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Metadisorder for designer light in random systems
Sunkyu Yu, Xianji Piao, Jiho Hong, Namkyoo Park*

Disorder plays a critical role in signal transport by controlling the correlation of a system, as demonstrated in
various complex networks. In wave physics, disordered potentials suppress wave transport, because of their lo-
calized eigenstates, from the interference between multiple scattering paths. Although the variation of localiza-
tion with tunable disorder has been intensively studied as a bridge between ordered and disordered media, the
general trend of disorder-enhanced localization has remained unchanged, and the existence of complete de-
localization in highly disordered potentials has not been explored. We propose the concept of “metadisorder”:
randomly coupled optical systems in which eigenstates can be engineered to achieve unusual localization. We
demonstrate that one of the eigenstates in a randomly coupled system can always be arbitrarily molded, regard-
less of the degree of disorder, by adjusting the self-energy of each element. Ordered waves with the desired form
are then achieved in randomly coupled systems, including plane waves and globally collective resonances. We
also devise counterintuitive functionalities in disordered systems, such as “small-world–like” transport from non–
Anderson-type localization, phase-conserving disorder, and phase-controlled beam steering.
INTRODUCTION
Networkmodeling has provided an intuitive picture to understand var-
ious complex systems in nature and society. In these system networks,
disorder is a crucial factor in signal transport over the system. For ex-
ample, in the pioneering work in graph theory (1), D. J.Watts discovered
“small-world disordered networks” with randomly rewired connections,
which can model various elemental systems in physics, biology, and so-
ciology: seismic networks (2), Caenorhabditis elegans neurons (3), brain
connectome (4), and affinity groups in social networks (1).

The role of disorder is also evident in wave physics, especially when
compared to the “order” in potential energy, such as periodic or quasi-
periodic potentials. Periodic potentials allow ballistic transport through
extended Bloch eigenstates (5), whereas broken correlation in disordered
potentials leads to Anderson-localized eigenstates (6–8), which signifi-
cantly suppress wave transport. Although serious attempts have been
made (8–12) to fill the gap between the order and disorder in wave
systems, the increase of disorder has only led to amonotonic change from
extended to localized eigenstates (9), prohibiting the existence of eigen-
states with unusual forms: for example, completely delocalized eigen-
states in highly disordered potentials. Thus, a clear distinction has
beenmaintained between the applications of order and disorder inwave
systems, in accordancewith the contrast between their eigenstates: trans-
porting devices using ordered potentials (5, 13) and focusing devices
using disordered potentials (14–16). In disordered systems, the design
of nontrivial waves such as globally collective and scattering-free propa-
gations remains a challenge.

Here, we demonstrate the existence of globally collective and de-
localized waves in randomly coupled optical systems, by introducing the
concept of “metadisorder.” By using platforms of coupled waveguides
(or resonators), we prove that designermode excitation and wave prop-
agation can be achieved in the random network by controlling the self-
energy of the optical elements (for example, size and loss and gain of
waveguides) (Fig. 1). Distinct from random scattering andAnderson lo-
calization inclassical randomsystems (Fig. 1,AandB), unusualphenomena
are demonstrated in the “artificial” disordered optical potentials (Fig. 1,
C andD): perfect planewaves without any scattering or phase distortion,
designer guided waves, globally collective resonances, conservative
waves in complex potentials, and the invisible disorder of phase conser-
vation, all of which provide ordered waves with disorder-like energy
bands. By creating artificial disorder to achieve non–Anderson-type
localization, we also reveal the separate control of eigenstate localiza-
tion and wave transport, analogous to the separation of transport and
clustering in the “small-world network” (1). Our method, paving the
way toward disorder-robust small-world optics, is also applied to
functional wave devices in randomly coupled optical systems, includ-
ing tunable focusing, in-phase spatial oscillation, parity converters,
point-source excitation of plane waves, and modal filtering from in-
coherent light sources.
RESULTS
Wave transport and localization in randomly
coupled systems
We start with random systems composed of weakly coupled optical
elements, such as waveguides (5, 17) or resonators (18, 19). On the basis
of discrete models of coupled-mode theory (CMT) (17, 20) or tight-
binding (TB) analysis (19), anN-body system is governed by the eigen-
value equationHy = gy (seeMaterials andMethods). TheHamiltonian
H can be decomposed into H = D + K, where D is the diagonal matrix
for the self-energy of each optical element [for example, wavevector b of
eachwaveguide or resonant frequency f of each resonator, both ofwhich
define the phase evolutionof the field inuncoupledoptical elements (20)],
and K is the off-diagonal matrix for the interaction energy between
elements [for example, coupling coefficient k between coupled wave-
guides or between coupled resonators (20)],which represents thenetwork
of the system. Figure 2A shows a one-dimensional (1D) randomly coupled
system with off-diagonal disorder (21), having the identical self-energy b
anddisordered interactions {[D]p= go0 and [K]pq=kpq=k0+Dk·u(−1,1),
where kpq is the coupling between the pth and qth elements for 1≤ p,
q ≤ N, k0 and Dk represent the averaged and disordered coupling, re-
spectively, and u is the uniform probability density function}.

