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Abstract 

Background:  One of the most significant challenges in colorectal cancer (CRC) management is the use of compli-
ant early stage population-based diagnostic tests as adjuncts to confirmatory colonoscopy. Despite the near curative 
nature of early clinical stage surgical resection, mortality remains unacceptably high—as the majority of patients 
diagnosed by faecal haemoglobin followed by colonoscopy occur at latter stages. Additionally, current population-
based screens reliant on fecal occult blood test (FOBT) have low compliance (~ 40%) and tests suffer low sensitivities. 
Therefore, blood-based diagnostic tests offer survival benefits from their higher compliance (≥ 97%), if they can at 
least match the sensitivity and specificity of FOBTs. However, discovery of low abundance plasma biomarkers is diffi-
cult due to occupancy of a high percentage of proteomic discovery space by many high abundance plasma proteins 
(e.g., human serum albumin).

Methods:  A combination of high abundance protein ultradepletion (e.g., MARS-14 and an in-house IgY depletion 
columns) strategies, extensive peptide fractionation methods (SCX, SAX, High pH and SEC) and SWATH-MS were 
utilized to uncover protein biomarkers from a cohort of 100 plasma samples (i.e., pools of 20 healthy and 20 stages 
I–IV CRC plasmas). The differentially expressed proteins were analyzed using ANOVA and pairwise t-tests (p < 0.05; 
fold-change > 1.5), and further examined with a neural network classification method using in silico augmented 5000 
patient datasets.

Results:  Ultradepletion combined with peptide fractionation allowed for the identification of a total of 513 plasma 
proteins, 8 of which had not been previously reported in human plasma (based on PeptideAtlas database). SWATH-MS 
analysis revealed 37 protein biomarker candidates that exhibited differential expression across CRC stages compared 
to healthy controls. Of those, 7 candidates (CST3, GPX3, CFD, MRC1, COMP, PON1 and ADAMDEC1) were validated 
using Western blotting and/or ELISA. The neural network classification narrowed down candidate biomarkers to 5 
proteins (SAA2, APCS, APOA4, F2 and AMBP) that had maintained accuracy which could discern early (I/II) from late 
(III/IV) stage CRC.

Conclusion:  MS-based proteomics in combination with ultradepletion strategies have an immense potential of 
identifying diagnostic protein biosignature.
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Background
Global temporal patterns of colorectal cancer (CRC) inci-
dence and mortality are alarming. In 2018, it is estimated 
that over 1.8 million patients were be diagnosed with 
CRC, resulting in over 800,000 deaths annually [1]. These 
statistics are expected to increase to ~ 2.2 million new 
cases with 1.1 million fatalities by 2030 [2]. This trend 
can partially be explained by the fact that early stages of 
the disease are especially asymptomatic with the majority 
of patients diagnosed when tumors have already invaded 
local lymph nodes (stage III) or metastasized to distant 
organs (stage IV), leading to survival rates lower than 
13% [2, 3]. Surgical tumor resection in early stage disease 
can be both preventive and curative [4] with the 5-year 
survival rate of early stage I/II CRC patients greater than 
90% [5]. There is therefore a substantial need to reliably, 
accurately and consistently diagnose CRC as early as 
possible.

There are a horde of stool-based tests and structural 
examinations [6, 7] that are in use clinically to aid early 
CRC detection. In developed countries, stool-based 
tests like gFOBT (guaiac chemical fecal occult blood 
tests), FIT (fecal immunochemical tests) and mt-sDNA 
(multi-target stool DNA tests) are distributed to most-
at-risk populations (e.g., those aged 50–74 years) [8]. The 
gFOBT (sensitivity 62–79%; specificity 87–96%) and FIT 
(sensitivity 73–92%; specificity 91–97%) [6] tests rely on 
the chemical or immunological detection of fecal hemo-
globin (Hb) respectively [8]. The mt-sDNA test, which 
has a lower (~ 90%) specificity, [6] identifies multiple 
molecular biomarkers, such as hypermethylated BMP3/
NDRG4, point mutations in KRAS and the beta-actin 
gene as well as Hb protein [9]. However, despite exten-
sive public health education programs worldwide, patient 
participation/compliance with fecal-based screening 
tests has rarely (if ever) exceeded 44% [6, 10, 11].

Positive fecal gFOBT/FIT test results (i.e., true or false 
positives) are referred to more invasive structural tests 
for confirmation. These structural tests include com-
puted topographic colonography (CTC) and flexible 
sigmoidoscopy (FS) [6]. The efficacy of CTC and FS is 
restricted by exposure to low-dose radiation and incom-
plete examination of the proximal colon, respectively [6]. 
As per standard practice of care, all positive non-colono-
scopic screening procedures are followed up with a con-
firmatory colonoscopy.

However, colonoscopy is expensive, invasive, requires 
unpleasant preparation and causes occasional adverse 

sedation morbidities as well as unavoidable infrequent 
mortality from adverse consequences like bowel perfo-
ration and sepsis [6]. Low compliance and sensitivity of 
fecal tests has compelled the investigation of potential 
blood tests that have a much higher compliance rate (as 
high as 97% in controlled studies).

Two primary classes of blood-based markers have 
been developed, namely DNA-based and protein-based. 
Tests that detect tumour-specific genetic and epigeneti-
cally-altered circulating tumour DNA (ctDNA) released 
from tumour cells are colloquially termed ‘liquid biopsy’ 
tests [12]. However, there remain some technology bar-
riers to early clinical stage cancer screening using liquid 
biopsy tests. These include; secretion of negligible levels 
of ctDNA from small adenomas or early stage tumors 
meaning large amounts of blood are required, mutational 
heterogeneity among individual patients [13] and poor 
association of emerging mutational biomarkers with can-
cer stages and types, each of which limits use for screen-
ing early clinical stage CRC patients [14].

Of protein markers, carcinoembryonic antigen (CEA) 
was one of the earliest to be used clinically, although it 
has been subsequently discounted as efficacious for 
early-stage screening [15]. Plasma CEA levels are pri-
marily used to monitor colorectal carcinoma treat-
ment and to identify recurrence after surgical resection, 
despite having a low 35% sensitivity and 87% specificity 
[16]. Furthermore, CEA is expressed in many other can-
cers [17, 18] and is not specific to CRC. Multiple other 
protein markers have been proposed [19], however only 
a few have shown translational promise. Protein-based 
blood biomarkers offer significant advantages that make 
them amenable for the development of an ideal popula-
tion blood-based CRC screening test. They purport to 
be accurate, specific, sensitive and inexpensive [11]. Fur-
thermore, protein-based tests offer significant advantages 
in translatability with current technologies and clinical 
laboratory practices [20]. The key, however, remains, to 
find a molecular protein-based biomarker (or panel) that 
provides better specificity and sensitivity than gFOBT 
and FIT, as a pre-colonoscopy screening test.

Blood plasma is a complex body fluid owing to the high 
dynamic concentration range of proteins found within it. 
The concentration range of human blood plasma proteins 
extends 12–13 orders of magnitude [21], with > 90% of all 
plasma protein content covered by a few (10 to 14) highly 
abundant proteins found above the mg/ml mark. These 
are primarily haemostatic (e.g., albumin), acute phase 
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response proteins (e.g., serpins), lipid/protein transport-
ers and immunoglobulins [21, 22]. The remaining low 
and medium abundance proteins are found at concentra-
tions ranging from ng/ml down to pg/ml and are often 
derived from proteins that have leaked or been shed from 
tissues (including diseased cells/tissues) or that represent 
interleukins, cytokines or growth factors [21, 23]. These 
low abundance proteins potentially hold critical informa-
tion regarding the health and disease status of any indi-
vidual [24]. However, low abundant proteins are masked 
by more abundant proteins and are difficult to detect in 
a proteomics discovery experiments. Indeed, the reper-
toire of often identified disease biomarker candidates 
from mass spectrometry are usually categorised as gen-
eral inflammatory response proteins, lipid transporters 
or coagulation cascade proteins [25–27]. In other words, 
many proteomic biomarker studies unearth proteins of 
unremarkable biological context, meaning that they code 
for disease with particularly low specificity [28].

