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Abstract: This study aimed to predict the incidence of mumps using a seasonal autoregressive
integrated moving average (SARIMA) model, and provide theoretical evidence for early warning
prevention and control in Zibo City, Shandong Province, China. Monthly mumps data from Zibo City
gathered between 2005 and 2013 were used as a training set to construct a SARIMA model, and
the monthly mumps in 2014 were defined as a test set for the model. From 2005 to 2014, a total of
8722 cases of mumps were reported in Zibo City; the male-to-female ratio of cases was 1.85:1, the
age group of 1–20 years old accounted for 94.05% of all reported cases, and students made up the
largest proportion (65.89%). The main serious endemic areas of mumps were located in Huantai
County, Linzi District, and Boshan District of Zibo City. There were two epidemic peaks from April
to July and from October to January in next year. The fitted model SARIMA (0, 1, 1) (0, 1, 1)12 was
established (AIC = 157.528), which has high validity and reasonability. The SARIMA model fitted
dynamic changes of mumps in Zibo City well. It can be used for short-term forecasting and early
warning of mumps.
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1. Introduction

Mumps is an acute respiratory infectious disease caused by the mumps virus and characterized
by the inflammation of the parotid or other salivary gland. The main symptoms are nonsuppurative
swollen and painful glands, low-grade fever, and headache [1,2]. Most cases of mumps are mild and
self-limited, but some serious complications can also occur when the virus invaded various glandular
tissue, such as the nervous system, liver, kidney and heart. Approximately 10% of mumps cases
develop complications [3], with orchitis (testicular inflammation) and aseptic meningitis being the
most common [1,4]. Incidents of orchitis were reported in 11.8% of male mumps patients in the
Czech Republic [3]. Other complications should not also be neglected, such as pancreatitis, myositis,
and oophoritis [5]. In addition, mumps usually occurs in school-age children and adolescents, and
can result in childhood deafness [6]. It is also reported that the proportion of mumps cases among
adults has also increased [7]. Generally, the complications would be more severe with age, and affect
significantly more men than women [8]. Though cases occur in every month, mumps have obvious
seasonal characteristics. Outbreak peaks from April to June and from October to January, and occurs
regularly at intervals of two to five years [2]. A person would develop symptoms after direct contact
with mumps patients after about two to three weeks. The disease is generally transmitted through the
respiratory tract by direct contact, droplets, and saliva inhalation; the widespread non-immunized
population are susceptible [5].
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In China, mumps is defined as a notifiable infectious disease. The annual incidence is more than
20/100,000 since 2005; and infection rates reached 30/100,000 in 2011 and 2012 (http://cdc.ncmi.cn/
Share/index.jsp). Although some measures aimed at mumps have been applied, including vaccine
immunization [1], the epidemic situation remains serious due to gene mutation of the mumps virus
and China’s huge and highly mobile population. Outbreaks have been observed in many countries,
such as Korea in 2013 [9], the United States in 2006 [10], the Czech Republic [2], the United Kingdom,
and Belgium [11]. Mumps is extremely severe disease in the Shandong province, and it has the second
highest rate in respiratory infectious diseases and [12]. That is a serious public health concern in
Zibo City especially, which had the highest reported incidence of mumps among the 17 cities of
Shandong in 2012 [13]. It is necessary to fully understand the regularity of mumps in Zibo City, and
then model and forecast the disease to provide the scientific theoretical evidences for its prevention
and control. For infectious disease, there are many complex affecting factors. Time series analysis is
a method of quantitative analysis without regard to the influence of intricate factors, and it could make
a scientific quantitative forecast for the future trends of the disease in accordance with historical data
and time variables [14]. The autoregressive integrated moving average (ARIMA) model proposed by
Box and Jenkins is a commonly statistical method to forecast time series data. It could circumvent
many problems in the traditional regression, such as the difficulty in getting detailed data and grasping
the influencing factors of the forecasted objects. The ARIMA model has been increasingly used
in epidemiologic research to describe the temporal pattern of many diseases, such as dengue [15],
tuberculosis [16,17], malaria [18] and others [19–21].

In this study, the demographic characteristics and spatiotemporal distribution of mumps in
Zibo City are described. The seasonal ARIMA (SARIMA) model is established to fit the monthly
mumps from 2005 to 2013 in Zibo City, and the fitted model was used to forecast the mumps in 2014 to
verify the applicability and feasibility.