Figure 2 (B to D) presents a few eigenstates of the optical systems
at different degrees of off-diagonal disorder (21) (see note S1 for its prac-
tical realization in the mid-infrared regime). As the strength of the dis-
order Dk increases, Bloch eigenstates (Fig. 2B) begin to be localized (Fig.
2C), eventually exhibiting the wavelength-scale Anderson localization
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of exponential decay envelopes (Fig. 2D). The localization naturally
results in the suppression of wave transport within the network, from
ballistic (Fig. 2E; a = 2) to diffusive (Fig. 2F; 1 < a < 2) and even sub-
diffusive (Fig. 2G; a < 1) transport [a, diffusion exponent (22); see
Materials and Methods]. Not restricted to eigenstate localization (Fig.
2H; w, modal width; see Materials and Methods and note S2) and
the following forms of suppressed wave transport (Fig. 2I), the increase
of the disorder in the system also alters the spreading of its eigenvalues,
linearizing the eigenband (Fig. 2J and note S3). In these results, a con-
tinuous transition between the regimes of order and disorder is evi-
dent, confirming the classical relationship (6–12) between localization,
transport, and disorder. Motivated by the generic form of the
Hamiltonian H = D + K, we now demonstrate that the design of un-
conventional eigenstates in highly disordered potentials can be
achieved by using the degree of freedom on the self-energy of each
element in D, which was neglected in Fig. 2.

Molding of an eigenstate in randomly coupled systems
Suppose that we desire to “mold” an eigenstate y with the spatial dis-
tribution of vm = [vm1, vm2,…, vmN]

T with the eigenvalue gm while pre-
serving the randomly coupled network of the system.We design such a
system in the reciprocal space basis; one of its basis vectors has the spatial
distribution of vm. For this purpose, we develop the eigen-decomposition
matrix V = [vm, v2,…, vN] using the Gram-Schmidt process, where vm
and the set of column vectors vs = [vs1, vs2,…, vsN]

T (s = 2, 3,…, N)
together compose the orthonormal basis set. Because of the orthonormality
(VV† = I), the eigenvalue equation in the V-reciprocal space becomes
V†HV(V†y) = g(V†y), orHryr = gyr, whereHr =V†HV and yr =V†y.
The randomly couplednetworkof the system is representedby a complex
Yu et al. Sci. Adv. 2016;2 : e1501851 14 October 2016
matrix Kr = V†KV in the V-reciprocal space, and then, the V-reciprocal
Hamiltonian Hr = V†DV + Kr has the following components

