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Abstract

Humans typically display inequality aversion in social situations, which manifests itself as a preference for fairer
distributions of resources. However, people differ in the degree to which they dislike being worse off [disadvantageous
inequality (DI) aversion] or better off [advantageous inequality (AI) aversion] than others. Competing models explain such
behavior by focusing on aversion to payoff differences, maximization of total payoff or reciprocity. Using functional near-
infrared spectroscopy, we asked which of these theories could better explain dorsolateral prefrontal cortex (dlPFC) activity
while participants accepted or punished fair vs unfair monetary transfers in an anonymous norm compliance task. We
found that while all participants exhibited DI aversion, there were substantial differences in preferences for AI, which were
strongly predicted by dlPFC activation. Model comparisons revealed that both punishment behavior and prefrontal activity
were best explained by a model that allowed for AI seeking rather than imposing aversion. Moreover, enhancing this model
by taking into account behavioral response times, as a proxy for choice difficulty, further improved model fits. Our data pro-
vide evidence that the dlPFC encodes subjective values of payoff inequality and that this representation is richer than envis-
aged by standard models of social preferences.
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Introduction

Social preferences and inequality aversion have been incorpo-
rated into modern economic theories to capture the fact that
humans are not only concerned about their own payoffs but also
about the relation between their own payoffs and those of others.
These payoff differences can take two forms depending on how
they are distributed. Disadvantageous inequality (DI) occurs
when one receives less than others and advantageous inequality
(AI) occurs when one receives more than others (Walster et al.,
1978; Fehr and Schmidt, 1999). Behavioral experiments show that
people are averse to both types of inequality to differing degrees

(Fehr and Schmidt, 1999). In general, they are willing to pay more
to avoid DI than AI, suggesting that DI is more aversive than AI
(Loewenstein et al., 1989; Fehr and Schmidt, 1999; Dawes et al.,
2007). However, it is also possible that some individuals may gain
satisfaction from earning more than others. These individuals
may actively seek AI by accepting a cost to reduce the payoffs of
others (Vostroknutov et al., 2012).

In behavioral economics, models are used to specify the rela-
tion between preferences and observable behavior. There are
several competing economic models that seek to explain how
social preferences and inequality aversion relate to behavior.
Essentially these models were developed to explain behavior
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that could not be accounted for by standard economic theories
which consider only self-interest as an economically relevant
preference. For example, standard economic theory suggests
that when deciding whether to accept or reject a proposed dis-
tribution of money (i.e. an offer), responders should and will al-
ways accept any non-zero offer in the standard ultimatum
game as it leaves them better off than rejecting it. Contrary to
this prediction, responders regularly reject unfair offers so that
both players receive nothing (Güth et al., 1982), a behavior that
can be explained by non-standard economic models that in-
corporate social preferences.

These models take a number of different forms with the sim-
plest consisting of ‘difference aversion’ models (e.g., Fehr and
Schmidt, 1999) where fairness considerations motivate people to
reduce differences between their own and others’ payoffs. In con-
trast, ‘efficiency’ models (e.g., Charness and Rabin, 2002) assume
that people are motivated to maximize the total payoff of all par-
ties. Moreover, Charness and Rabin (2002) propose that people in-
crease or decrease the payoffs of others depending on perceived
fairness of the behavior of these others (reciprocity). While both
types of models account for subjective preferences regarding both
DI and AI, it remains largely unknown whether they explain be-
havior and neural activity equally well and to what degree their re-
strictive assumptions are realistic. In particular, the strict
assumptions of difference aversion models do not allow for AI-
seeking behavior and that DI aversion may be weaker than AI
aversion. We aimed to address this issue by allowing participants
to engage in AI-seeking behavior and comparing unconstrained in-
stances of difference aversion (Fehr and Schmidt, 1999) against ef-
ficiency models (Charness and Rabin, 2002), while recording
neural activity using functional near-infrared spectroscopy (fNIRS).

Previous neuroimaging studies investigating neural re-
sponses to DI and AI suggest the dorsolateral prefrontal cortex
(dlPFC) to be particularly involved in encoding and interpreting
payoff inequalities and implementing inequality averse behav-
iors (Sanfey et al., 2003; Hsu et al., 2005; Haruno and Frith, 2010;
Tricomi et al., 2010; Chang et al., 2011; Fliessbach et al., 2012;
Cappelen et al., 2014; Güro�glu et al., 2014; Haruno et al., 2014; Yu
et al., 2014; Nihonsugi et al., 2015; ). Examples include rejecting
unfair offers in the ultimatum game (Knoch et al., 2006) and
enforcing social norm compliance (Ruff et al., 2013). These find-
ings suggest that the dlPFC encodes social utility signals that re-
flect the social preferences of a given individual. However, this
hypothesis remains to be tested and at the neural level, candi-
dates for social utility signals have rarely been characterized
with formal models from economic theory.

To close this gap, we recorded prefrontal activity using fNIRS
while participants performed a modified version of a norm
compliance task (Spitzer et al., 2007; Ruff et al., 2013) (Figure 1A).
In this task, the participant (the responder) received clearly fair
to extremely unfair transfers from another, anonymous, person
(the proposer). Participants could either accept the transfer as it
was, or they could punish the proposer (i.e. reduce the pro-
poser’s payoff) by using points from their own endowment.
Crucially, this allowed participants to create advantageous,
equal or disadvantageous final payoff distributions according to
their social preferences, thereby giving them a wider range of
behaviors to choose from than in previous investigations into
social preferences. In particular, our task allowed participants
to engage in AI-seeking behavior (but not AI-averse behavior),
thus allowing us to test the assumptions and constraints of pre-
vious social preference models.

To characterize behavioral and prefrontal responses during
this task we compared the unconstrained Fehr–Schmidt model

and Charness–Rabin model with several alternative models
(Báez-Mendoza et al., 2016). We also aimed to investigate
whether a model that included behavioral response time (RT)
would explain additional variance compared to the winning
model (Báez-Mendoza et al., 2016), because previous work re-
ported that RT correlates with prefrontal activity (Yarkoni et al.,
2009; Grinband et al., 2011) and is sensitive to reward inequality
(Fischbacher et al., 2013; Báez-Mendoza et al., 2016). Accordingly,
we expected that the addition of RT as parameter in the win-
ning model would improve model fit for both behavioral and
neural responses.