This study aimed to adopt a multilayered plasma pro-
teomic approach to discover protein biomarkers for the 
detection of CRC patients at earlier stages (I/II) from 
EDTA plasmas. To visualise and quantify novel lower 
abundance proteins, we used combinations of commer-
cially available depletion (i.e., MARS-14) [29] and an in-
house ultradepletion system [30, 31]. We also employed 
SWATH™-MS (Sequential Window Acquisition of all 
THeoretical Mass Spectra) for deep and reliable explora-
tion of the plasma proteome. These studies were applied 
to a set of pooled EDTA-plasma samples in order to 
identify potential candidates for early stage I/II CRC 
detection. To verify the diagnostic ability of candidate 
biomarkers, we performed Western blotting and ELISA 
on pooled and individual samples where tests were 
available commercially (experimental procedure sum-
marised in Fig.  1). Finally, we utilized machine-learning 
approaches to further test the validity of our candidates. 
Unsupervised clustering algorithms were used to validate 
how dissimilar early stage I/II CRC were from healthy 
subjects. We then used supervised classifiers on gener-
ated data based on the variance found in our individual 
samples, which was then tested on real patient data. This 
discovery experiment resulted in a novel blood-based 
multi-analyte biomarker signature panel that requires 
comprehensive validation to allow population-based 
detection of stages I and II CRC.

Materials and methods
Ethics statement and sample collection
This study was performed with approval from the Mac-
quarie University Human Research Ethics Committee 
(MQ HREC approval #5201200702). The cohort of 100 
patient EDTA-plasma samples was procured from the 

Victorian Cancer Biobank (VCB) in Melbourne, Aus-
tralia. The experiment assembled 100 individual EDTA-
plasma samples, composed of 80 from Dukes’ staging 
system staged CRC (n = 20 each for stages A, B, C, and 
D). These have been recently clinically re-classified as 
stage I, II, III, and IV CRCs respectively according to the 
AJCC system. EDTA-plasmas were also collected from 
20 healthy donors (n = 20) that had been age- and sex-
matched, non-menopause and non-smoking status, all 
with no prior history of cancer or other major disease. 
Cancer and healthy plasma samples were processed iden-
tically throughout the study. All plasma samples were 
prepared identically as described previously [15].

Multiple affinity removal system (MARS‑14) high 
abundance plasma protein depletion
A previous study using the MARS-14 system has shown 
that depletion columns afford highly repeatable and effi-
cient plasma fractionation with few non-targeted pro-
teins captured [29]. The Agilent MARS-14 high capacity 
affinity column (4.6 × 100  mm) was designed to employ 
anti-human plasma protein monoclonal antibodies to 
remove the 14 most abundant proteins (human serum 
albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, 
fibrinogen, α2-macroglobulin, α1-acid glycoprotein, 
IgM, apolipoprotein AI, apolipoprotein AII, complement 
C3 and transthyretin) from human plasma. Depletion 
was performed on an Agilent 1260 HPLC system where 
40  µl EDTA-plasma samples were first diluted fourfold 
using buffer A supplied by the manufacturer followed 
by 0.22  µm spin filtering at 4  °C. Eluates plasmas were 
injected to run on the HPLC and proteins eluted follow-
ing the manufacturer’s instructions.

In‑house abundant protein immuno‑depletion (API)
Untargeted proteomic analyses using current LC–MS/
MS on MARS-14-depleted plasma do not efficiently 
reveal a multitude of low abundance, disease-specific 
biomarkers from human plasma [32], unlike what is 
observed with depleted cell proteomes. The reason for 
this detection disparity has been suggested to be due to 
the particularly steep protein abundance distribution 
seen with plasma versus cell proteomes. To obviate this 
pivotal problem, we have developed and here for the first 
time use an adjunct in-house “ultradepletion” method 
that immunodepletes additional high and medium abun-
dance human plasma proteins [30, 31].

In detail, chicken IgY polyclonal antibodies were raised 
against 7 dual (SCX followed by SAX including dual 
flow-through proteins) ion-exchange fractions of human 
plasma. Purified IgYs were covalently-linked as anti-
gen affinity-purified IgYs to activated hydrazide beads 
(GE, Uppsala, Sweden) following the manufacturer’s 
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instructions and packed into columns as described pre-
viously [30, 31]. This API (abundant protein immuno-
depletion) column was subsequently pre-equilibrated at 
5 ml/min using PBS at pH 7.2. Plasma was injected into 
the column at 0.1 ml/min and washed using 2.5 column 
volumes of PBS, first at 0.05 ml/min for 3 min and then 
at 5  ml/min. Bound proteins were subsequently eluted 
from the API column using 4 column volumes of 0.1 M 
glycine buffer at pH2.5 and a flow rate of 5 ml/min. Neu-
tralization using glycine 100 mM, pH 10 was performed 
on all bound fractions post-elution for long-term stor-
age at −  80  °C prior to LC–MS/MS. All samples were 

buffer exchanged using 3 kDa Amicon filtration and total 
protein quantified using a Micro BCA Protein Assay kit 
(Thermo Scientific™). API columns were immediately re-
equilibrated with 5 column volumes of binding buffer at 
5 ml/min for subsequent re-use [30, 31].

Tryptic digestion
Prior to tryptic digestion, protein concentration was 
measured using a BCA Protein Assay Kit following the 
manufacturer’s protocol (Thermo Fisher Scientific) for 
both depleted and non-depleted samples. The samples 

Fig. 1  Blood-based multi-analyte proteomic signature discovery workflow: a A total of 100 age- and sex-matched EDTA-plasma samples were 
procured [n = 20 per stage I, II, III, IV, and n = 20 healthy controls (non-menopausal, non-smoking and no history of any cancers)]. b Plasma samples 
were collected as per ethics requirements. To create a plasma reference library, equal volumes of all patients and healthy plasmas were pooled. 
For the SWATH experiments, equal volumes of 20 plasma samples were combined to produce pools of each of the 4 CRC stages (I–IV) and healthy 
controls. c For library generation, HAPs depleted using MARS-14 column (Agilent) followed by tryptic digestion and peptide fractionation by SAX, 
SCX, SEC and HpH (independently), followed by IDA-MS analysis. d The stage pooled samples were processed through four different experiments 
(three, where the plasma HAP were depleted and one where it was not). The resulting proteins were digested and subjected to SWATH-MS. Lists 
of quantifiable proteins were extracted from the SWATH dataset using the peptide library generated in c. e Differentially expressed proteins were 
first identified using ANOVA/t-test (p-value < 0.05, fold change cut off ± 1.5), resulting in 37 proteins exhibited with differential expression across all 
CRC stages compared to healthy controls. These 37 proteins were further evaluated by unsupervised clustering method to increase discriminatory 
power. Differentially expressed proteins were subjected to validation pipeline where they were checked to identify evidence in the literature, 
followed by experimental validation (ELISA/Western blotting) of a subset that seemed most promising. Concurrently, the samples also underwent 
a supervised classification method which identified potential candidates which were then validated with an augmented dataset (with a SD 10 
times the observed variance). This resulted in a subset of 5 candidate proteins that were able to classify the different stages of the disease. SAX 
strong anion exchange, SCX strong cation exchange, SEC size exclusion chromatography, HpH high pH reversed phased c18, SWATH sequential 
window acquisition of all theoretical mass spectra, IDA-MS information-dependent acquisition mass spectrometry, SD standard deviation, HAPs high 
abundant proteins
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were reduced with 5 mM dithiothreitol (DTT) at 60 °C 
for 30  min and alkylation with 25  mM iodoacetamide 
(IAA) at room temperature for 30  min in the dark. 
Samples were diluted in 100  mM ammonium bicar-
bonate and digested with sequencing grade porcine 
trypsin (Promega) at a protease to substrate ratio of 1:30 
at 37  °C for 16  h. Peptide mixtures were desalted and 
cleaned with C18 OMIX tips (Agilent) according to the 
manufacturer’s protocol followed by drying by vacuum 
centrifugation.

Strong cation exchange (SCX) peptide fractionation
Tryptic digested peptides (100  µg) were fractionated 
using a poly-sulfonylethyl column A size 200 × 2.1  mm, 
5  µm, 200 Å column attached to the 1260 series HPLC 
(Agilent, Santa Clara, CA, USA). The separation was ini-
tiated, at a constant flow rate of 0.3  ml/min, with 100% 
buffer A (5 mM KH2PO4, pH 2.72, 25% acetonitrile) for 
25 min. This was followed by a gradual increase in buffer 
B (5 mM KH2PO4, pH 2.72, 350 mM KCl, 25% acetoni-
trile) concentration from 0 to 45% over 70 min.

Strong anion exchange (SAX) peptide fractionation
Digested peptides (100  µg) were fractionated using a 
UNO™ Q1 column (Bio-Rad, CA, USA) on a 1260 series 
HPLC (Agilent, Santa Clara, CA, USA). Fractionation 
was performed at a constant flow rate of 0.5 ml/min with 
peptides eluted on a linear gradient of buffers A (20 mM 
Tris–HCl, pH 7) for 10  min then a linear increase of 
buffer B (20 mM Tris–HCl, pH 7, 1 M KCl) to 100% over 
60  min and held for 10  min and finally replaced with 
buffer C (20 mM Tris–HCl, pH 7, 2 M KCl) to 100%.

