding regions. Concurrently, specific hypotheses are formed based on the 
highest confidence predicted conformations and their interaction with substrate. To test these hypotheses and to validate the positions and relative attitudes of 
specific core or surface residues, a large variant library ought to be constructed and tested in functional enzyme assays. This library can include point mutants, 
multiple mutants, orthologous and chimeric versions of the enzyme. For key residues involved in catalysis regulation, several point mutations spanning the range 
of synonymous to severe are more informative. Functional evaluation of this variant library ought to be used to confirm the involvement of key residues/motifs in 
specific biochemical aspects such as substrate binding, catalysis, and structural stability. Collectively, information from functional testing of the variant library is 
used to refine and validate the predicted enzyme structure and its interactions with substrate, to yield a functional and native structure.
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role for L4 in A3A and A3G was identified through coordination 
of a secondary Zn that enhances activity (70). Interestingly, sec-
ondary Zn coordination was suggested to fine tune the position 
of the secondary catalytic residues, thus creating an ideal environ-
ment for cytidine deamination (70). Furthermore, secondary Zn 
coordination was suggested to mediate cooperative dimerization. 
Lastly, L8 mediates substrate sequence specificity, dC stabilization, 
and 5-methyl-C (5-mC) tolerance (58, 64, 67, 71). Collectively, the 
secondary catalytic loops mediate functional differences among 
the AID/APOBECs and dictate variations in the frequency of 
open vs. closed catalytic pockets.

Based on these observations, we proposed that differences 
in secondary catalytic loops mediate variable catalytic pocket 
breathing dynamics, responsible for different enzymatic robust-
ness among AID/APOBEC enzymes (58). Indeed, in the last year, 
functional evidence in support of this novel mode of regulation 
has emerged. First, A3A exhibits open catalytic pockets in more 
conformations than AID (67 vs. 25.6%), and accordingly it is 
a more robust enzyme with a faster on/off rate of deaminating 
DNA (40, 72). Second, A3B-CTD exhibits roughly one third of 
the pockets in an open conformation compared to A3A (20 vs. 
67%, respectively) (Figure 1D) and this also correlates directly 
with a lower catalytic rate (43). It is intriguing that thus far, 
catalytic pocket occlusion has been observed in three of the most 
mutagenic and tumorigenic members of the AID/APOBEC fam-
ily: AID, A3A, and A3B. This lends credence to the idea that this 
is an internal protective mechanism to limit genome mutations 
by these enzymes. As mentioned above, the difference in catalytic 
activity of purified AID, A3A, A3B-CTD, correlates with the 
ranking of pocket occlusion (Figure 1D). Though further study 
is required to clarify the relative contributions of A3A, A3B, and 
other APOBEC3 branch enzymes (e.g., A3H) in various types of 
cancers, some emerging evidence indicates that there is a more 
dominant mutational signature observed from A3A than A3B, at 

least in a yeast model and in urothelial carcinoma, despite lower 
levels of A3A expression (28, 73).

In addition to regulation of tumorigenic activity, differences 
in catalytic pocket dynamics also appear to correlate well with 
other biological functions of AID/APOBECS. As an example, 
zebrafish AID has a significantly higher reaction rate than human 
AID and is also unique among all AID orthologs in that it can 
deaminate 5-mC in methylated CpG motifs (64). This explains 
a puzzling previous report that zebrafish AID plays a completely 
non-immune role. During embryogenesis in zebrafish, AID 
can mediate promotor demethylation through erasure of gene-
silencing CpG methylation marks, thus orchestrating widespread 
gene expression required for tissue differentiation (74). This is 
attributable to conformational differences in the aforementioned 
secondary catalytic loops between human and zebrafish AID, 
which translate to a higher ratio of open vs. closed catalytic 
pockets. Consequently, zebrafish AID can accommodate and 
deaminate 5-mC, as opposed to human AID whose activity on 
5-mC is negligible. This enzymatic difference is one factor that 
enables zebrafish AID to function in genome demethylation dur-
ing embryonic development, an activity that is completely outside 
the realm of an immune function (58, 64). Taken together, these 
lines of evidence are supportive of catalytic pocket occlusion 
being a key regulator of biological functions of AID/APOBEC3s, 
including their role in tumorigenic genome damage.