Materials and methods
Participants

Forty-eight healthy right-handed participants (28 females, age
23 6 2.3, mean 6 s.d.) were recruited at the University of Zurich.
Exclusion criteria were any history of psychiatric or neurological
disorders or current medication. All participants gave written
informed consent. The study was approved by the ethics com-
mittee of the Canton Zurich.

Experimental protocol

We investigated the behavioral and neural reactions of re-
sponders to pre-recorded fair vs unfair transfers from anonym-
ous proposers. We used a variant of the ultimatum game
known as the norm-compliance task in which a proposer makes
an offer to split an initial endowment between themselves and
the responder (i.e. our participants). After this offer is made,
participants could, at a cost to themselves, reduce the payoff of
the proposer (i.e. punish them) and the level of punishment
could be varied to produce different levels of inequality (Spitzer
et al., 2007; Ruff et al., 2013). We used offers from proposers that
were collected from a previous experiment and instructed par-
ticipants that they would be responding to these in a non-
repeating and anonymous fashion. Accordingly, all interactions
with any given proposer were limited to one response. All par-
ticipants saw the same distribution of offers but in a random-
ized order (Figure 1A).

On every trial, both players received an initial endowment of
30 points (Table 1). The proposer additionally received another
100 points that he or she could share with the responder by
making an offer of 0, 10, 20, 30, 40 or 50 points (i.e. offers ranged
from fair—an equal split of 50 points—to very unfair—offering 0
points). After viewing the offer of the proposer, the responder
had the option to accept the transfer or to use a portion or all of
their initial endowment of 30 points to punish the proposer. For
every point that the responder spent on punishment, the pro-
poser’s payoffs were reduced by five points, creating a substan-
tial leveraging effect. This means for example, that if the
proposer transferred 20 out of 100 points to the responder such
that after the transfer decision the proposer had 110 points (80
out of 100 pointsþ 30 from the initial endowment) and the re-
sponder had 50 points (20 out of 100 pointsþ 30 from the initial
endowment), the responder could reduce the proposer’s payoff
to 0 (and thereby create AI at the expense of responder payoff
and efficiency) by paying 22 points of the initial endowment to
punish the proposer for their unfair offer. Responders could
vary how much endowment they spent on punishment by mov-
ing the mouse left or right (the initial starting point was ran-
domly determined) and view how the payoffs of both the
proposer and themselves would change. A final decision was
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made by the responder clicking the mouse button at their
desired level of punishment. Trials were separated by intertrial
intervals of 5 s (fixed)þ 5 s (univariate jitter).

All decisions were incentive compatible, as the points gained
by the participants were transformed to Swiss Francs (CHF) after
the experiment according to a predefined conversion rate
(100 points¼ 1 CHF). These payoffs were paid out on top of a
show up fee of 13 CHF. Prior to the experimental session, par-
ticipants performed nine practice trials (not included in the ana-
lysis) to familiarize themselves with the task. During the main
task, each participant completed 60 trials with an average dur-
ation of 19.6 6 1.8 min.

fNIRS instrumentation

fNIRS recordings were conducted using a NIRSport instrument
(LLC NIRx Medical Technologies). The system utilized time-

multiplexed dual-wavelength light-emitting diodes, each con-
taining two light sources with wavelengths of 760 and 850 nm.
Optical detection was performed using photo-electrical de-
tectors containing Silicon photodiodes (Siemens, Germany).
Sources and detectors were placed in a head cap to allow for dir-
ect skin contact (Epitex Inc., Japan). The data acquisition board
was connected to a notebook computer running LabVIEW 2011
(National Instruments, Austin, TX, USA). The overall sampling
rate was 10 Hz. The source-detector distance was �30 mm, with
16 channels covering parts of the dlPFC and the dorsomedial
PFC (dmPFC; Figure 1B). Our hypotheses concerned primarily
dlPFC and we therefore primarily present results from dlPFC.
However, for completeness we also present comparisons be-
tween dlPFC and dmPFC (sections Neural model fit and dlPFC
predicts behavior better than dmPFC). There were no significant
differences between hemispheres (all P> 0.05) and we therefore
averaged across both.

Functional recordings were pre-processed, including data
detrending, filtering, baseline correction and motion artifact re-
moval using the NIRSLab analysis software (Xu et al., 2014). For
baseline correction, the first 60 s of raw data were taken and
subtracted from all channels. Motion artifacts (in particular,
‘steps’ and ‘spikes’) were removed in 10 participants after visual
inspection. Hemodynamic concentration changes of [O2Hb] and
[HHb] were calculated according to the Beer–Lambert law
(Kocsis et al., 2006) [absorption coefficients (ma) for O2Hb:
ma(760 nm)¼ 1486, ma(850 nm)¼ 2526, for HHb: ma(760 nm)¼ 3843,
ma(850 nm)¼ 1798; differential pathlength factor (DPF):
DPF(760 nm)¼ 7.25, DPF(850 nm)¼ 6.38]. Total hemoglobin [tHb]
derived as the sum of [O2Hb] and [HHb], served as primary

Fig. 1. Experimental design. (A) Trial timeline. Top, proposer decision. Each trial started with a 5-s screen that informed the responder (the participant) about the con-

stant initial endowment of both players (30 points, displayed at both ends) and about the proposer’s transfer (white number on black background indicates the amount

kept by the proposer, black number on white background indicates the proposed transfer). Here, the proposer has offered a transfer of 20 points, leaving the proposer

at this stage with 110 points in total and the responder with 50 points (i.e. the responder is in a state of DI). Middle, responder decision. The responder then had 7 s to

accept the transfer (such that the proposer would be left with 110 points and the responder with 50 points) or to punish the proposer by spending points from the initial

endowment of 30 points. Red numbers on dark backgrounds indicate the points that will be removed from the proposer (black background) and the responder (dark

gray background) as a result of the punishment decision (Table 1). In this case, the responder has chosen to spend 20 points to reduce the proposer’s payoff by 100

points. This leaves the proposer with 10 and the responder with 30 points (i.e. the responder is now in a state of AI). Bottom, trials were separated by an inter-trial-

interval which lasted 5 s plus a uniformly distributed jitter with a mean duration of 5 s. (B) fNIRS channel positions. Channel positions covering the dlPFC (channels 1–

8) and the dorsomedial prefrontal cortex (dmPFC, channels 9–16).