Size exclusion chromatography (SEC) peptide fractionation
Peptides (100 µg) were fractionated using Tricorn Super-
dex 75 10/300 GL, 10 × 300–310  mm, 13  µm column 
(Amersham Biosciences) on a 1260 series HPLC (Agi-
lent, Santa Clara, CA, USA). Elution of peptides was per-
formed using a 100 mM NaPO4, 250 mM NaCl, pH 7 at 
an isocratic flow rate of 0.5  ml/min. Peptides were col-
lected over 80 min.

High pH reversed phased C18 (HpH) peptide fractionation
Peptides (100  µg) were fractionated using a ZORBAX 
300 Extend-C18 2.1 ×  150 mm, 3.5 µm column on a 1260 
HPLC system (Agilent, Santa Clara, CA, USA). Buffer A 
(5 mM ammonium formate (NH4COOH)) and B (5 mM 
NH4COOH, 90% acetonitrile in water) were used for the 
fractionation at a constant flow rate of 0.3 ml/min.

SWATH library generation (information‑dependent 
acquisition, IDA)
All fractionated peptides obtained from multiple peptide 
fractionation methods (as descripted above) were used 
for SWATH reference library generation (i.e., protein 
identification). The protein identification was performed 
on a Sciex TripleTOF 5600 (Sciex, Framingham, MA) 
coupled with Eksigent Ultra nanoLC system (Eksigent 
Technologies, Dublin, CA). Peptides were injected onto 
a reverse phase peptide C18 trap (Bruker peptide Cap-
trap) for pre-concentration and desalted at a flow rate 
of 10  µl/min for 5  min with 0.1% formic acid (v/v) and 
2% acetonitrile (v/v). After desalting, the peptide trap 
was switched in-line with an in-house packed analytical 
column (150  µm × 10  cm, solid core Halo C18, 160 Å, 
2.7 µm media (Bruker)). Peptides were eluted and sepa-
rated from the column using the buffer B (99.9% acetoni-
trile (v/v), 0.1% formic acid (v/v)) gradient starting from 
2% and increasing to 10% for 10 min then to 35% over the 
next 78  min at a flow rate of 500  nl/min. After peptide 
elution, the column was cleaned with 95% buffer B for 
10 min and equilibrated with 98% buffer A (0.1% formic 
acid (v/v)) for 20 min before next injection. In IDA mode, 
a TOFMS survey scan was acquired at m/z 350–1500 
with 0.25 s accumulation time, with the ten most intense 
precursor ions (2+ to 5+; counts > 150) in the survey scan 
consecutively isolated for subsequent product ion scans. 
Dynamic exclusion was used with a window of 20  s. 
Product ion spectra were accumulated for 50  ms in the 
mass range m/z 100–1500 with rolling collision energy.

IDA data were subjected to database searches by Pro-
teinPilot (V4.2, SCIEX) using the Paragon algorithm 
[33]. Homo sapiens database was obtained from Swis-
sProt (20,204 entries, 2015 version). The search param-
eters were as follows: sample type: identification; cys 
alkylation: iodoacetamide; digestion: trypsin; instru-
ment: TripleTOF 5600; special factors: none; ID focus: 
biological modifications; miss-cleavages: one; precursor 
peptide mass tolerance: ± 50  ppm; fragment ion mass 
tolerance: ± 0.1  Da; peptide length: > 7 amino acids. A 
reverse-decoy database search strategy was used with 
ProteinPilot, with the calculated protein FDR < 1% and a 
probability cut off at 0.99.

SWATH‑MS
A Sciex TripleTOF 5600 coupled with Eksigent Ultra 
nanoLC system and identical LC conditions (as described 
above) were used for SWATH-MS experiments. Initially, 
the precursor m/z frequencies from generated IDA data 
(above) were used to determine the sizes of m/z win-
dow. SWATH variable window acquisition with a set 
of 60 overlapping windows (1  amu for window overlap) 
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was constructed covering the mass range of m/a 399.5–
1249.5. In SWATH mode, TOFMS survey scans were 
acquired (m/z 350–1500, 0.05 s) then the 60 predefined 
m/z ranges were sequentially subjected to MS/MS anal-
ysis. Product ion spectra were accumulated for 60  ms 
in the mass range m/z 350–1500 with rolling collision 
energy optimized for lowed m/z in m/z window +10%.

SWATH data were extracted using PeakView (v2.1) 
with the following parameters: top 6 most intense frag-
ments per peptide, fragment tolerance at 75 ppm, 10 min 
retention time window, confidence thresholds of 99%, 
FDR for transitions < 1% (based on chromatographic fea-
ture after fragment extraction) and exclusion of shared/
modified peptides.

Statistical analyses
Peptide quantification was performed using peak areas 
from extracted ion chromatograms and proteins were 
quantified using cumulative mean values of the calcu-
lated peptide quantities. The extracted data was normal-
ized using total area normalization, and log-transformed 
prior to statistical analysis; the data distribution was 
examined using density plots and boxplots. The overall 
sample look and consistency of the technical replicates 
was examined visually using hierarchical clustering and 
principal component analysis (PCA) plots.

Extracted quantitation contained data from pooled 
samples in technical triplicates, belonging to five cat-
egories: CRC stage I–IV and healthy control. Proteins 
differentially-expressed between the five categories were 
identified based on a one-way ANOVA run separately 
for each protein, selecting proteins based on an ANOVA 
p-value criterion (< 0.05) and maximum fold change 
(FC > 1.5). Pairwise t-tests were also carried out, using 
both a protein level and peptide-level approach. The sta-
tistical analysis protocol is embedded in SwathXtend as 
described in detail previously [34].

Unsupervised and supervised machine‑learning
The differentially-expressed protein candidates analyzed 
by one-way ANOVA and pairwise t-test were consoli-
dated in a single dataset from the different depletions, 
and were further evaluated, first, by being plotted in 
3D-space following unsupervised clustering techniques. 
Dissimilarity matrix were created based on the peak 
areas of technical replicates for each condition, and plot-
ted in pairwise distances by using multi-dimensional 
scaling. The data is represented based on the first three 
dimensions for each CRC stage and healthy. Results from 
this clustering approach were verified using PCA. Both 
methods were done in MATLAB.

Although supervised classification approaches have 
been used in recent years with proteomics datasets 

[35, 36], the nature of most proteomics datasets, with 
a high number of proteins but a small population, make 
their validity as early predictors of a disease debat-
able. One way to overcome the limitations is to gener-
ate a synthetic dataset based on our real participants’ 
information in order to perform classification. Data 
augmentation is a mainstay for training classification 
algorithms in the field of machine-vision and medical 
imaging analysis [37, 38], though not widely used yet 
with proteomics data. Here we adapted these methods 
as further validation of our results. To evaluate the pre-
dictive power of the selected panel of candidate pro-
tein biomarkers, we created a synthetic population of 
patients (1000 per the 4 CRC stages as well as healthy 
controls, total = 5000) by generating a normal distri-
bution of random number at 10 times the standard 
deviation (SD) for each protein concentration from our 
technical replicates. Data augmentation was also per-
formed in MATLAB.

Once the dataset was generated for each group, vari-
ous classification approaches (including a shallow neu-
ral network as well as k-nearest neighbor and decision 
tree classifiers) were applied, using MATLAB neural 
network toolbox and classification app. For the shallow 
neural network, the network was composed of 10 hid-
den neurons, with 70% of the data was used for train-
ing, 15% for validation and 15% for testing. Once the 
network was trained, it was deployed to test on the 
dataset comprising our real pooled patient values.

Western blotting
Protein concentration was measured using a BCA 
Protein Assay Kit following the manufacturer’s proto-
col (Thermo Fisher Scientific). Proteins (25  μg/sam-
ple) were separated on a 4–12% SDS-PAGE gel and 
transferred onto nitrocellulose membrane blots using 
semi-dry blotting system (Bio-Rad) following the manu-
facturer’s protocol. To ensure the equal protein loading 
in each lane, the blots were stained Ponceau S (Sigma) 
and imaged on a ChemiDoc™ imaging system (Bio-
Rad). Blots were then incubated with primary monoclo-
nal/polyclonal antibodies including CFD (R&D systems, 
AF1824, 1:2500), GPX3 (R&D systems AF4199, 1:200), 
CST3 (Abcam ab133495, 1:13000), PON1 (Abcam, 
ab92466, 1:5000), MRC1 (Abcam ab195193, 1:1000) and 
COMP (Abcam, ab74524, 1 :200), followed by respec-
tive HRP-conjugated secondary antibodies. Blots were 
imaged using a Li-Cor Odyssey Blot imager (LI-COR 
Biosciences). Quantitation of signal intensity of the 
bands in Western blots was performed using Image lab 
software version 5.0 (Bio-Rad) and Image Studio Lite 
version 5.2 (LI-COR Biosciences).
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Enzyme‑linked immunosorbent assay (ELISA) validation
Expression level of ADAMDEC1 from pooled and indi-
vidual plasma (n = 100, 20 per stage (I–IV) and 20 
healthy control) was measured using MyBioSource 
ELISA kit (Catalogue #: MBS928931) following the man-
ufacturer’s instructions. Optical densities were measured 
at 450 nm and 570 nm using a PHERAstar® microplate 
reader (BMG Labtech). Statistical significance of differ-
ential expression of the plasma proteins was analyzed by 
one-way ANOVA on Prism software v.7 (graph pad).