CATALYTiC POCKeT OCCLUSiOn AS 
inTeRnALLY BUiLT-in ReGULATiOn

Since the discovery of AID, much effort has been directed at 
understanding how its activity is regulated, under the supposi-
tion that a mutator so threatening must be operating under tight 
restrictions. To date, almost all efforts have focused on modes 
of regulation that are extrinsic to the enzyme itself. This has led 
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to the identification of over two dozen co-factors proposed to 
bind AID either directly or indirectly through associations with 
other proteins or DNA/RNA (75–99). The list of putative bind-
ing partners is rather large for a relatively small protein of 198 
residues. Hence, one must approach biological relevance with 
caution for several reasons: first, although some co-factors are 
modestly enriched at Ig loci, none can account for targeting AID 
to specific loci. Second, given the relatively small size of AID and 
the lack of clear conformational protein-binding domains, the 
number of proposed co-factors seems high. It is rather improb-
able that a small 198 aa globular enzyme can fold properly to 
bind ssDNA, deaminate dC, maintain sequence specificity, while 
still leaving enough non-essential portions free to bind dozens of 
different co-factors each in a specific and orchestrated fashion. 
Indeed, a careful analysis of AID’s structure reveals that most 
of its structure can be ascribed a function directly related to 
forming the core architecture essential to bind and deaminate 
a polynucleotide. Furthermore, a portion of the surface is likely 
unavailable due to forming the oligomerization surfaces, as most 
AID/APOBECs appear to exist as dimers or tetramers (5, 38, 70, 
100). Also, AID has a highly charged surface and a well-known 
propensity for high affinity non-specific interactions with other 
proteins (9, 34). Thus, the biological significance of AID binding 
to many of its putative co-factors is a topic that requires further 
resolution. Furthermore, the very premise of searching for cofac-
tors to explain regulation of AID targeting may be flawed in that 
the more AID is studied, the clearer it becomes that its activity 
is rather not tightly regulated: despite a modest preference for Ig 
loci which appears to be mediated by unique transcriptional fea-
tures (101–103), AID mutates endogenous genes and transgenes 
genome-wide, and can do so in any cell type in which it is naturally 
or exogenously expressed (10, 104–107).

Like AID, the search for regulatory mechanisms of other 
APOBEC3s has also focused on extrinsic binding factors, of 
which several have been identified including various viral 
proteins, and transcription factors (108–111); the most well-
characterized APOBEC3 are virion infectivity factor (Vif) and 
cytoplasmic ribonuclear complexes. The Vif protein of HIV binds 
and targets A3C, A3G, A3F, A3D, and A3H (to varying degrees) 
for degradation via a ubiquitin-dependent proteosomal pathway 
(44, 112–120). Thus, when Vif is present, APOBEC3 effectiveness 
in viral restriction is severely diminished. Second, the activity of 
the anti-retroviral APOBEC3s is limited by entrapment in high-
molecular-mass ribonuclear complexes (HMM) that may reach 
megadaltons in size, mediated by non-specific protein/DNA/
RNA binding in the cytoplasm, mediated by aforementioned 
highly charged surfaces (121–127).

In contrast to regulation by extrinsic binding partners, be 
they protein or nucleic acid, catalytic pocket closure represents 
a novel intrinsic mode of regulation. This simple mechanism of 
limiting activity has several attractive features: it is ever-present, 
biologically reliable, mechanistically simple, and structurally 
sound. Furthermore, as discussed in the preceding section, its 
variation is an evolutionary efficient mechanism for diversifying 
and fine-tuning activity levels of family member enzymes, as cata-
lytic pocket closure rates can be adjusted by minimal amino acid 
substitutions in secondary catalytic loops. It is also biologically 

efficient since it does not require any cellular resources, unlike 
the proposed complex networks of co-factors, which themselves 
would require regulation in different cells at different stages of 
differentiation or viral infection, thus amplifying the need for 
cellular resources.

iMPORTAnCe OF DeTeRMininG AiD/
APOBeC3 STRUCTUReS THAT ARe 
nATive AnD inCLUDe FUnCTiOnAL 
inSiGHTS