Table 1. Possible behavior in experimental task

Proposer
(pre-recorded)

Responders
(participants)

Initial endowment (fixed) 30þ 100 30
Transfer (in steps of 10) 0–50
Punishment (in steps of 1) 0–30
Payoff (possible range) 0–130 0–80

Listed are the initial endowments, the possible punishments and payoffs. For

every point that the responder invested into punishment, the proposer’s payoffs

were reduced by five points.
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parameter of interest because it represents changes in blood
volume correlated with changes in blood flow (Grubb et al.,
1974). As [tHb] is thought to be far less sensitive to vein contam-
ination, it provides higher spatial specificity for mapping cere-
bral activity compared to [O2Hb] or [HHb] separately (Gagnon
et al., 2012).

D[tHb] estimates were computed as a proxy for the underly-
ing neural activity using the general linear model approach
(Hoshi, 2016). The neural data were analyzed from the onset of
the transfer by the proposer (transfer phase) to the end of the
response by the participant (punishment phase). To determine
the temporal profile of the hemodynamic response regarding
model fit with higher temporal resolution, we chose a
overlapping sliding window analysis, window width of 2.5 s,
stepped every 180 ms. Together the intervals covered 12 s of the
hemodynamic response to both the transfer and the punish-
ment phase.

Statistical analysis

Models. The behavioral and neural data were fitted to various
social preference models. First, we considered variants of the
linear model of inequality aversion suggested by Fehr and
Schmidt (1999). In the Fehr–Schmidt model, a and b are the in-
equality aversion parameters with a measuring aversion against
DI, and b measuring aversion against AI. In their original model,
Fehr and Schmidt (1999) imposed two constraints, that a� b and
that 0� b< 1. The first constraint a� b captures the notion that
a player suffers more from DI than AI. The second constraint
0� b< 1 rules out participants who like to be better off than
others, and was imposed by Fehr and Schmidt (1999) although
they noted that AI-seeking (b< 0) exists. To evaluate the ad-
equacy of the imposed constraints, we tested the model once
without (Unconstrained FS) and once with constraints
(Standard FS). For the two-player case, the models correspond
to:

Fehr–Schmidt model unconstrained (Unconstrained FS):

Uresponder ¼ Preward responder � Xresponder

� a � max Xproposer � Xresponder; 0
� �

� b � maxðXresponder � Xproposer; 0Þ (1)

without constraints on a and b

Fehr–Schmidt model constrained (Standard FS):

As ð1Þ but with constraints : a � b and 0 � b < 1 (2)

The dependent variable, Uresponder, denotes utility. Here and
in all the models described below, we replaced this variable
with behavioral punishment amount for modeling of behavioral
data or dlPFC activity for modeling of neural data (Báez-
Mendoza et al., 2016). Xproposer and Xresponder are the post-
punishment payoffs of the responder and proposer (both in
units of points). Preward responder is a parameter determining sen-
sitivity of the participant to his/her own reward. While both
models posit that the payoff difference determines social pref-
erences, the unconstrained model allows for inequality seeking
rather than only inequality aversion.

It is conceivable that dlPFC preferentially codes specific con-
stituents of utility rather than a full social preference signal.
Besides the Fehr–Schmidt model, we therefore also examined
simpler and intermediate models (Báez-Mendoza et al., 2016)

that considered various combinations of the responder’s and
proposer’s reward:

Total Reward model:

Uresponder ¼ Preward total � ðXresponder þ XproposerÞ (3)

Reward Difference model:

Uresponder ¼ Preward difference � ðXresponder � XproposerÞ (4)

Proposer Reward model:

Uresponder ¼ Preward proposer � Xproposer (5)

Linear combination of responder and proposer reward:

Uresponder ¼ Preward responder � Xresponder

þ Preward proposer � Xproposer (6)

For comparison with the difference sensitivity models we
tested the Charness–Rabin efficiency/reciprocity model
(Charness and Rabin, 2002):

Charness–Rabin model:

Uresponder ¼ ðqrþ rsþ hqÞ � Xproposer

þ ð1� qr� rs� hqÞ � Xresponder (7)

where r¼ 1 if Xresponder>Xproposer (i.e. AI), and r¼ 0 otherwise;
s¼ 1 if Xresponder<Xproposer (DI), and s¼ 0 otherwise; q¼�1 if the
proposer has misbehaved (which we defined as any transfer
less than 50 points), and q¼ 0 otherwise. Here, the responder’s
utility is a weighted sum of own and proposer payoff, with the
weight depending on whether the proposer has behaved un-
fairly and on whether the responder is experiencing AI
(weighted by q) or DI (weighted by r). The relevance of efficiency
is captured by utility increasing with the payoff of both players.
The parameter h provides a mechanism for modeling reci-
procity, whereas the parameters r and q rely solely on the pay-
offs and not on any notion of reciprocity. We also considered
the three possible two-parameter variants of the Charness–
Rabin model but none of these models fitted the data better
than the full model and we therefore do not present them in
detail.

Finally, we included responder RT as an additional param-
eter in the winning model. The rationale for this was that RT
has been shown to correlate with prefrontal activity (Yarkoni
et al., 2009; Grinband et al., 2011) and to be sensitive to reward in-
equality (Fischbacher et al., 2013; Báez-Mendoza et al., 2016).
Since the winning model was Unconstrained FS in our analysis
(see Results section), we tested whether the addition of the RT
parameter would provide an even better fit:

RT-enhanced Fehr–Schmidt model (Báez-Mendoza et al.,
2016):

Uresponder ¼ Preward responder � Xresponder

� a � max Xproposer � Xresponder; 0
� �

� b � max Xresponder � Xproposer; 0
� �

� PRT � RT (8)

Moreover, to assess how well the RT parameter alone would
fit the data, we tested a RT-only model.

RT-only model:

Uresponder ¼ PRT � RT (9)
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The unconstrained Fehr–Schmidt model (as well as the RT-
only model) is nested in the RT-enhanced Fehr–Schmidt model
because the latter contains one (three) additional term(s). We
therefore used a nested F-test to test whether RT-enhanced FS
provided a better fit to the data than Unconstrained FS (or RT-
only).