2. Materials and Methods

2.1. Study Area and Data Collection

Zibo is a central city in the Shandong Province of China, located between latitude 35◦55′ N and
37◦17′ N, and longitude 117◦32′ E and 118◦31′ E (Figure 1). The city consists of nine counties with
about 4.53 million permanent residents, according to a demographic census in 2010, and a total land
area of 5965 square kilometers, which covers nearly 3.8% of Shandong’s entire area. Zibo City has
developed into an important modern industrial city with steady population growth.
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The data on mumps from 2005 to 2014 in Zibo City are obtained from the Diseases Reporting
Information System of the Shandong Center for Disease Control and Prevention, and include the
age, sex and occupation for each case. The diagnostic criteria of mumps are the “Diagnostic
criteria for mump” established by the Chinese Ministry of Health (http://www.moh.gov.cn/zwgkzt/
s9491/200704/38797.shtml), and the disease diagnostic criteria remained consistent during the data
collection period.

2.2. Statistical Analysis

We used the descriptive epidemiology method to depict the epidemical distribution of mumps
firstly, including the temporal and spatial distribution, as well as sex ratio, high-incidence age group,
and occupation.

Given that many epidemiologic time series contain significant periodic and seasonal trends, the
SARIMA model should be considered, which includes seasonal characteristics of time series [21,22].
The basic structure of a general SARIMA model represents as SARIMA (p, d, q) (P, D, Q)S, using the
seasonality of mumps as the independent variable and monthly mumps as the dependent variable in
the study, and its formula is [21,22]:

∇d∇D
S Yt =

θq(B)ΘQ
(

BS)
ϕp(B)ΦP(BS)

εt

ϕp(B) = 1− ϕ1B− ϕ2B2 − . . . ϕpBp

θq(B) = 1− θ1B− θ2B2 − . . . θqBq

ΦP

(
BS

)
= 1−Φ1BS − φ2B2S − . . . φPBPS

ΘQ

(
BS

)
= 1−Θ1BS −Θ2B2S − . . . ΘQBQS

where p, d and q are the autoregressive order, number of difference, and moving average order,
respectively; P, D and Q are the seasonal autoregressive order, number of seasonal difference, and
seasonal moving average order, respectively; and S is the length of the seasonal period, defined as 12;
B denotes the backward shift operator, = 1− B, Yt represents the number of mumps at time t, and εt

are the estimated residuals. In the formula, ϕp(B) is the p order autoregressive coefficient polynomial,
θq(B) is the q order moving average coefficient polynomial, ΦP

(
BS) and ΘQ

(
BS) are the seasonal

polynomial functions of order P and Q, respectively.
The establishment of the SARIMA model is divided into the following four steps [22]: firstly,

a time series graph of monthly mumps cases from 2005 to 2014 is drawn to test its stationary intuitively.
If the sequence is not smooth, we need to perform logarithmic transformation and differencing on the
original sequence. Meanwhile, the Augmented Dickey-Fuller (ADF) method was used to determine
whether the new sequence was stable. Secondly, we identified the optional model parameters (p, d, q
and P, D, Q) to establish one or more alternative models, according to the autocorrelation coefficient
(ACF) and partial autocorrelation coefficient (PACF) of the differenced sequence of the monthly mumps.
The conditional least square method was used for parameters estimation. Thirdly, goodness-of-fit tests
of models were performed by comparing Akaike’s information criterion (AIC) and Schwarz Bayesian
Criterion (SBC). Smaller AIC and SBC indicate the better fitting model [22]. The confirmation of the
optimal model must comply with the Ljung-Box Q test, which demonstrates that its residual series is
a white noise. Finally, the mean absolute percentage error (MAPE) [23], correlation analyses between
observed cases and fitted cases, and a fitted and forecasted graph are used to evaluate the accuracy of
the final model.
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MAPE =
1
n

n

∑
t=1
|(xt − x̂t)/xt|

where xt is the number of reported mumps, x̂t is the number of forecasted mumps at time t, and n
presents the number of months for forecasting. In the study, monthly mumps cases from 2005 to 2013
are used as a training set for modeling and fitting a SARIMA model, and monthly data in 2014 are
used to forecast the mumps as a test set.

The software SAS 9.4 (Statistical Analysis System, version 9.4, SAS, Cary, NC, USA) was used for
statistical analyses in the study, with a two-sided significance level of p < 0.05.