Hr ¼

∑
p
v*mpgopvmp þ Kr11 ∑

p
v*mpgopv2p þ Kr12 ⋯ ∑

p
v*mpgopvNp þ Kr1N

∑
p
v*2pgopvmp þ Kr21 ∑

p
v*2pgopv2p þ Kr22 ⋯ ∑

p
v*2pgopvNp þ Kr2N

⋮ ⋮ ⋱ ⋮
∑
p
v*Npgopvmp þ KrN1 ∑

p
v*Npgopv2p þ KrN2 ⋯ ∑

p
v*NpgopvNp þ KrNN

2
666664

3
777775

ð1Þ

where gop = [D]p and Krpq = [Kr]pq. To design the eigenstate y of spatial
representation vm, one of the reciprocal eigenstates should be yr = [1, 0,
…, 0]T. This condition is uniquely fulfilled when the first column ofHr

has only one nonzero component of [Hr]11, and its eigenvalue can always
be set as desired by assigning [Hr]11 = gm.We then achieve the self-energy
of each element gop deterministically as follows (see Materials and
Methods), from [[Hr]11, [Hr]21,…, [Hr]N1]

T = [gm, 0,…, 0]T

go1
go2
⋮

goN

2
664

3
775 ¼

v*m1 v*m2 ⋯ v*mN
v*21 v*22 ⋯ v*2N
⋮ ⋮ ⋱ ⋮

v*N1 v*N2 ⋯ v*NN

2
664

3
775

vm1 0 ⋯ 0
0 vm2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ vmN

2
664

3
775

0
BB@

1
CCA
�1

gm � Kr11

�Kr21

⋮
�KrN1

2
664

3
775

ð2Þ

or, simply, go = [go1, go2,…, goN]
T = [diag(vm)]

−1V[gm –Kr11, −Kr21,…,
−KrN1]

T.
Equation 2 indicates that if the inverse of the matrix diag(vm)

exists, that is, vmi ≠ 0 for all i, the self-energy vector go can always be
Fig. 1. The concept of metadisorder systems. (A and B) Random scattering and Anderson localization in randomly coupled systems composed of identical waveguides
(constant widths w) (A) or resonators (constant radii r) (B). (C and D) Delocalized propagations of designer modal profiles in metadisorder systems. The control of self-energy
distributions canbe obtained bymanipulating thewaveguidewidthswp,q (C) or the resonator radii rp,q (D). The positions of optical elements in coupled systems are assumed to be
completely random. Blue dotted arrows denote propagation directions.
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found, determining the optical potential of each element from gop (see
fig. S1C for go = n). Therefore, for any network K regardless of the de-
gree of disorder, a single eigenstate can always be molded into the de-
sired shape of vm with the eigenvalue gm by adjusting the potential of
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each element (Fig. 2Aversus Fig. 3A)while preserving the network of the
system, which we herein call metadisorder to describe the artificial
change (engineered D) of the disordered system (random K). The pro-
posed metadisorder system allows for the nontrivial form of an eigen-
state in all regimes of disordered networks K, for example, the globally
collective eigenstate, in contrast to the case of identical elements (Fig. 2, C
andD).We note that such a degree of freedom for an eigenstate in anN-
body systemoriginates from theNnumber of the adjustable designparam-
eters, the self-energy of N elements, in an N × N Hamiltonian matrix.

1D metadisorder systems for designer waves
and non-Anderson localization
Figure 3 shows examples of designer waves in 1D metadisorder sys-
tems, where the optical potential of each waveguide is calculated using
Eq. 2. Compared to the highly disordered system composed of identical
waveguides in Fig. 2, we achieve various examples ofwave systems having
a designer eigenstate vm: planewave (Fig. 3B), Gaussian-enveloped guided
wave with nonexponential decay (Fig. 3C), and interface (Fig. 3D) and
surface (Fig. 3E)waves bothwithAnderson-like (6, 9, 10, 21) exponential
decay. We note that the real-valued vm corresponds to the designer
ground state in the disordered eigenband (red arrows in Fig. 3, F to I;
see note S4 for designer excited states, which allow conservative waves
in complex potentials).