Results
Plasma SWATH library generated using several protein/
peptide fractionation methods
Protein quantification by SWATH-MS typically relies on 
the quality of previously-generated spectral reference 
libraries (i.e., SWATH libraries) for reliable peptide iden-
tification subsequent protein expression level inference. 
Consequently, the quality and coverage of these refer-
ence libraries are directly correlated with the efficacy and 
scope of finding potential candidates from any SWATH-
MS analyses [39]. Particularly with complex samples like 
human plasma, where there are large orders in magni-
tude covering protein abundance, being able to obtain a 
large library directly influences one’s ability to quantify a 
greater number of proteins [21, 22].

In order to maximize the depth of SWATH refer-
ence library coverage, we strategically planned experi-
ments as following. Firstly, we combined healthy/CRC 
plasma samples (n = 100) to cover all proteins present 

under both healthy and disease conditions. Secondly, we 
removed the 14 high abundant proteins (HAPs) using 
Agilent’s MARS-14 columns from combined plasma 
samples to reduce the orders of magnitude of protein 
concentration. Finally, after tryptic digestion of MARS-
14-depleted plasmas, we employed a series of different 
peptide fractionation methods, incorporating reversed-
phased hydrophobic interaction (e.g., HpH), size exclu-
sion (e.g., SEC) and cation/anion exchanges (e.g., SCX 
and SAX). This wide range of chromatographic peptide 
fractionation strategies ensures maximum possible pep-
tide coverage and hence deepest protein identification.

We identified a total of 513 distinct plasma proteins by 
combined healthy/CRC plasma using HAP depletion and 
four peptide fractionation methodologies (Fig.  2a). We 
identified 361 plasma proteins using HpH fractionation, 
295 proteins by SAX, 332 proteins by SEC and 344 by 
SCX. The HpH peptide fractionation method identified 
a most number of proteins with higher stringency MS-
based identification criteria [40] (Additional file  1: Fig. 
S1). Detailed information for peptide/protein identifica-
tion is shown in Additional file 2: Table S1 which include 
(i) list of proteins/peptides identified in each fractiona-
tion method, (ii) amino acid sequences of each peptides, 
(iii) peptide modification and missed cleavages informa-
tion and (iv) neXtProt based uniqueness (uniquely map-
ping non-nested) of each peptide (Additional file 1: Fig. 
S1 and Additional file 2: Table S1).

To visualize the detectable threshold of plasma pro-
teins in our SWATH library, we plotted a scatter plot 

Fig. 2  SWATH reference library with functional annotations; a Venn diagram [43] comparing a number of common, unshared and shared proteins 
identified between four peptide fractionation methods used to compile a plasma SWATH library, with b “Anderson curve” superimposed with gene 
ontology information from plasma proteins identified in the study. The color code bar shown indicated on the right-hand side of b corresponds to 
various gene ontology characteristics applied to data points shown on the concentration curve. HpH high pH C18 reversed phase separation, SAX 
strong anion exchange, SEC size exclusion chromatography, SCX strong cation exchange
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analogous to the “Anderson curve” [21] that exemplifies 
the high dynamic plasma protein concentration range 
(Fig. 2b). Based upon the Plasma Proteome Database [41], 
PeptideAtlas and the PubMed literature, we were able to 
find reported concentrations for 427 proteins (out of 513 
total identified proteins). These reported concentrations 
were used to create a scatter plot (Fig. 2b). It should be 
noted that we did not plot all 3509 human plasma pro-
teins identified to date at high stringency by the Human 
(Plasma) Proteome Project [42]. It should also be noted 
that the 427 proteins we uncovered spanned ~ 10 orders 
of magnitude in protein concentration. The concentra-
tion for the most abundant protein (human serum albu-
min; ALB) was found to be ~ 40.6  mg/ml down to the 
lowest protein identified at 4.3  pg/ml which was found 
to be multiple EGF-like domains 8 protein (MEGF8), a 
protein whose function is unclear but may be involved 
in cell adhesion/attachment (Fig.  2b, Additional file  3: 
Table  S2). A significant residual 86/513 human plasma 
proteins identified in the SWATH library currently have 
no reported plasma concentrations, to the best of our 
knowledge. Interestingly, based on search against the 
PeptideAtlas database on May 2019, 8 plasma proteins 
found in our SWATH library compilation were reported 
as plasma proteins for the first time (Additional file  4: 
Table S3).

Functionalities of identified plasma proteins
To visualize the functionalities of proteins found in our 
plasma SWATH library, UniProt was employed to anno-
tate; (i) subcellular localization, (ii) tissue specificity, (iii) 
gene ontology analyses (biological processes, cellular 
component, molecular function), and (iv) protein fami-
lies (Additional file  3: Table  S2, Fig.  2b). As expected, 
those proteins found to lie in the high abundance range 
were mostly classical plasma proteins such as those that 
are known to be liver-derived or acute phase response 
proteins, including HAPs like human serum albumin, 
immunoglobulin (multiple types), fibrinogen, chylomi-
cron proteins, transferrin, haptoglobin, C-reactive pro-
tein, clusterin (ApoJ), and complementary factor B. Gene 
ontology analysis classifies these proteins as involved 
in biological processes like positive/negative activators 
of acute phase response, antimicrobial response, blood 
coagulation or complement activation.

Mid-range proteins, on the other hand, consisted pre-
dominantly of peptidases, serpins, S-100 family proteins, 
glycoproteins, and cell membrane binding proteins like 
cystatin C, CD59, C1Q, extracellular matrix proteins and 
superoxide dismutase, amongst others. Some of these 
plasma proteins were found to have roles in cell–cell sig-
nalling, angiogenesis and activation of MAPK activity.

In the low abundance range, cell membrane proteins, 
extracellular exosomal proteins, proteins secreted from 
the endoplasmic reticulum or lysosome membrane 
and intracellular secreted proteins were found. Exam-
ples included, hyaluronan-binding protein 2, galectin-
3-binding protein, phosphatidylinositol-glycan-specific 
phospholipase D. The lowest discovered plasma pro-
teins found were in the ρg/ml concentration range and 
included the E3 ubiquitin-protein ligase TRIM33 that is 
known to be specifically expressed in colon adenomas 
and adenocarcinomas and is thought to be a regulator 
of TGF-β receptor signaling pathway [44]. A detailed 
list of the SWATH library specific peptides, their length, 
number of peptides per proteins and their uniqueness 
(uniquely mapping non-nested) can be found in Addi-
tional file 2: Tables S1 and Additional file 3: Table S2.

Identification of quantifiable plasma proteins in healthy 
or CRC plasmas using various (ultra)depletion strategies
Identifying specific and sensitive diagnostic biomark-
ers by proteomics analysis of human plasma has always 
been challenging [21, 22], primarily due to current LC–
MS/MS methodologies not allowing detection of lower 
abundance disease-associated biomarkers [29] as dis-
cussed earlier. To broaden the scope of plasma protein 
quantification with a view to finding novel early stage 
CRC-specific protein biomarkers, we undertook analysis 
of data from a combination of strategies including non-
depletion, HAP depletion and ultradepletion of both high 
and medium abundance proteins.

Having compiled a comprehensive SWATH refer-
ence library, we performed the SWATH-MS analysis 
on pooled human healthy and CRC plasma samples. 
As described, pooled (n = 20) human plasmas for each 
of stages I–IV CRCs and healthy controls were (i) non-
depleted, (ii) MARS-14 only depleted, (iii) ultradepleted 
using MARS-14 followed by API using purified anti-
human plasma fraction chicken IgY columns [30, 31] 
(MARS-14 → API), and finally (iv) ultradepleted using 
API-depletion followed by MARS-14 (API → MARS-14). 
Each of the non-depleted, depleted and both ultrade-
pleted experiments were run as technical triplicates 
(refer to Fig. 1 for an overview of the experimental plan). 
Compilation of all SWATH-MS experiments as outlined 
above, resulted in the identification and quantitation of a 
total of 444 distinct human plasma proteins from healthy 
or CRC plasmas (Fig.  3a). Detailed information of all 
quantifiable plasma proteins captured by non-depletion 
and depletion strategies are illustrated in Additional 
file 5: Table S4.