3. Results

3.1. Descriptive Analyses

During this study (2005–2014), a total of 8722 mumps cases were reported in Zibo City, Shandong
Province, including 5663 males and 3059 females, and a male-to-female ratio of 1.85:1. Mumps mostly
occur within the ages of 0–80 years, while the age group of 1–20 accounted for the 94.05% of all reported
cases. The highest percentage of mumps cases is found in students, who account for 65.89% (n = 5747),
followed by the kindergarten children and scattered children. The monthly mumps cases are presented
in Figure 2. Though mumps occur in every month, they also have obvious periodicity and seasonality,
which manifests basically as two epidemic peaks from April to July and October to January, with
an emphasis on the former. In addition, the geographical distribution with annual mumps over a full
year and two peak seasons from 2005 to 2014 are shown in Figure 3. Serious endemic areas mainly
emerge in Huantai County, Linzi District, and Boshan District. Annual mumps cases are mapped
by the histograms; the peak year for most areas in Zibo City is 2012, including Huantai county and
Linzi District. Furthermore, there is an outbreak in 2008 in Boshan District. The sequence diagram also
show the outbreaks of mumps in 2008, 2012, and 2013 (Figure 4).

Int. J. Environ. Res. Public Health 2017, 14, 925 4 of 11 

 

2013 are used as a training set for modeling and fitting a SARIMA model, and monthly data in 2014 
are used to forecast the mumps as a test set. 

The software SAS 9.4 (Statistical Analysis System, version 9.4, SAS, Cary, NC, USA) was used 
for statistical analyses in the study, with a two-sided significance level of p < 0.05.  

3. Results 

3.1. Descriptive Analyses 

During this study (2005–2014), a total of 8722 mumps cases were reported in Zibo City, 
Shandong Province, including 5663 males and 3059 females, and a male-to-female ratio of 1.85:1. 
Mumps mostly occur within the ages of 0–80 years, while the age group of 1–20 accounted for the 
94.05% of all reported cases. The highest percentage of mumps cases is found in students, who 
account for 65.89% (n = 5747), followed by the kindergarten children and scattered children. The 
monthly mumps cases are presented in Figure 2. Though mumps occur in every month, they also 
have obvious periodicity and seasonality, which manifests basically as two epidemic peaks from 
April to July and October to January, with an emphasis on the former. In addition, the geographical 
distribution with annual mumps over a full year and two peak seasons from 2005 to 2014 are shown 
in Figure 3. Serious endemic areas mainly emerge in Huantai County, Linzi District, and Boshan 
District. Annual mumps cases are mapped by the histograms; the peak year for most areas in Zibo 
City is 2012, including Huantai county and Linzi District. Furthermore, there is an outbreak in 2008 
in Boshan District. The sequence diagram also show the outbreaks of mumps in 2008, 2012, and 2013 
(Figure 4). 

 
Figure 2. Monthly mumps cases from 2005 to 2014 in Zibo City. Figure 2. Monthly mumps cases from 2005 to 2014 in Zibo City.



Int. J. Environ. Res. Public Health 2017, 14, 925 5 of 11
Int. J. Environ. Res. Public Health 2017, 14, 925 5 of 11 

 

 
Figure 3. Geographical distribution and yearly mumps cases in Zibo City, from 2005 to 2014. 

 
Figure 4. Sequence diagram of monthly mumps cases from January 2005 to December 2014 in Zibo City. 

3.2. SARIMA Model 

Given the periodicity and seasonality of mumps, we use the natural logarithmic transformation 
for the fluctuating original sequence to reduce the variance, and then perform a 1-step difference and 
seasonal difference with a period of 12 to eliminate seasonal trends. The result of the ADF test (t = 
−13.90, p < 0.001) indicates that the sequence after difference is stationary, which also is showed in 
sequence diagram (Figure 5).  

Figure 6 shows graphs of the ACF and PACF of the transformed and differenced series. Given 
that autocorrelation coefficients and partial autocorrelation coefficients are both near to zero at all 
lags that exceed 1, the ACF suggests that q should be equal to 0 or 1, and the PACF suggests that p is 
also equal to 0 or 1. Hence, the SARIMA model is considered, and d = 1, D = 1. Table 1 shows the 

Figure 3. Geographical distribution and yearly mumps cases in Zibo City, from 2005 to 2014.

Int. J. Environ. Res. Public Health 2017, 14, 925 5 of 11 

 

 
Figure 3. Geographical distribution and yearly mumps cases in Zibo City, from 2005 to 2014. 

 
Figure 4. Sequence diagram of monthly mumps cases from January 2005 to December 2014 in Zibo City. 

3.2. SARIMA Model 

Given the periodicity and seasonality of mumps, we use the natural logarithmic transformation 
for the fluctuating original sequence to reduce the variance, and then perform a 1-step difference and 
seasonal difference with a period of 12 to eliminate seasonal trends. The result of the ADF test (t = 
−13.90, p < 0.001) indicates that the sequence after difference is stationary, which also is showed in 
sequence diagram (Figure 5).  