Behavioral model fit. For the behavioral data, we estimated the
participant-specific best fitting parameters for each of the nine
models using an optimization method for nonlinear least-
squares (NLS) as implemented in MATLAB with lsqcurvefit.
Multiple start locations were used to reduce the likelihood of
the optimization algorithm getting stuck in local minima.

In the NLS procedure, we modeled the amount of behavioral
punishment (dependent variable) with all models. To allow for
comparison with the neural data, we standardized both the
punishment data and neural data to values between �1 and 1.

For the unconstrained Fehr–Schmidt model, we did not im-
pose the optimization constraints of the original model in the
NLS, thereby allowing for punishment behavior not envisaged
by the original model (e.g. AI-seeking behavior). In contrast, for
Standard FS, we implemented the optimization constraints in
the NLS as suggested by the original Fehr–Schmidt model.

To compare the goodness of fit of the various models, we
used Akaike’s information criterion (AIC). The AIC provides an
information theoretic basis for model comparison that con-
siders both goodness of fit and parsimony, with smaller values
indicating better fit to the data (Akaike, 1974). To examine the
predictive power of the models, the mean-squared error (MSE)
was calculated for each model. For statistical comparison of the
MSEs, we added an approximation of a null-model in the form
of randomly generated samples for each individual based on a
uniform distribution. Statistical comparison of the MSEs was
then performed using one-way ANOVA with Bonferroni correc-
tion to account for multiple comparisons.

Neural model fit. For the neural data (i.e. the hemodynamic re-
sponses), we estimated the participant-specific best fitting par-
ameters for each of the nine models using multiple linear
regression with robust fitting as implemented in MATLAB with
fitlm and the 0fair0 weight function. As the fit of Standard FS to
the behavioral data was clearly worse than that of any other
model (Figure 3A), we did not consider it for the neural data.
The regression was performed for each channel and each of the
40 sliding time intervals.

We modeled the hemodynamic data of each channel (de-
pendent variable) with each of the models described above.
Again, to allow for comparison with the behavioral data, we
standardized the hemodynamic data to values between �1 and
1. To compare the goodness-of-fit of the various models, we
applied AIC on MSE as for the behavioral data.

Social preference parameters. To compare the social preference
parameters obtained from the winning behavioral model with
those of the winning neural model (in both cases the RT-
enhanced Fehr–Schmidt model), we performed a two-way
ANOVA with the factors ‘data type’ (behavioral, neural) and
‘model parameters’ (Preward responder, a, b, PRT). Bonferroni correc-
tion was applied to account for multiple comparisons for the
factor ‘model parameters’. To correlate behavioral and neural
model parameters, we used percentage-bend correlation
(Pernet et al., 2012). This is a robust method that protects against
outliers among marginal distributions and that may therefore
provide better estimates of the true relationship between the

model parameters (Rousselet and Pernet, 2012). We applied the
default bending constant (0.2).

Results
Behavioral data

Responders punished the proposer to some degree in 80.5% of
all trials even though punishment was costly for themselves,
with 46 of 48 participants (96%) punishing at least once. These
findings suggest that participants were motivated not only by
maximizing their own payoffs. More specifically, they took ad-
vantage of the possibility to punish in order to both reduce DI
(in line with DI aversion) and create AI (corresponding to AI
seeking). Indeed, 38 participants (79%) used punishment to cre-
ate AI at least once, even though doing so considerably reduced
total payoffs and was particularly costly (see below). Together,
participants appear to have been motivated not only by their
own payoff but also by social preferences.

Decreasing transfers from fair (50 points) to unfair (0 points)
significantly increased punishment amounts (Figure 2A, two-
way ANOVA, main effect of ‘transfer’: F5¼ 1117.91, P< 0.001). As
expected given the structure of the task, creating AI was associ-
ated with significantly higher punishments than creating equal-
ity (E; P< 0.001) or DI (P< 0.001). Moreover, punishments were
also higher for creating E than DI (P< 0.001) (Figure 2B, main ef-
fect of ‘inequality type’: F2¼ 4001.83, P< 0.001; interaction of
‘transfer� inequality type’: F9¼ 83.71, P< 0.001). Next, we con-
sidered the possibility that participants made more punishment
decisions in the earlier phase of the task because they (incor-
rectly) assumed that they were participating in a repeated inter-
action game and thus could induce fairer offers on later trials.
To test this possibility, we directly compared punishment levels
between the first and second half of all trials. Contrary to the
prediction, participants punished less in the first than the se-
cond half of trials, although this analysis only approached sig-
nificance (F¼ 3.881, P¼ 0.049).

The lower punishments associated with higher transfers
were also associated with significantly larger payoffs (Figure 2C;
main effect of ‘transfer’: F5¼ 13453.58, P< 0.001). Accordingly,
responders earned most when proposers created E through fair
transfers and responders in turn did not create AI (payoff differ-
ence between E and AI P< 0.001); with DI-tolerating final distri-
butions, payoffs were significantly smaller than with final
E (P< 0.001) but significantly higher than when participants cre-
ated AI (P< 0.001) (Figure 2D, main effect of ‘inequality type’:
F2¼ 4001.83, P< 0.001; interaction effect of ‘transfer� inequality
type’: F9¼ 83.71, P< 0.001). Given the high costs of creating AI, it
may appear all the more surprising that at least some partici-
pants were willing to incur these costs.

Next, we assessed RTs as a function of transfer size.
Descriptively, RT showed a nonlinear quadratic pattern, i.e. re-
sponses were longest for intermediately unfair transfers and
were faster, particularly for fair transfers but also for highly un-
fair transfers (Figure 2E; quadratic effect of ‘transfer’: t5¼�21.09,
P< 0.001). This result can be explained in terms of decision diffi-
culty; extremely unfair and fair offers are relatively easy to re-
spond to (punish heavily or accept, respectively) whereas for
intermediate levels of initial inequality the participant may be
unsure as to how much to punish. Furthermore, responders
required significantly more time in trials that resulted in AI or
DI than in those resulting in E (Figure 2F; linear effect of ‘in-
equality type’: t2¼ 3.54, P< 0.001, quadratic effect of ‘inequality
type’: t2¼�4.18, P< 0.001). Thus, also RT reflected sensitivity to
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transfer amounts and inequality, with intermediately unfair
transfers corresponding to the most difficult decisions.