When non-depleted plasmas were analyzed, we 
identified and quantified a total of 315 proteins that 
had been deposited prior into the SWATH library. In 
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agreement with previously published studies [29], use 
of the Agilent MARS-14 system that removes 14 most 
highly abundant plasma proteins allowed for the iden-
tification of 362 proteins, including an additional 86 
plasma proteins not observed in non-depleted plasmas. 
Equally, non-depleted plasmas contained 41 unique 
proteins not found after MARS-14 depletion, indicating 
the distinct possibility of significant co-depletion as an 
off-target effect of the use of MARS-14 depletion. This 
observation correlates with previous work illustrating 
additional proteins are likely bound to MARS-14 pro-
teins and are unexpectedly/inadvertently co-depleted 
[45].

To comprehensively expose lower abundance proteins 
differential-expression between healthy and clinically-
staged CRC plasmas, we undertook various ultradeple-
tion approaches. Systematic depletion of high-medium 
abundance proteins performed using MARS-14 fol-
lowed by API identified 325 proteins. Of these 31 pro-
teins had not been previously observed in non-depleted 
or MARS-14 depleted plasmas with 29 were not seen 
by any other method. When we reversed the order of 
ultradepletion (i.e., API depletion followed by MARS-
14) we identified only 244 proteins, 12 which had not 
been previously observed in non-depleted or MARS-14 
depletion whilst only 10 were newly identified.

In summary, MARS-14 depletion allowed 28 unique 
proteins to be observed whilst ultradepletion allowed 
for the visualization of 41 unique proteins (Fig.  3a). 
Collectively, we were able to identify and quantitate 
an additional 129 proteins (i.e., ~ 30% of the total 444 
plasma proteome subset identified) using all (ultra)
depletion strategies employed.

To visualize the protein concentration range of these 
additional 129 proteins, we superimposed them (red 
dots) onto the complete plasma SWATH library (blue 
dots) on an “Anderson curve” (Fig. 3b). This result dem-
onstrates that these additional 129 proteins represented 
mostly medium–low abundance plasma proteins (e.g., 
LECT2, ADAMTS13 and PCDH12). These results 
strongly support the hypothesis that high-medium abun-
dance plasma protein depletion allows for even deeper 
and more comprehensive (though not complete) pro-
teome coverage.

Differentially‑expressed plasma protein biomarkers 
of early stages I/II CRC​
Discovering suitable diagnostic candidates requires strin-
gent scrutiny of large proteomics datasets using compre-
hensive normalization and statistical analysis. Prior to 
statistical analysis, the extracted SWATH dataset from 
each depletion and the non-depletion experiment was 
independently normalized using total area normalization 
and data distribution was examined using density plots 
and boxplots (Additional file  1: Fig. S2). Furthermore, 
consistency of sample replication was examined visually 
using hierarchical clustering and PCA plots (Additional 
file 1: Fig. S2).

To discover plasma proteins that were differentially-
expressed between healthy and staged I–IV CRC plas-
mas, one-way ANOVA and Pairwise t-test at both the 
protein and peptide levels were employed. All differ-
entially-expressed proteins were selected based-on a 
p-value < 0.05 and a fold change ratio cut off of ± 1.5. 
These proteins were further filtered to retain only 
those candidates that exhibited consistent trends (up 

Fig. 3  Quantifiable plasma proteins found in healthy/CRC plasmas from non-depleted and multiple plasma protein depletion strategies. Venn 
diagram [43] a showing the numbers of unique and common quantifiable proteins following three depletion (MARS-14, API followed by MARS-14 
and MARS-14 followed by API) and non-depletion experiments. Protein concentration range (b) of the additional 129 proteins found after 
high-medium abundance protein depletion on the plasma SWATH library “Anderson curve”
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or downregulation) in all stages compared to control, 
and these results were consolidated from all deple-
tions. This analysis resulted in the identification of a 
total of 37 protein candidates that exhibited differen-
tial (↓↑) expression in all the four (I–IV) CRC stages 
when compared to healthy controls from a comparison 
of the non-depleted and three depleted experiments. 
Detailed information about each of these 37 CRC bio-
marker protein candidates is presented in Additional 
file 6: Table S5.

The highest number of differentially-expressed pro-
teins were found in the API → MARS-14 ultradepleted 
healthy against CRC samples, whereas non-depleted 
samples resulted in the lowest number of differen-
tially-expressed proteins. It should be noted that some 
proteins (e.g., SAA2) were consistently up-regulated 
in disease CRC plasmas whether the data came from 
non-depleted or after MARS-14 depletion. Equally, 
GPX3 was consistently up-regulated in both MARS-14 
depleted and MARS-14 → API depletion experiments. 
Additionally, CST3 and CFD were consistently down-
regulated in all stages of CRC plasmas using both 
MARS-14 and API → MARS-14 depletion. Figure  4a 
represents a subset of these data. CRC biomarker can-
didate proteins were subsequently selected based on 
biological relevance as well as statistical analysis (e.g., 
predictive modelling) discussed below.

Of the 37 CRC protein biomarker candidates, 31 had 
reported known concentration whilst the plasma con-
centration of the remaining 6 proteins had not been 
reported. These 31 reported proteins were mapped 
onto the plasma SWATH library Anderson concentra-
tion curve (Fig. 4b), demonstrating that the concentra-
tions of protein candidates were widely represented 
across a broad plasma protein concentration range.

We also used gene ontology characteristics of the 
37 CRC protein biomarker candidates using UniProt 
and the Human Protein Atlas to determine poten-
tial biological relevance. Of these, 10 proteins were 
found to be liver-derived proteins (APOA2, APOC3, 
F2, APOC2, SERPIN6, PON1, AMBP, SAA1, SAA2, 
and HGFAC), and in toto, all 37 proteins had subcel-
lular attributes associated with the cytosol (APOB, 
SAA1, HGFAC, S100A8, PFN1, APOA2, F2), exosomes 
(VASN, COMP), secretory proteins (COMP, ADEC1, 
SODE, HGFAC, C1QC, ITIH3, CFAD, MASP2, SAA1, 
SAA2, GPX3, SAMP, AMBP, PON1), or had been 
shown to be an integral component of cell membranes 
(VASN). Three candidates were expressed in somatic 
tissue (MECP2), endothelial cells (ROBO4) or were 
known to be secreted in response to dendritic cell acti-
vation and maturation (ADAMDEC1; Additional file 6: 
Table S5).

Validation of differentially‑expressed protein candidates 
using orthogonal technologies
Selected early stage CRC biomarker candidates were sub-
sequently validated using Western blotting and ELISA. 
In total, 7 of 37 plasma protein candidates discovered 
above were validated  based on previously established 
biological relevance in cancer, statistical analysis of data 
and availability of well-established, high-quality anti-
bodies for either Western blotting or ELISA analyses. 
In detail, CST3, GPX3, PON1, CFD, COMP and MRC1 
level variations were confirmed using Western blotting 
on pooled healthy and staged (AJCC I–IV) CRC plasma 
samples (Fig.  5a). The expression levels of ADAMDEC1 
were measured using a commercially-available ELISA kit 
on the same pooled, as well as the individual (n = 100) 
healthy and staged CRC patient plasma samples (Fig. 5b, 
c).

Consistent with SWATH-MS results, Western blot-
ting confirmed statistically-significant changes in expres-
sion levels of CST3, CFD, MRC1, COMP and PON1 in 
disease plasmas compared to healthy controls. Of these, 
CST3, MRC1 and COMP levels were found to be signifi-
cantly down-regulated in all CRC stages in comparison to 
healthy, whilst the levels of CFD and PON1 were found 
to be significantly lower in stage I and/or stage II com-
pared to healthy controls. Equally, GPX3 was shown to 
be up-regulated in AJCC stages I, II and III compared to 
healthy plasmas (Fig.  5a), consistent with SWATH-MS 
data for GPX3. Full-length Western blots and Ponceau S 
Acid Red stained images are shown in Additional file 1: 
Fig. S3. Collectively, expression levels observed in West-
ern blotting for these 6 candidates was consistent with 
observed SWATH-MS quantification trends.

ELISA on pooled samples also confirmed SWATH-MS 
expression data for ADAMDEC1, with expression sig-
nificantly elevated in stage I, II and III CRCs compared 
to healthy controls (Fig.  5b). However, when individual 
patient plasmas were analyzed by ELISA, statistically 
significant ADAMDEC1 expression level differences 
(p ≤ 0.05) were only found between stage II CRC plasmas 
and healthy controls (n = 20) (Fig. 5c). ELISA studies on 
a larger CRC population are in progress to ascertain if 
ADAMDEC1 SWATH differences between stage I, II and 
IV and healthy controls can also be substantiated.