Figure 6 shows graphs of the ACF and PACF of the transformed and differenced series. Given 
that autocorrelation coefficients and partial autocorrelation coefficients are both near to zero at all 
lags that exceed 1, the ACF suggests that q should be equal to 0 or 1, and the PACF suggests that p is 
also equal to 0 or 1. Hence, the SARIMA model is considered, and d = 1, D = 1. Table 1 shows the 

Figure 4. Sequence diagram of monthly mumps cases from January 2005 to December 2014 in Zibo City.

3.2. SARIMA Model

Given the periodicity and seasonality of mumps, we use the natural logarithmic transformation
for the fluctuating original sequence to reduce the variance, and then perform a 1-step difference
and seasonal difference with a period of 12 to eliminate seasonal trends. The result of the ADF test
(t = −13.90, p < 0.001) indicates that the sequence after difference is stationary, which also is showed in
sequence diagram (Figure 5).

Figure 6 shows graphs of the ACF and PACF of the transformed and differenced series. Given that
autocorrelation coefficients and partial autocorrelation coefficients are both near to zero at all lags
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that exceed 1, the ACF suggests that q should be equal to 0 or 1, and the PACF suggests that p is
also equal to 0 or 1. Hence, the SARIMA model is considered, and d = 1, D = 1. Table 1 shows the
parameter estimates and their testing results of the SARIMA models which have gotten past parameter
verification as well as AIC values, BIC values, and MAPE for models corresponding to different choices
of p, q and P, Q. According to those results, we hold SARIMA (0, 1, 1) (0, 1, 1)12 as the best model,
because of the lowest AIC and SBC (483.679, 475.053, respectively). What is more, there is a highest
correlation between the observed and fitted forecasted mumps cases on the model (r = 0.833, p < 0.001).
MAPE indicates also that the selected model is feasible. Finally, the results of the Ljung-Box Q test
(Q = 14.85, p = 0.869) and residual diagnostic (Figure 7) for the model suggest that the residual series is
a ‘white noise’. Therefore, the SARIMA (0, 1, 1) (0, 1, 1)12 model could extract fuller information from
time series in this study, and is reasonable for forecasting mumps.

Table 2 and Figure 8 shows the comparison of observed and forecasted mumps in Zibo City from
January to December in 2014 by the SARIMA (0, 1, 1) (0, 1, 1)12 model; the observed cases are all within
95% confidence interval (CI) of the fitted and forecasted values. Furthermore, the forecasted cases are
consistent with the changing trend of the observed mumps and match the observed values well, which
verified the feasibility and effectiveness of the SARIMA model.
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Table 1. Parameter estimates and testing results, goodness of fits for the seasonal autoregressive integrated moving average (SARIMA) models corresponding to
different choices of p, q and P, Q which had gotten past parameter verification, as well as correlation analysis between actual and fitted mumps cases.

Models
Parameter Estimation t-test (Parameters Equalization Values With Zero) Goodness of Fits for Models Correlation Coefficient

Estimate Standard Error Lag t p AIC SBC MAPE r p

SARIMA (0, 1, 1) (0, 1, 1)12 157.528 165.190 0.297 0.833 <0.001
MA 0.369 0.098 1 3.760 <0.001
SMA 0.635 0.085 12 7.440 <0.001

SARIMA (1, 1, 0) (0, 1, 1)12 158.413 166.074 0.293 0.831 <0.001
AR −0.350 0.098 1 −3.550 0.001
SMA 0.626 0.086 12 7.310 <0.001

SARIMA (1, 1, 0) (1, 1, 0)12 170.668 178.329 0.429 0.813 <0.001
AR −0.265 0.101 1 −2.620 0.010
SAR −0.439 0.097 12 −4.530 <0.001

SARIMA (0, 1, 1) (1, 1, 0)12 170.240 177.901 0.405 0.814 <0.001
MA 0.280 0.101 1 2.770 0.007
SAR −0.434 0.097 12 −4.460 <0.001

Abbreviations: AR: autoregressive; MA: moving average; SAR: seasonal autoregressive; SMA: seasonal moving average.

Table 2. Comparison of observed and forecasted mumps from January to December in 2014 by the SARIMA (0, 1, 1) (0, 1, 1)12 model.