Behavioral model fit

For the behavioral NLS procedure, we modeled punishment
amount selected by our participants, in line with the assump-
tion that the amount of punishment would be related to the
utility of the responder (Wright et al., 2011; Chang and Sanfey,
2013; Báez-Mendoza et al., 2016). Since the majority of our par-
ticipants engaged in AI-seeking behavior, we first sought to
demonstrate that the original constrained version of the Fehr–
Schmidt model (Standard FS) performed poorly in our task. As
expected, this was the case (Figure 3). In contrast, we found that
the unconstrained version of the Fehr–Schmidt model
(Unconstrained FS) fitted punishment behavior much better, in
fact better than all the other models without RT enhancement,
including the Charness–Rabin model (Figure 3A). Thus, relaxing
the constraints of Standard FS appears to enhance model fit
over and above that of component and competitor models.

Yet, enhancing Unconstrained FS with RT as an additional
parameter (RT-enhanced FS) resulted in an even better fit. This
was confirmed by the nested F-test between Unconstrained FS

and RT-enhanced FS (F1¼ 77.19, P< 0.0001). Conversely, social
preferences also clearly played a role as evidenced by a better fit
of RT-enhanced FS compared to RT-only (F1¼ 317.05, P< 0.0001).
These findings confirm our hypothesis that taking RT into ac-
count improves model fit (Fischbacher et al., 2013; Báez-
Mendoza et al., 2016) but show also that punishment behavior
did not only reflect general cognitive demand.

To quantify our behavioral findings, we examined the MSEs
as a measure of the distance between the fitted punishment be-
havior and the nine models. The RT-enhanced Fehr–Schmidt
model produced a smaller mean MSE (RT-enhanced FS¼ 0.21)
than the other models (one-way ANOVA main effect F8¼ 39.583,
P< 0.001, all Bonferroni post-hoc comparisons including
the null-model P< 0.001; Unconstrained FS¼ 0.45, Standard
FS¼ 761.37, Total Reward¼ 0.73, Reward Difference¼ 0.80,
Proposer Reward¼ 0.69, Linear combination¼ 0.58, Charness–
Rabin¼ 0.67, RT-only¼ 0.92). These results support the observa-
tion that the unconstrained RT-enhanced Fehr–Schmidt model
explained behavior better than the other models. Thus, relaxing
the constraints allows the Fehr–Schmidt model to account for
AI seeking behavior observed here (see above and below) and
RTs carry additional power for explaining punishment behavior
in our modified ultimatum game.

Fig. 2. Behavioral data. (A) Responders punished the proposer less as transfer amounts of the proposer increased. (B) On average, in trials in which responders created

AI they punished the proposer significantly more than in trials that resulted in E or DI. (C) Responders’ payoffs increased as transfers increased. (D) On average, given

high transfer amounts combined with low punishment amounts, trials that resulted in E were associated with higher payoffs than those that resulted in AI or DI. (E)

RTs of responders were highest at intermediate transfers of the proposer. (F) On average, RTs were higher for trials that resulted in AI and, to a lesser degree, DI com-

pared to those that resulted in E. Error bars indicate standard error of the mean (SEM).
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Neural model fit

Neural activity in dlPFC was sensitive to transfer amount
(Figure 4 for an example). We assessed whether dlPFC activity
could be explained by our social preference models using mul-
tiple linear regression. As with the behavioral data, we assessed
each model’s goodness of fit using AIC and found that the Fehr–
Schmidt model (Unconstrained FS) fitted the data better than all
of the other models without RT, including the Charness–Rabin

model (Figure 3B). Again, comparing RT-enhanced FS with
Unconstrained FS or RT-only models revealed that RT as add-
itional parameter provided an even better fit as confirmed by a
significant nested F-test (Unconstrained FS F1¼ 3.61, P¼ 0.013).
Moreover, a nested F-test also showed that RTs alone explained
dlPFC activity less well than the full model (RT-only F1¼ 9.12,
P< 0.001).

To corroborate these findings, we again examined the MSEs. As
with the behavioral data, the unconstrained Fehr–Schmidt model
with RT produced the smallest MSEs (RT-enhanced FS¼ 0.71), with
the other models generating higher MSEs (one-way ANOVA main
effect F8¼ 24.523, P< 0.001, all Bonferroni post-hoc comparisons
including the null-model P< 0.001; Unconstrained FS¼ 0.73, Total
Reward¼ 0.81, Reward Difference¼ 0.84, Proposer Reward¼ 0.81,
Linear Combination¼ 0.80, Charness–Rabin¼ 0.76, RT-only¼ 0.81).
Thus, in-line with the behavioral data, the unconstrained
RT-enhanced Fehr–Schmidt model outperformed the other models
in terms of predictive power. Moreover, the fact that Charness–
Rabin and Unconstrained FS fitted the data better than RT-only
shows that including social preference terms explains dlPFC activ-
ity better than choice difficulty alone.

As mentioned above, the results primarily focused on dlPFC.
It could be argued that dlPFC is particularly sensitive to RT and
that a pure social utility model without RT would fit dmPFC ac-
tivity better than dlPFC activity. A comparison of the MSEs be-
tween dlPFC and dmPFC revealed no difference in model fit as
assessed using t-test, for the Unconstrained FS model (P¼ 0.432)
or for Charness–Rabin (P¼ 0.612). Thus, our data provide no
evidence to suggest that dmPFC more closely captures RT-
independent social utility than dlPFC activity (see also section
dlPFC predicts behavior better than dmPFC).

Considering the 40 sliding time intervals, the unconstrained
RT-enhanced Fehr–Schmidt model fitted the data best around
the typical canonical hemodynamic response peak (which is
assumed to occur at 5–7 s after stimulus onset, as reported by
previous fNIRS studies—Jasdzewski et al., 2003; Matthews et al.,
2008; Cui et al., 2010; Hoshi, 2011). In other words, the best fit
was around seven seconds after transfer onset, i.e. around 2 s
after punishment onset (Figure 3B). Given the typical peak
times, these data suggest that the responses were driven pri-
marily by the transfer period.