Neural network‑based classification predicts early cancer 
stage using differentially‑expressed CRC candidate protein 
biomarkers
As illustrated above, 37 differentially-expressed proteins 
were identified to discern early stage CRC by SWATH-
MS using pooled plasma samples, rather than individual 
plasma samples. This approach was used to get stable 
population values for each stage, but also to limit the 
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Fig. 4  Graphical representation of differentially-expressed plasma proteins between all CRC stages (I–IV) compared to healthy controls. a Box plots 
for differentially-expressed proteins between healthy control and CRC stages I–IV. *p < 0.05, **p < 0.005, ***p < 0.0005 and ****p < 0.0001 calculated 
using unpaired t-tests. Distribution (b) of 31 potential candidates identified from four biomarker discovery experiments superimposed on the 
SWATH reference library protein concentration curve plotted against protein abundance rank. The color key on the top-right side shows proteins 
identified from different biomarker discovery experiments
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Fig. 5  Western blotting and ELISA validation for 7 candidate early-stage CRC plasma protein biomarkers. a Validation of six biomarker candidates 
by Western blot and expression level of protein in plasma of all CRC stages (I–IV). b ADAMDEC1 ELISA on pooled and c individual patients. The 
bars indicate the means and SEMs. *p < 0.05, **p < 0.005, ***p < 0.0005 and ****p < 0.00005 calculated using unpaired t-test. CST3 cystatin-C, GPX3 
glutathione peroxidase 3, CFD complement factor D, MRC1 macrophage mannose receptor 1, COMP cartilage oligomeric matrix protein, PON1 
serum paraoxonase/arylesterase 1 and ADAMDEC1: ADAM-like decysin 1
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enormous cost and time requirement necessary to indi-
vidually ultradeplete 100 plasma samples in an explora-
tory study.

An important caveat with the use of exhaustive 
ultradepletion and peptide fractionation methods is 
whether candidates identified from pooled SWATH-
MS dataset (technical triplicates of pooled healthy and 
CRC stages I–IV) are a valid representation of the gen-
eral population. Extrapolation of pooled data comports 
inherent risks as the variance in between participants’ 
plasma concentration for each candidate in unknown, 
neither is the variance in between candidates for a sin-
gle patient. We are well aware of this limitation, but 
hereby propose a model to test whether our proposed 
candidates hold statistical power when various noise is 
added to our pooled data. To overcome this problem, 
we synthetically augmented our dataset by simulating a 
large number of hypothetical patients, adding noise far 
above (up to tenfold) the variance present in our tech-
nical replicates. This data-augmentation made it pos-
sible for us to use state-of-the-art machine-learning 
based statistical approaches with our dataset to test its 
stringency.

Before generating synthetic data, we verified that 
the variance of protein concentration from our techni-
cal replicates were similar for each stage, which they 
were (healthy = 33 ± 28%, stage 1 = 36 ± 34%, stage 
2 = 42 ± 34%, stage 3 = 45 ± 34% and stage 4 = 31 ± 18%). 
We then generated a synthetic patient population of a 
thousand patient per (1000 patients per CRC stage and 
1000 healthy subjects), and applied a conservative vari-
ance in protein expression that was 10 times that of the 
SD of pooled samples in absolute values over a normal 
distribution around the average response. Of impor-
tance, this variance was well above the observed vari-
ance of our validated individual concentrations verified 
by ELISA (Fig. 5c). This approach gave us the possibility 
to test the widest possible range of protein expression we 
would expect from a relatively heterogeneous population. 
At the same time, this approach should prevent overfit-
ting in the training of our algorithm. As can be seen in 
the dissimilarity matrix per stage, our technical replicates 
for each CRC stage as well as for the synthetic cohort 
shows a clear consistency between healthy control and 
all 4 stages (Fig. 6a). The distinction between stages also 
translated well when we plotted the data using the first 
three dimensions following multi-dimensional scaling, 
with distances increasing between clusters (healthy and 
CRC stages) as the disease progresses from an early stage 
I through to more advanced stage IV.

Subsequently, we trained various supervised classifi-
cation algorithms to classify each stage separately. Our 
trained classifier achieved 99.6% correct classification at 

10 times the variance for the simulated data used (Fig. 6b, 
c). We then verified if the deployed algorithm could still 
properly classify our real dataset which was used to cre-
ate the synthetic data but completely kept out of the 
training, and achieved 80% correct classification (Fig. 6d). 
This is a very encouraging validation of our candidates, 
and advocates progressing to population cohort studies 
involving measurement of each of these 37 early stage 
CRC candidate plasma biomarkers by targeted MRM-
based approaches in individual participants to better our 
predictive model.

We then attempted to narrow down the number of 
proteins necessary to maintain high accuracy. Data-
mining was performed by examining the dissimilar-
ity distances between proteins rather than in between 
stages. Five proteins showed clear potential as sufficient 
to maintain high accuracy, which we further tested. This 
panel included proteins SAA2, APCS, APOA4, F2 and 
AMBP. Classification on our synthetic population pro-
duced a 94% correct classification from the test dataset 
(i.e., trained model, Fig.  6e, f ) and achieved 100% cor-
rect classification once deployed on the real pooled 
samples that were once again kept out of the training 
of the algorithm (Fig.  6g). Importantly, 4 protein can-
didates (APCS, APOA4, F2 and AMBP) were identified 
from our in-house ultradepletion experiments (MARS-
14 → API or API → MARS-14) whilst only 1 candidate 
(SAA2) was identified from non-ultradepleted experi-
ments. This result clearly indicates the importance of 
plasma proteomics depth analysis for improved bio-
marker discovery and shows that we have very prom-
ising candidates for predicting early occurrence of the 
pathology.

Discussion
Early stage diagnosis of CRC has immense actionable 
curative potential and has been estimated to be able to 
increase patient survival by > 90% [5]. Aside from poor 
compliance (~ 40%), stool-based testing relies on detec-
tion of blood hemoglobin in stool samples, rendering 
false-positive results from subjects with rectal fissures, 
hemorrhoids or other ailments where tissue is damaged 
with consequent bleeding, causing additional burden on 
health systems due to requisite, unnecessary follow-up 
colonoscopies [6]. In this scenario, blood-based testing 
would be undisputedly a more reliable, higher compli-
ance (~ 97%), less invasive and more widely-accepted 
method of screening diagnosis. However, the discovery 
of reliable biomarkers with high specificity and sensitivity 
for early stage CRC diagnosis from blood has proven to 
be challenging.
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Deep dive to develop comprehensive plasma SWATH 
library
The most significant challenge in plasma-based bio-
marker discovery study is the ability to reliably and accu-
rately measure as many as possible plasma proteins from 
a single experiment [21]. This is complicated by the dom-
inance of many high abundant proteins (HAPs) that mask 
the identification of more biologically-relevant lower 
abundance proteins, which may better reflect disease 
pathophysiology [4]. Some antibody-based technologies 
(e.g., Luminex/Bio-Plex systems [46] have shown some 
promise, however their high cost has confined discovery 
to a handful of protein biomarkers. MS-based techniques 
have made significant recent strides with regards to accu-
racy and reliability and these, combined with a plethora 
of analytical techniques (e.g., depletion, ultradepletion, 
protein/peptide fractionation and IDA) can potentially 
tackle this challenge.

Here, we utilized a commercially available MARS-14 
deletion system followed by extensive fractionation of 
tryptic peptides to develop a comprehensive SWATH 

plasma library. Although depletion of HAPs from plasma 
likely removed some low abundant proteins [45], it has 
been considered as a reliable method for discovery [47]. 
The plasma proteome deep dive resulted from extensive 
fractionation combining four [4] analytical peptide frac-
tionation methods (i.e., HpH, SEC, SCX and SAX). All 
have individually been reported to be effective in peptide 
separation [48–50] based-on different characteristics of 
tryptic peptides. Collectively, our multi-fractionation 
approach covered a broad range of peptide character-
istics. As a result, this allowed a total of 513 distinct 
plasma protein identifications from combined healthy/
CRC plasmas (Fig. 2a) to occur. Moreover, our approach 
revealed 8 proteins that have not previously been iden-
tified in human plasma, searched against PeptideAt-
las database (Additional file  4: Table  S3). Interestingly, 
many of these new plasma proteins appeared to be tis-
sue leakage proteins (e.g., CASP12, ODF3L1 and SYN2) 
from organs including ovary, testis and brain, respec-
tively, most likely demonstrating these proteins are low 
to medium abundance in plasma. This illustrates the 

Fig. 6  A shallow neural network-based classification of synthetic and real datasets with 37 and 5 protein candidates. a The dissimilarity matrix (top 
left corner) and multi-dimensional scaling (MDS) scatter plot for the triplicates of pooled CRC plasma samples (e.g., healthy control and stages I–
IV). b The dissimilarity matrix and MDS plot of a synthetic dataset of a panel of 37 protein candidates. A total of 5000 synthetic patients (1000 per 
healthy control and the 4 CRC stages) were created from random numbers falling within a normal distribution of 10 times the standard deviation 
(SD) of the pooled real CRC plasma samples. c Confusion matrix of the synthetic dataset (for 37 protein candidates) for the test phase of the training 
of the classifier achieved 99.6% success. d Confusion matrix for the testing of the classifier on the real dataset kept out of training achieved 80% 
correct classification. e Dissimilarity matrix and MDS plot of the synthetic dataset for a panel of 5 protein candidates (SAA2, APCS, APOA4, F2 and 
AMB) with a total of 5000 synthetic patients. f Confusion matrix of the synthetic dataset (for 5 protein candidates) for the test phase of the training 
of the classifier achieved 94% success. g Confusion matrix for the testing of the classifier on the real dataset kept out of training achieved 100% 
correct classification
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efficacy of the peptide fractionation method to obtain a 
plasma snapshot of the human body and by extension of 
pathophysiology.