Time (Month) January February March April May June July August September October November December

Actual Cases 21 31 38 58 55 41 38 26 27 13 13 20
Forecasted Cases 38.63 27.54 32.19 47.82 62.45 49.93 27.41 16.89 14.42 17.00 19.34 20.87
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4. Discussion

In this study, mumps is one of the most serious infectious disease in Zibo City, and affects nearly
two times as many males as females in a total of 8722 reported cases (1.85:1), which is consistent
with some previous research results [24,25]. The gender differences in mumps is probably because
men were more likely to be exposed to the outside environment than women [25], or because of the
higher consultation rate caused by complications occurring more often in males than females [4].
The high peaks regarding age and career of the mumps cases were from 1 to 20 years old (94.05%) and
students, respectively, which suggest that the important protection targets ought to be concentrated in
children and adolescents. In addition, while the mumps occur year-round, there are two incidence
peaks from April to July and from October to January over the next year, showing the obvious
seasonal and cyclical characters. During our study, the obvious peak incidence of mumps appears in
2012 and 2013, which may be related to the strengthening of the surveillance and reporting system,
the epidemic regularity of mumps itself, and the occurrence of aggregated outbreaks and other
related factors [26]. Huantai County and the Linzi and Boshan districts appear to be the high-attack
areas in Zibo City, which is in line with another study [25]. This might be related to different
demographic characteristics, vaccination coverage, and insufficient measures preventive control
measures in schools [25]. The geographic differences contribute to guide the health interventions and
allocate health resources reasonably.

Our study finds that the SARMA model (0, 1, 1) (0, 1, 1)12 can reflect the incidence regularity
of mumps in Zibo City. The model is considered to be reasonable for its short-term forecasting with
a high forecasted accuracy based on the MAPE. For the forecasted results, they match the actual
data well, but there is little observed difference between observed and forecasted mumps cases in
January 2014, which is probably because the main crowds are primary and middle school students.
Final examinations in January are bound to result in underestimating the incidence of mumps due to
lower rates of visiting the doctor. Hence, this further proves that the SARIMA model is efficient for
the disease forecasting. To our knowledge, although there are a few similar studies on the mumps
in China [27], this is the first study to apply a SARIMA model for mumps in Zibo City. Our findings
demonstrate that the SARIMA (0, 1, 1) (0, 1, 1)12 model is an efficient way to forecast the dynamic
change of monthly mumps in Zibo City, and it could be used to determine whether the previous
epidemic laws have been broken by short-term forecasting. Significantly, early warnings could be
provided to health authorities to formulate plans, and implement public health interventions for the
prevention and control of the disease.

As one of the extended forms of the ARIMA model, the SARIMA model is particularly suitable
for obvious seasonal and periodic surveillance data [28]. In our study, the SARIMA model shows
its well-known statistical properties and effective modeling process. Once a satisfactory model is
obtained, it can be used to forecast the expected number of cases for any given number of future
time intervals. The model can also be easily realized through mainstream statistical software, such as
SPSS, SAS, and R [29]. A previous study showed that the best fitted model is the ARIMA model in
the various time series methods [30]. Though the exponential smoothing model can also be used to
forecast the mumps, the predicted accuracy of the model is generally lower than that of the SARIMA
model, and there may be some difficulties in determining the smoothing coefficient. Besides, the
exponential smoothing model only predicts at very short intervals, because the weight is progressively
smaller with the lengthening of the forecasting term. The SARIMA model demonstrates a stronger
forecasting performance than the standard multiple regression model due to the latter’s inability to
account for autocorrelations and trends adequately [31]. The artificial neural networks may have the
best performance in terms of accuracy, but their specific nonlinear functions within the time series data
may not be explained well in practice [29]. Hence, the SARIMA model has a good applying prospect
and has been widely used in the forecast of a variety of diseases.

A few limitations about the SARIMA model should be mentioned. Stationarity is the most
important requirement for SARIMA model building, namely, the behavior of the time series does not
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change over time, and varies within a fixed constant mean and variance [14]. Another limitation is that
the seasonal parameters estimation should cover at least seven to eight seasonal periods if the sequence
contains periodic and seasonal factors; otherwise, the estimated effect will be not ideal [14]. In addition,
the SARIMA model applies only to short-term forecasts, as the development of infectious disease is
influenced and controlled by many factors. Anyway, we will consider the longer cycles in our future
research, such as cross wavelet analysis. Consequently, long-term dynamic observation of mumps is
also necessary, which would require updating the time series and re-fit the model or establish a more
reasonable model for improving the forecast ability [32]. Furthermore, we will consider the more
appropriate models based on various covariates in future research, such as the generalized additive
model and distribution lag nonlinear model.

5. Conclusions

In summary, the study provides valuable information about epidemic characteristics of mumps in
Zibo City. The SARIMA model fits the dynamic changes of mumps well. It is an appropriate statistical
model for the prevention and control of the disease by fitting and forecasting surveillance data within
a time interval.
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