Social preference parameters in behavior and brain

Next, we investigated the parameters capturing social prefer-
ence towards AI and DI as obtained from the behavioral and
neural fits to the RT-enhanced FS model in more detail (note
that this model was the best-fitting model in both domains).
The distributions of the a parameter (DI) ranged from �0.033
to 0.153 (behavioral) and �0.058 to 0.127 (neural), those of the
b parameter (AI) from �1 to 0 (behavioral) and �1 to 0.045 (neu-
ral). Thus, participants showed considerable variation in their
behavioral and neural valuation of inequality. Moreover, given
that b parameters were predominantly negative, participants
appeared to be more AI-seeking than AI-averse in the present
paradigm.

The estimates from the quadratic regression between RT
and transfer correlated positively with participants’ a param-
eters (DI) (r¼ 0.369, P¼ 0.011) but not with the b parameter (AI)
(r¼ 0.104, P¼ 0.479), suggesting that participants with stronger
DI aversion responded relatively more slowly to intermediate
offers. Thus, participants with lower DI aversion appear to be
less sensitive to the inequalities arising from intermediate

Fig. 3. Behavioral and neural model comparisons. (A) Model AICs for punish-

ment behavior. Smaller (more negative) values correspond to a relatively better

fit of the corresponding model. The unconstrained Fehr–Schmidt model

(Unconstrained FS) fitted punishment behavior consistently better compared to

its constrained version (Standard FS), the simpler models (Total Reward, Reward

Difference, Proposer Reward, Linear Combination), the Charness–Rabin model,

and the RT-only model. Error bars represent standard deviation. (B) Model AICs

for dlPFC activity. As with the behavioral data, the RT-enhanced FS model pro-

vided the best fit compared to all other models around the canonical hemo-

dynamic response peak (i.e. around 7 s after transfer onset/2 s after punishment

onset). The vertical black line indicates the time point when the transfer from

the proposer to the responder was revealed, the light gray area indicates the

transfer phase, and the darker gray area indicates the punishment window.

Fig. 4. Condition-specific neural example data. Event-triggered hemodynamic

dlPFC response from one participant. Data are shown separately for minimum

(0) and maximum (50) transfers. Minimum transfer subsequently elicited stron-

ger dlPFC activity and higher punishment than maximum transfer. Data are

averaged across trials and aligned to the onset of the transfer phase (vertical

black line). Error bars indicate SEM.
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transfer amounts and therefore require less time to generate a
punishment in these situations.

When we directly compared the preference parameters for AI
and DI, we found a significant difference between them irrespect-
ive of whether the data were behavioral or neural (two-way
ANOVA, main effect of ‘model parameters’ F3¼ 38.05, P< 0.001;
main effect of ‘data type’ F1¼ 1.88, P¼ 0.171; interaction effect
‘data type�model parameters’ F3¼ 2.11, P¼ 0.099, Table 2). The a

parameters (DI) were significantly larger (more positive) com-
pared to the (more negative) b parameters (AI) for both the behav-
ioral and neural fits (Figure 5) (post-hoc comparison assessing
a> b group-level: behavioral and neural fits both P< 0.001; single-
participant level: behavioral fit 88%, neural fit 98%). Thus, our par-
ticipants showed significantly greater aversion to DI than AI and
thereby satisfied the constraint a� b of the original Fehr–Schmidt
model at both the behavioral and neural level.

Fig. 5. Preference parameters. Distributions of (A, B) the behavioral and (D, E) the neural participant-specific best fitting preference parameters (a for DI, b for AI) accord-

ing to the RT-enhanced Fehr–Schmidt model. The positive weight on DI reflects DI aversion whereas the negative weight on AI reflects AI-seeking. Note that one outlier

has been excluded from the figures in A and D. (C, F) Comparison of the distribution of the participant-specific social preference parameters for the behavioral and neu-

ral model fits (based on A, B). There were no significant differences between the behavioral and neural model fits. Error bars indicate standard error of the mean (SEM).

See Table 2 for statistics.

Table 2. Comparison of behavioral fit vs neural fit

Unconstrained FS RT-enhanced FS

Main effects Data type F1 ¼ 0.234, P ¼ 0.629 F1 ¼ 1.881, P ¼ 0.171
Model parameters F3 ¼ 46.092, P < 0.001 F3 ¼ 38.046, P < 0.001
Data type 3 model parameters F3 ¼ 0.024, P ¼ 0.976 F3 ¼ 2.107, P ¼ 0.099

Post-hoc comparisons P-value P-value
Neural DI vs Neural AI <0.0001 <0.0001
Neural DI vs Behavioral DI 0.999 0.979
Neural AI vs Behavioral AI 1.000 0.309
Behavioral DI vs Behavioral AI <0.0001 <0.0001

Social preference parameters were compared using two-way ANOVA with the within-subject factors ‘data type’ (behavioral fit vs neural fit) and ‘model parameters’ (DI,

i.e. a; AI, i.e. b). Bonferroni correction was used to account for multiple post-hoc comparisons. See Figure 5 for illustration.

520 | Social Cognitive and Affective Neuroscience, 2018, Vol. 13, No. 5

Deleted Text: -


By extension, the relatively poor fit of the original, con-
strained Fehr–Schmidt model should be explained by a failure
to fulfill the constraint that people have to be AI-neutral or AI-
averse (0� b). Indeed, post-hoc comparisons showed that b was
significantly smaller than 0 (group-level: behavioral and neural
fits both, P< 0.001; single-participant level: behavioral fit 77%,
neural fit 79%). In other words, on average our responders were
only averse to being worse off but exhibited a preference for
being better off than the proposer, which was reflected in both
behavioral and neural fits. Together, our findings indicated that
responders not only exhibited aversion for DI (as expected), but
that a number of responders also exhibited a clear preference
for being better off than the proposer. Thus, in our experimental
setup, social preferences went beyond the motive of minimizing
objective payoff inequality.