Depletion of high abundance proteins has been previ-
ously demonstrated to allow identification of more lower 
abundance proteins from human plasma [47]. However, 
for quantification purposes, some inconsistencies have 
been reported [51]. To circumvent these, we utilized a 
strategy of using a multi-pronged approach to allow for 
more reliable quantitation. Here we used either MARS-
14 alone, or an ultradepletion strategy with either API or 
MARS-14 first in tandem (Fig. 1). These approaches wid-
ened the quantifiable plasma proteome by an additional 
129 proteins which were predominantly low to medium 
abundance proteins, demonstrated by on a plasma pro-
tein Anderson curve (Fig.  3). Our study unraveled pro-
teins like MEGF8, CRISP3 and TRIM33 that are known 
to occur in lower picogram levels in plasma. Of these 
TRIM33 is known to be a negative regulator of BMP 
signaling as well as a regulator of TGF-β receptor signal-
ing [44], whilst MEGF8 and CRISP-3 are found expressed 
on extracellular exosomes and are integral component of 
plasma membranes (Additional file 3: Table S2, Figs. 2b 
and 3b). These low abundance proteins sit in in lowest 
section of the Anderson concentration curve (Figs.  2b 
and 3b) belonging to G-protein coupled receptors, Notch 
family, interleukins, integrin beta chain family members, 
α and β-transferins, homeobox proteins and zinc finger 
proteins (Additional file  3: Table  S2). Further, proteins 
like proprotein convertase 9, C–C motif chemokine 
16, SPARC-like protein, ADAMT’s like protein 4, mac-
rophage receptor, IgG Fc-binding protein, Golgi mem-
brane protein 1 and ADAMDEC1 were mapped for 
their tissue-specific expression to colon, small intestine, 
epithelia and lymph nodes. These proteins are known to 
be involved in apoptosis, immune response, cell metabo-
lism, cell differentiation and dendritic cell maturation 
respectively.

Although SWATH data does contain post translational 
modifications (PTMs), in biomarker discovery studies, 
unmodified peptides are most amenable for translation 
into current clinical quantitative MS-based methodolo-
gies and hence PTM differences were not studied specifi-
cally. Even though, the quantification of modified forms 
of proteins by SWATH is challenging, all MS data will 
be made publicly available for deeper investigations into 
the role of PTM changes in early-stage CRC and cancer 
progression.

Revealed known potential CRC biomarkers
It was however not surprising to note that the subset of 
37 early stage CRC differentially-expressed protein bio-
markers identified through this study were observed 

across the entire range of concentrations represented 
by the Anderson curve (Fig. 4). A number of biomarker 
studies have previously had similar aims to this study, 
albeit using different samples and analytical techniques. 
Our study recapitulated a number of these studies that 
lends credence to the validity of our approach and sug-
gest that these markers may indeed have significance.

The list of differentially-expressed proteins comprised 
many acute phase response proteins or those involved in 
the complement cascade. A number of these have been 
previously reported to be markers of CRC, including 
serum paraoxonase 1 (PON1), down-regulated in CRC 
plasma here as well as in other investigations [52]. PON1 
is a known free radical scavenger possessing antioxidant 
activities and has been reported to play an important role 
in CRC carcinogenesis and metastasis [53]. Paradoxi-
cally, activity of sera PON1 has been demonstrated to 
be increased in patients with CRC [54], suggesting that a 
decrease in protein levels may not necessarily be associ-
ated with decreased activity, though the authors do pro-
pose that further studies are needed to be performed to 
validate their claims.

Plasma is the richest reserve of secretory proteins that 
potentially reflect abnormal physiology. Unsurprisingly, 
we discovered aberrations in several secretory proteins 
with relevance to tumor pathophysiology. The most fre-
quently recurring marker protein was S100A8 [55, 56] 
found to be elevated in our study. S100A8 is predomi-
nantly expressed in myeloid cells and has been identi-
fied as a serological marker for CRC in combination 
with S100A9 [56]. Interestingly, Ichikawa et  al., suggest 
S100A8/A9 promotes activation of MAPK and NF-kappa 
B signaling pathways and mediates tumour development 
[56, 57].

Another previously established up-regulated marker we 
unearthed was glutathione peroxidase (GPX3), an extra-
cellular selenoprotein member known to play important 
roles in oxidative stress-induced apoptosis [58]. More 
recently, the overexpression of GPX3 has been reported 
in prostate cancer, gastric cancer, CRC pathogenesis and 
leukaemia stem cells [59–61]. Furthermore, Barett et al., 
had previously demonstrated that elevated plasma GPX3 
may serve protective roles in inflammation-associated 
colon carcinogenesis by reducing oxidative DNA dam-
age [32]. However, Roman et al., reported no significant 
differences between CRC and healthy control levels of 
serum GPX3 [62] although they were unable to validate 
these findings with orthogonal techniques. In our study, 
GPX3 was elevated across all CRC stages compared to 
healthy plasmas. Due to this apparent discrepancy with 
literature reports, we used Western blotting to validate 
GPX3 expression which confirmed our SWATH-MS 
results.
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Apolipoproteins A4 (ApoA-IV) and Apolipoprotein B, 
both small intestine and duodenum specific proteins also 
stood out in the data. A recently published study estab-
lished that aberrant ApoA-IV expression in CRC patients 
was associated with 8q24 oncogenic SNPs and with dia-
betes mellitus (DM) with suggestion that this protein 
may subsequently facilitate CRC development [63]. In 
our study ApoA-IV levels across all CRC stages were 
found to be significantly down-regulated in comparison 
to healthy controls consistent with past genomic stud-
ies [63]. On the other hand, elevated levels of Apo B in 
serum have previously been associated with CRC risk in 
a study performed on 28,098 participants, out of which 
incidence cases were identified in follow-up done from 
1991 to 2012 with a 95% confidence interval [64]. This 
correlated with data from our study where ApoB levels 
were found to be significantly up-regulated across all 
CRC stages compared to healthy control plasmas.

A subset of biomarkers emanating from this study have 
been shown to be expressed in multiple cancer tissue 
types, including CRC. For example, cystatin C (CST3) 
is a secretory protein known to be a potent cathepsin B 
(CTSB) inhibitor [65]. It is thought that CTSB partici-
pates in remodeling of connective tissues during tumour 
growth, invasion and metastasis [66]. Our study found 
CST3 down-regulated in CRC stages, whereas a number 
of studies have associated up-regulation of CST3 asso-
ciated with progression of cancer [67]. Several studies 
have suggested CST3 is not reliable, proposing alterna-
tively that prognostic value lies in disturbances in CTSB/
CST3 ratios [52, 65, 68]. Nevertheless, data here vali-
dated down-regulated levels of CST3 finding significant 
fold change between all CRC stages and healthy controls. 
However, subsequent detailed statistical modelling indi-
cated that CST3 did not add particular value in classify-
ing CRC tumor stage. The link between uPAR and CSTB, 
both being proteases is certainly intriguing and worth 
investigating further as both are known to be signifi-
cantly up-regulated and associated with poor outcomes 
from CRC metastasis [69].