X-ray crystallography and NMR have advanced the AID/
APOBEC field with the full or partial structure elucidation of 
7 of 11 APOBEC enzymes. Despite these achievements, there 
are pitfalls in using these traditional methods alone. First, the 
purification issues discussed above have necessitated working 
with significantly truncated and/or heavily mutated versions of 
AID/APOBEC proteins (Table 1). The truncations and mutations 
are often in functionally critical regions, such as the secondary 
catalytic loops. Additionally, all double-domain APOBECs whose 
structure has been characterized (A3B, A3F, and A3G) lack their 
enzymatically inactive N-terminal half which is implicated in the 
catalytic activity and dimerization (56, 128, 129). The N-terminal 
half of A3G’s separate structure was recently reported; however, 
these were also mutated and likewise lack the C-terminal half (55, 
56). Second, depending on crystallization or NMR conditions, 
even the same APOBEC structure determined by different groups 
can be quite distinct (49, 50). These differences are likely due to 
differences in solution or crystallization conditions which can bias 
toward a specific structure or conformation (130).

In contrast, the methodology that we applied to solving AID’s 
structure provides both a functional and native structure (58). By 
integrating dynamic modeling with the study of a large library of 
variants to functionally verify key model predictions, the emerging 
picture integrates the relative abundance of an enzyme’s confor-
mations with functional significance (Figure 1E). This approach 
is particularly advantageous in the case of AID/APOBEC3s 
because many functional differences among AID/APOBEC3 
family members appear to be dictated by subtle differences in 
breathing dynamics, rather than major architectural differences. 
It is important to note that despite being a robust methodology 
for determining functional and native enzyme structures, this 
approach is not without practical challenges: first, it is laborious 
and time-intensive since it requires examination of thousands of 
high confidence models. As modeling efforts progress, there is a 
continuing need to generate and test a large variant library, often 
necessitating several mutants of each key residue to rigorously 
verify its exact position, relative attitude, and role(s). In addition, 
a sensitive enzyme assay able to detect even small differences 
in biochemical properties with that of wild-type ought to be in 
place. Practical difficulties are compounded by the fact that this 
approach of solving a functional and native structure is often 
most useful for enzymes that are challenging to purify. Second, 
modeling efforts depend critically on the availability of solved 
X-ray or NMR structures to serve as templates, with multiple 
templates increasing confidence. For instance, at the time of our 
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efforts on AID, we utilized eight available APOBEC structures 
as templates. It is important to have numerous templates from 
different family members, so as to at least partially compensate 
for aforementioned limitations of each template in terms of 
encompassing the full range of conformations. Furthermore, 
template structures ought to be evaluated for their suitability 
on the basis of extent and location of homologous/identical 
residues, and model quality itself ought to be rigorously scruti-
nized, mathematically and functionally using the variant library 
(58) (Figure 1E). Third, the basic biochemical properties of the 
enzyme ought to have previously been determined so as to serve 
as a valuable verification tool for model validity; since we had 
already determined that AID has an unusually low catalytic rate 
and high binding affinity for ssDNA, the fact that our structure 
fully explained both of these properties through the abundance 
of closed pockets and positively charged surface residues along 
putative DNA-binding grooves and elsewhere on the surface, pro-
vided further confidence. Lastly, definite physical confirmation of 
findings requires subsequent observation by X-ray and NMR, as 
in the case of catalytic pocket closure described above. In addition 
to our observation of catalytic pocket closure being confirmed by 
direct X-ray and NMR studies as described above (42, 43, 57), 
other X-ray studies have also confirmed our observation of key 
catalytic residues as well as important DNA-binding residues of 
AID: following the publication of AID’s functional structure, 
the crystal structure of an AID variant was also reported (37). 
As expected, it included mutations and truncations crucial to 
solubilize AID for X-ray crystallography (Table 1). Although this 
structure represents a significant achievement, it necessitated 
introducing mutations and truncations that removed some of the 
unique characteristics of AID. For instance, the majority of muta-
tions neutralized the positively charged surface residues lining 
the DNA-binding groove culminating in a net charge of +4.5, 
as compared to AID’s native charge of +14 at neutral pH. This 
high net positive charge of AID is a unique feature amongst AID/
APOBEC3s with known structure (−2, −6, +0.5, −9, and −3.5 of 
A3A, A3B-CTD, A3C, A3F-CTD, and A3G-CTD, respectively).