We also compared the subgroup of participants with AI-
seeking behavior (38 out of 48) to those without such behavior.
As expected, AI-seeking participants had significantly more
negative b parameters (AI) (behavioral fit F¼ 7.40, P¼ 0.009;

hemodynamic fit F¼ 4.06, P¼ 0.049) but no differences in a par-
ameters (DI) (behavioral fit F¼ 3.34, P¼ 0.074; hemodynamic fit
F¼ 0.22, P¼ 0.645). AI-seeking participants also showed signifi-
cantly longer RTs (behavioral fit F¼ 14.18, P¼ 0.0005; hemo-
dynamic fit F¼ 20.49, P< 0.0001) and selected larger punishment
amounts (behavioral fit F¼ 48.25, P< 0.0001; hemodynamic fit
F¼ 38.38, P< 0.0001). Note that not only the punishment differ-
ences but also the RT differences are expected as achieving
AI in our task requires punishing more, which requires larger
movements, resulting in longer RTs.

Psychometric-neurometric correlations

We next asked whether there would be significant differences
in how intimately dlPFC activity relates to different preference
parameters obtained from the behavioral and the neural fits
(psychometric–neurometric relation). In particular, we used
percentage-bend correlation (Pernet et al., 2012) as a robust
method that protects against outliers among marginal distribu-
tions (which were present in our heterogeneous distribution of
subject-specific model parameters). Parameter-wise correl-
ations were positive and significant for both DI (a parameter
r¼ 0.38, P¼ 0.007) and AI (b parameter r¼ 0.70, P< 0.001;
Figure 6A), in-line with a social utility signal in dlPFC. Moreover,
the behavioral–neural correlation was significantly higher for
the b parameter than for the a parameter (P¼ 0.027 Fisher’s r-to-
z transformation followed by t-test) (Figure 6A). These findings
indicate that dlPFC activity preferentially relates to subjective
attitudes toward AI rather than DI.

dlPFC predicts behavior better than dmPFC

Finally, we compared dlPFC with dmPFC data with regard to
how strongly they represent social preferences. Specifically, we
performed a prediction analysis to assess whether the neural
responses in the dlPFC and dmPFC would predict behavioral
punishment differently. To test this possibility, we conducted
linear support vector machine (SVM) regression per participant
with utility (as calculated according to Equation 8) based on the
neural fit (predictor variable) and the behavioral fit (dependent
variable). We cross-validated the linear SVM regression by spe-
cifying a 50% holdout sample for testing and training the model.
For each participant, we selected the largest coefficients of de-
termination (R2) within the punishment window (which ap-
proximately corresponded to the peak of the model fit, see
Figure 3B) and illustrated their probability density estimates on
the group-level (Figure 6B). As may be expected based on the
psychometric–neurometric correlations reported above, we
found that the neural fit in dlPFC based on the RT-enhanced
Fehr–Schmidt model strongly predicted the behavioral fit (mean
R2¼ 0.80, range 0.40–0.99). In contrast, performing the same pre-
diction for the dmPFC revealed that the predictive capability of

Fig. 6. Psychometric–neurometric correlation and prediction. (A) Correlation co-

efficients (r) of percentage-bend correlation (Pernet et al., 2012) between the par-

ticipant-specific best fitting model parameters (a for DI, b for AI). Model

parameters are from the RT-enhanced Fehr–Schmidt model as applied to pun-

ishment behavior and dlPFC activity. Inset (top left) shows full data set, includ-

ing one outlier, which was excluded in main figure. (B) Prediction. Kernel

density estimates (KDEs) of the coefficients of determination (R2) for the trial-

based prediction of the behavioral fit based on the neural fit (dlPFC and dmPFC)

according to the RT-enhanced Fehr–Schmidt model. There was a significant dif-

ference between dlPFC and dmPFC (P<0.001; indicated by ***. See Table 3 for

statistics).

Table 3. Differential prediction of transfer behavior

dlPFC Unconstrained FS dmPFC Unconstrained FS dlPFC RT-enhanced FS dmPFC RT-enhanced FS
(R2¼0.68) (R2¼0.59) (R2¼0.80) (R2¼0.68)

dlPFC Unconstrained FS 0.000005 0.000009 0.356297
dmPFC Unconstrained FS 0.000005 <0.000001 0.003826
dlPFC RT-enhanced FS 0.000009 <0.000001 0.000014
dmPFC RT-enhanced FS 0.356297 0.003826 0.000014

T-test comparing the coefficients of determination (R2) for the prediction of the neural fit (dlPFC and dmPFC) based on the behavioral fit according to the unconstrained

Fehr-Schmidt model without and with RT (Unconstrained FS and RT-enhanced FS). See Figure 6B for illustration. Predictions for dlPFC RT-enhanced FS revelead the

highest R2 followed by dmPFC RT-enhanced FS, dlPFC and dmPFC Unconstrained FS.

L. Holper et al. | 521

Deleted Text: -
Deleted Text: <italic>3.5</italic> 
Deleted Text: -
Deleted Text: -
Deleted Text: '
Deleted Text: <italic>3.6</italic> 
Deleted Text: -
Deleted Text: -
Deleted Text:  - 
Deleted Text: By 


the neural fit was significantly smaller (mean R2¼ 0.68, range
0.29–0.92) as assessed using paired t-test (P< 0.001, Table 3).
These findings suggest that the subjective responses to trans-
fers were more closely associated with neural responses in the
dlPFC than the dmPFC. By extension, the dlPFC appears to be
more strongly involved in representing behavioral social prefer-
ences than the dmPFC in our task.

Discussion

This study investigated preferences toward DI and AI at the be-
havioral and the neural level. In our task, both behavioral and
neural responses were better explained by an unconstrained
variant of the Fehr–Schmidt model compared to the constrained
Fehr–Schmidt model, the Charness–Rabin model or any of the
simpler models that considered constituent terms. Accordingly,
our data reveal AI seeking and a social utility signal in dlPFC.
Moreover, they provide important clues for how changes to the
standard Fehr–Schmidt model could increase its ability to
model the neural implementation of social preferences in
dlPFC, by taking into account the impact of executive functions,
decision difficulty or working memory. In particular, including
RT further enhanced model fit, similar to findings in non-
human primates (Báez-Mendoza et al., 2016), indicating that
dlPFC activity is modulated by both inequality and executive
functions, such as working memory load (Curtis and D’Esposito,
2003). Finally, by recording from two areas simultaneously, our
data suggest a tighter link between the behavioral expression of
social preferences and dlPFC activity as compared to dmPFC
activity.