Novel CRC biomarkers
Plasma proteins are largely secreted by liver and tissues 
through which they circulate [21, 24]. In the panel of 
early CRC stage candidates, it was interesting to observe 
changes in proteins specifically expressed in colon and 
associated intestinal mucosal lining tissues. Of such 
proteins, one interesting candidate was ADAMDEC1 
which is selectively expressed and shed by maturing den-
dritic cells and macrophages predominantly in the small 
intestine, caecum and large intestine [70, 71]. ADAM-
DEC1, a disintegrin and metalloprotease, is a particu-
larly unique member of ADAM family in that it lacks a 

transmembrane domain which allows it to remain soluble 
[72]. It is one of four ADAM’s released from thrombin-
stimulated platelets and cleaves cell surface pro-epider-
mal growth factor (pro-EGF) at an arginine residue to 
generate soluble high-molecular weight EGF (HMW-
EGF) [72]. HMW-EGF is an effective ligand for EGF 
receptor members and ultimately triggers the EGF signal 
transduction pathway [72]. A more recent study found 
ADAMDEC1 up-regulated in normal epithelial cells, 
specifically after these normal cells had been co-cultured 
with active mutant RasV12-transformed epithelial cells 
[73]. This study suggested that ADAMDEC1 may be an 
epithelial intrinsic soluble factor that promotes apical 
extrusion of RasV12 cells, displaying anti-tumour activ-
ity, in a phenomenon called “epithelial defense against 
cancer” [73]. In both studies, increased level of ADAM-
DEC1 was demonstrated to play a crucial role in tumour 
division and progression. However, it must be noted that, 
increased levels of ADAMDEC1 have also been shown to 
be associated with the inflammation in Crohn’s disease 
[71] and has also been reported to be highly expressed in 
Chronic rhinosinusitis with nasal polyps [74].

Here, we observed up-regulated levels of plasma 
ADAMDEC1 in all CRC stages compared to healthy con-
trols and this trend was confirmed by ELISA performed 
on both pooled and individual patient (n = 20 per CRC 
stage) plasmas. This study of individual patient plasma 
samples allowed us to investigate the impact of “pool-
ing” plasma samples in the first place, necessary to com-
plete technical protocols within a reasonable timeframe. 
Although, pooling had advantages in discovery (dis-
cussed earlier), extrapolating protein biomarker infor-
mation to individual patient populations based on that 
pooled data is counterintuitive. Therefore, ADAMDEC1 
was used as a “example” protein to investigate the effi-
cacy of extrapolation of pooled data for the complete list 
of all 37 candidates. Individual ADAMDEC1 SD values 
were then used to inform cutoffs for the generation of a 
machine learning algorithm as discussed.

Another novel finding was a subset of immune system 
protein biomarkers. Any human body harboring tumors 
likely initiates assault on physiological wellbeing. Cells 
of the immune system continually monitor tissues and 
provide protection against many types of pathology, 
including monitoring tumorigenesis [75]. Macrophage 
receptor (MARCO), a scavenger receptor is expressed 
by suppressive tumour-associated macrophages (TAM) 
called M2 macrophages. These are known to suppress 
the immune system favouring tumour growth and pro-
moting metastasis through pro-angiogenesis and tis-
sue remodelling [76]. Interestingly, Georgoudaki et  al, 
showed targeting MARCO-expressing TAM’s enhance 
the effect of immune checkpoint therapy in both 
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melanoma and CRC [75]. Macrophages are recruited to 
the tumor via blood circulation or direct immigration to 
adjacent tumors from surrounding tissues which might 
explain the elevated plasma levels of MARCO observed 
here across all CRC stages. Considerable increases in 
fold change ratio in later stages (C/III and D/IV) could 
be the result of immune suppression accelerating clini-
cal tumour growth and metastasis. Another immu-
noregulatory protein, macrophage mannose receptor 1 
(MRC1) also known as CD206 is an M2 marker and has 
been found to be co-expressed with MARCO in CRC cell 
lines by Georgoudaki et  al, [75]. A study on advanced 
imaging agents found that MRC1/CD206 a C-type lec-
tin mannose receptor is a major binding receptor for 
γ-tilmanocept—a compound routinely used for molecu-
lar imaging and mapping of sentinel lymph nodes [77]. In 
our study, MRC1 was observed to be down-regulated in 
all CRC stages compared to healthy controls. However, 
interestingly MRC1 has been reported to be up-regulated 
in CRC [78] although the study was only performed on 
small number of patients.

Just as with ADAMDEC1, it is likely that different dis-
eases will share proteins implicated in their pathogenesis 
as there are > 20,000 protein coding genes and 14,500 dis-
eases classified by the ICD code [24]. The specificity of 
these markers to identify the CRC as a standalone or as a 
panel will only be established once their diagnostic value 
is proven on individual plasma samples of early stage 
CRC patients, healthy controls and negative controls 
(samples from patients suffering from disease other than 
CRC). Panels reflecting different Hallmarks of Cancer 
[79] associated with a particular cancer will help ensure 
specificity.

We recognise that the effects of human disease on the 
plasma proteome are particularly complex and that it is 
impossible to control for all plasma changes associated 
with inflammatory, immunological and/or connective tis-
sue reaction sequelae that occur as a result of confound-
ing common disease elements.

Predictive neural network classification reveals a subset 
of potential biomarkers for early CRC detection
Though ultradepletion of pooled CRC-staged plasmas 
allowed increased analytical depth and identification of 
novel low abundance proteins, it can also be a limitation 
if the overall end-game is to generate tangible, predictive 
models for high-throughput diagnosis. Machine-learning 
approaches are becoming more mainstream for prot-
eomics studies [35]. These methods are often ill-suited 
for analysis of limited datasets from demanding, eco-
nomically expensive and person-hour resource-intensive 
proteomics studies (e.g., where ultradepletion is per-
formed). In a proof-of-concept experiment, we generated 

a synthetic patient population to train a classification 
algorithm and then tested this on real patient samples. 
We trained the algorithm assuming pooled plasma sam-
ples represented a centroid around which a normal dis-
tribution of biomarker concentrations would reside. This 
hypothetical variance present in human plasma protein 
concentration needs to be conservative, as high variabil-
ity even occurs between twins over time [80]. Our sup-
posed variance considered:

1.	 variance between individuals over time and environ-
mental factors;

2.	 variance between technologies employed keeping in 
mind high-throughput testing on a population scale 
is our long-term aim, and

3.	 variance amongst clinical stages of CRC.

It is important to note that our choice of potential 
biomarkers was stringent and based upon orthogonal, 
complementary approaches with consideration of a rea-
sonable biological rationale. With these restrictions in 
mind, we have managed to use as high as 10 times the SD 
from the mean for our generated population and main-
tain a near perfect classification on disease stages with 
our 37 candidates. High classification rates remained 
with as low as 5 of our proteins of interest. We there-
fore propose this panel of candidates as highly interest-
ing for potential predictive purposes, and now propose 
to replace these generated samples with biological ones 
as a larger patient population dataset (individual targeted 
protein assays) over time. Of interest regarding the rich-
ness of selected biomarkers, progression of CRC from 
stage I to IV resulted in increased separation distance 
between stages from healthy to stage IV CRC. This fits 
very well with a narrative that would be expected as a 
condition of patients deteriorate, and biological manifes-
tation of cancer increases.

Next steps
PubMed searches of biomarkers for almost any dis-
ease generate hundreds of candidate results, each 
touting potential biomarkers of note. However due to 
many challenges [81] few (if any) transition to clinical 
practice. Most individual markers simply do not meet 
stringent specificity and sensitivity criteria. and recent 
publications encourage the use of biomarker panels 
[82, 83] as more efficacious than single markers. In 
this study, candidates from multiple depletion experi-
ments using combinations of commercial and pat-
ented ultradepletion methods were prioritised under 
two layers of scrutiny. This comprised of an unbiased 
statistical analysis, then accounting for cancer biology 
and functional nature of statistically significantly and 
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differentially-expressed proteins. We carefully priori-
tised and confirmed ADAMDEC1, MARCO, MRC1, 
S100A8, ApoAIV, GPX3, COMP, C1QC and CFD by 
additional study of individual patient variation, using 
orthogonal techniques. The potential of these proteins 
as a diagnostic marker panel will be further validated by 
measuring expression in individual healthy and staged 
CRC population patient samples using immunological 
and targeted proteomics technologies.

Conclusions
MS-based proteomics in combination with depletion 
strategies have the potential of identifying multiple pro-
tein targets in human plasma. Unfortunately, the trans-
lational value of most putative markers into the clinic is 
abysmal. One of the ways to build that successful con-
nection between identification, confirmation and clini-
cal validation where the diagnostic ability of biomarker 
is to develop iterative methods as shown. Such methods 
can examine the potential of biomarkers in larger patient 
cohorts, and benchmark against current screening meth-
ods in an in silico fashion. We have identified a subset of 5 
markers that can potentially delineate the different stages 
of CRC and have generated a number of hypotheses that 
can be tested. From a functional perspective, a couple of 
markers demonstrated interesting biology (MARCO and 
ADAMDEC1) deserve more in-depth investigation, espe-
cially validation in other cancers and non-cancer-related 
disease, disorders and syndromes. Evaluating these 
against a fresh large subset of patient data (cancer and 
non-cancer) would be the ideal validation strategy.
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