With this limitation, this structure nevertheless presents a 
unique opportunity for a comparison of structure determination 
methodologies. To this end, we compared the AID variant crystal 
structure with the computational–biochemical AID conforma-
tional ensemble (loop 2, 4, 6, and 8, denoted as loop 1, 3, 5, and 
7, respectively, in other publications on APOBEC structures). 
Overall, the AID structures shared virtually the same tertiary 
structure and the variant structure confirmed some of the key 
secondary catalytic residues we posited would stabilize dC in the 
catalytic pocket (i.e., N51 and Y114). Most of the mutations in 
the AID variant were localized to L1, L2, and α1, regions, while 
α7 was deleted. There are also several notable differences: first, 
L2 adopts a more compact conformation relative to the core 
structure, likely due to the deletion of three residues in L2. We 
and others have previously shown that L2 plays a role in catalytic 
activity and AID:DNA binding of AID (58, 67). Second, L8 
adopts a much more extended conformation in the AID variant. 
It was suggested this extended conformation stabilized larger 
purine bases upstream of the target cytidine, in contrast to other 
APOBECs whose shorter L8’s preferred pyrimidines upstream. 

However, the structure of L8 is stabilized by L2, which has been 
shown to modulate its compaction and substrate specificity (69). 
Additionally, the conformation of α7 relative to the surface of 
AID is uncertain, although some conformations place it in direct 
contact with L8 (58). Therefore, although L8 was not directly 
altered, mutation of L1-α1-L2 together with α7 deletion may 
indirectly perturb its conformation in the AID variant crystal 
structure.

Using our computational–biochemical approach, we also 
highlighted two DNA-binding grooves on the surface of AID, for 
both of which the positively charged R25 residues plays a major 
role in orienting the negatively charged DNA backbone (58). 
Recently, DNA-bound crystal structures of mutant A3A and an 
A3B-CTD chimera were shown to adopt a similar DNA-binding 
mode, wherein the DNA backbone was bound around the equiva-
lent of R25 in AID (H29 and H212, in mutant A3A and A3B-CTD 
chimera, respectively) (57).

In this manner, X-ray and NMR structural elucidation of 
homologous APOBEC3s have provided direct physical support 
for notable features of AID observed using the computational–
biochemical approach. These features include position and 
identity of catalytic residues, key DNA-contact residues as well 
as existence of occluded catalytic pockets, a novel regulatory 
mechanism.

COnCLUSiOn

In summary, we draw the parallel to the Schrödinger’s Cat 
paradox that the catalytic pockets of  AID/APOBEC3s appear 
to transition between dual states, one of which correlates with 
activity and the other with catalytic death, each with profound 
functional consequences. The second parallel between structure 
determination in the AID/APOBEC3 field and quantum physics 
is that X-ray crystallography and NMR determination of struc-
tures in the AID/APOBEC family have most often necessitated 
making extensive alterations to structures for and during the very 
act of observation. In contrast, the computational–biochemical 
approach used to solve AID’s functional structure relies on unob-
trusive observation through prediction. Interventions are strictly 
reserved for the functional testing phase wherein structure pre-
dictions are rigorously scrutinized by conducting enzyme assays 
on a large library of variants including mutants, orthologs, and 
chimeras (Figure 1E). As described in the preceding section, it is 
important to note that this method is nonetheless dependent on 
the availability of multiple X-ray and NMR structure solutions, 
both in the beginning as templates and in the end, as independent 
methods to independently verify the key aspects of the structure.

In the future, as the relative contributions of each individual 
AID/APOBEC3 enzyme to immunity and cancer in different 
contexts become clearer, it will be important to test the hypoth-
esis that catalytic pocket breathing differences among the AID/
APOBEC3 family members impact their relative contributions, 
and to understand the extent to which this novel built-in safety 
switch is intertwined with other regulatory mechanisms, such as 
perhaps being modulated by aforementioned extrinsic binding 
partners, oligomerization or post-translational modifications. 
Although catalytic pocket closure has been described for other 
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