The activity in dlPFC was well explained by an uncon-
strained RT-enhanced Fehr–Schmidt model. Our study thereby
suggests that the dlPFC processes a social utility signal and that
this role of dlPFC is not limited to implementing fairness norms
(Knoch et al., 2006). Moreover, it explains and qualifies previ-
ously reported dlPFC involvement in inequality paradigms
(Chang et al., 2011; Fliessbach et al., 2012; Güro�glu et al., 2014;
Nihonsugi et al., 2015). For example, while significantly stronger
coding of DI than AI has been shown previously in a situation in
which participants could not influence relative payoffs
(Fliessbach et al., 2012), our data in addition reveal that in a situ-
ation where relative payoffs can be changed, the relation be-
tween neural and behavioral coding of model-based social
preferences is significantly stronger for AI than DI (Figure 6A).
Thus, the social utility signal in dlPFC appears to be sensitive to
instrumental contingencies and behavioral relevance.

The original Fehr–Schmidt model (1999) assumes that aver-
sion against DI would be greater than that against AI (i.e. a� b).
Second, the model assumes that aversion against AI ought to be
larger than or equal to 0 (0� b), presuming that participants pre-
fer equality to being better off than others. The standard model
has been criticized for being based on paradigms that allow
only for a limited range of social preferences (Charness and
Rabin, 2002) and the assumptions for being based on games
with a limited number of available actions (Binmore and
Shaked, 2010a,b; Fehr and Schmidt, 2010). In our paradigm, the
possibility to punish proposers by a self-determined amount
and thereby create AI, E or DI provided participants with a larger
number of available actions than simply rejecting or accepting
proposed transfers. However, our approach also suffers from
limitations. By excluding transfers that would have created AI
rather than E or DI for the responder it was not possible to be-
haviorally determine AI aversion. Note though that AI-creating

transfers would have been somewhat unrealistic because they
rarely occur and because transfers that create E are sufficient to
ensure acceptance in the standard ultimatum game (Fehr and
Schmidt, 1999). Another limitation is that we allowed partici-
pants only to subtract rather than add to the payoff of the pro-
poser. Therefore, the degree of punishment was the focal point
of the task, which may have contributed to higher-than-usual
levels of AI-seeking. Finally, we may have biased our partici-
pants into AI-seeking behavior through the strong impact of
punishment on proposer payoff. In any case, the original Fehr–
Schmidt model is nested within our unconstrained version,
meaning that the unconstrained model will describe non-
conventional social preferences in a larger variety of situations.

While the first constraint of the original Fehr-Schmidt model
(i.e. that a� b) was met (i.e. participants were more averse to DI
than AI), the second assumption (i.e. that 0� b) was not. The
procedure of relaxing the constraints of the original model is in
line with earlier studies reporting that b can be larger than a

(Bellemare et al., 2008), and others estimating negative a values
in some conditions (Loewenstein et al., 1989; Hoppe and
Schmitz, 2013) or individuals (Fliessbach et al., 2012). The uncon-
strained model thus may allow for a more realistic picture of
participant- and situation-specific social preferences and asso-
ciated individual neural responses to economic inequality.

AI-seeking behavior left both players worse off in our task
compared to not punishing at all, which contradicts both AI
aversion as assumed by the original Fehr–Schmidt model and
efficiency maximization of the Charness–Rabin model. While
the standard version of the Fehr–Schmidt model performed
worse than the Charness–Rabin model, the unconstrained ver-
sion performed better. Hence, by allowing for AI-seeking the un-
constrained model can account for a wider range of real-world
and experimental behavior (Ball and Eckel, 1998; Chmura et al.,
2005; Vostroknutov et al., 2012). Moreover, our data reinforce the
notion that participants who have little or no prior knowledge
of efficiency concerns put little weight on efficiency (Fehr et al.,
2006).

Including RT explained additional variance in punishment
behavior. In line with previous research (Knoch et al., 2006;
Baumgartner et al., 2011; Harlé and Sanfey, 2012; Knight, 2012;
Ma et al., 2015), we found that our participants were significantly
slower in punishing somewhat unfair transfers than in accept-
ing fair offers or punishing extremely unfair transfers. Thus,
after somewhat unfair transfers, fairness norms appear to have
conflicted with the desire to maximize payoff, whereas with
smaller or larger transfers conflict may have been reduced.
Please note that only a person who in addition to self-interest
also takes social motives into account would ever experience
conflict (Fischbacher et al., 2013). Our data are in line with this
view and more generally indicate that RT provide important in-
formation about the process underlying any kind of decisions,
including social ones (Evans et al., 2015; Krajbich et al., 2015).

We found that incorporating RT into our model also
increased model fit for dlPFC data. This may have been ex-
pected based on previous findings that related RT to dlPFC func-
tion. For example, disruption of dlPFC activity not only reduced
participants’ willingness to reject unfair offers in more standard
ultimatum games, but also diminished the RT difference be-
tween unfair and fair offers typically seen in participants with
intact dlPFC function (Knoch et al., 2006). Moreover, dlPFC activ-
ity often correlates with behavioral RT (Yarkoni et al., 2009;
Grinband et al., 2011), possibly reflecting executive functions
such as choice difficulty, cognitive control, and/or working
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memory load (Curtis and D’Esposito, 2003). Our findings suggest
that such a relation also holds for decisions that allowed for AI-
seeking, in addition to simply abolishing vs tolerating DI in the
standard ultimatum game.

Activity in dlPFC predicted punishment behavior better than
dmPFC activity. Thus, compared to dmPFC, dlPFC appears to be
more sensitive to behaviorally relevant differences between the
outcomes of others and own outcomes. Previous studies sug-
gest that dmPFC may be more strongly involved in representing
the preferences of others (Morelli et al., 2015; Seid-Fatemi &
Tobler, 2015) and in updating one’s own preferences based on
social information (Izuma and Adolphs, 2013), indicating a sub-
tle prefrontal differentiation of social value signals.

To conclude, our results suggest that dlPFC activity reflects a
socially modulated value signal reflecting individual social pref-
erences regarding payoff differences and suggest ways in which
social preference models could be enhanced.
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