Our design method allows for a scattering-free plane wave in highly
disordered systems (Fig. 3B; Dk = k0), in stark contrast to conventional
disordered systems (Fig. 2G), which only lead to strong localization from
random scattering. The plane wave eigenstate in highly disordered sys-
tems, which has a modal size equal to the overall system size, is more ex-
tended than that in finite-N ordered systems with the field discontinuity
at the boundary due to the broken translational symmetry (Fig. 2B; see
also note S5 for the stability of the delocalization inmetadisorder systems,
against self-energy and coupling errors). Furthermore, unconventional
localization forms, such as the non-Anderson Gaussian localization
(Fig. 3C) or the designed Anderson-like exponential localization at the
interface (Fig. 3D) or surface (Fig. 3E), can also be achieved as a general
extension to the accidental emergence of classical Anderson localization
(Fig. 2D). Because a potential with a globally extended eigenstate should
have the reduced random scattering in the overall system, other eigen-
states of similar eigenvalues also tend to have wider spatial bandwidth.
We note that the designed eigenstates in metadisorder systems can be
excited through the evanescent coupling (23) from a single waveguide
(note S6).

The concept of metadisorder also creates a new class of disordered
potentials, which support the counterintuitive relation between eigen-
state localization (w) and transport (a) by imposing the designer eigen-
state vm with unconventional localizations. In Fig. 4, we consider the
localized designer eigenstate of the specific form vm(x) = exp[−|x|g/
(2·sg)] (Fig. 4A), where g = 1 for Anderson-like exponential localization
and g = 2, 4, and 6 for the convenient examples of non-Anderson local-
izations. Figure 4 (F to N) presents the localization-transport (w-a) re-
lation of 1Dnon-Andersonmetadisorder systems compared to classical
Anderson disorder (Fig. 4B) and Anderson-like metadisorder (Fig. 4, C
to E). Although Anderson-like metadisorders (g = 1) provide a similar
w-a relation to that of Anderson disorder (Fig. 4B versus Fig. 4, C to E),
the non-Andersonmetadisorder (g > 1) enables more “localized”waves
yet achieves ballistic transport (for example, Fig. 4B versus Fig. 4F; a
factor of ~2 decrease for w, and a ≈ 2, for Dk < k0/10), analogous to the
separate control of localization and transport in “small-world”networks
(1). Such a nonclassical wave transport even enables “disorder-induced”
α

α

H I J

A

B

C

D

E

F

G
α

Fig. 2. Effect of disorder in optical systems. (A) A schematic of a randomoptical sys-
tem composed of coupled waveguides, analogous to the randomly coupled pendulums
with identical oscillating features. The oscillation of each pendulum describes the phase
evolution during propagation. (B to D) The first three eigenstates for ordered (B),
weakly disordered (C), and Anderson (D) potentials, calculated by using CMT (see
Materials andMethods). The potential n denotes the effective waveguide index of a
single waveguide. (E to G) Corresponding wave transport calculated by using the
transfer-matrix method (TMM) (see Materials andMethods). (H and I) The variations of
modal size w (H) and diffusion exponent a (I) are shown as a function of the disorder
Dk. (J) Eigenbands (neff) for the disorder in (B) (black dotted line) and (D) (green points
and line). The points in (H) to (J) represent each statistical ensemble, and the solid lines
are the averages of 200 ensembles. The green dotted line in (I) denotes the diffusion
state (a = 1). go0 = 1.6·k0, k0 = 0.01·k0, and N = 51 for (B) to (J), where k0 = 2p/l0 is the
free-space wave number. The practical waveguide design and the distance between
waveguides in the mid-infrared regime (l0 = 3 mm) are calculated in note S1 using
COMSOL Multiphysics.
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wave transport [increase in a for smaller values ofw(Dk) or s; Fig. 4H],
showing the reversed relation between w and a compared to that of
conventional disordered systems (7–10, 17). This anomalous relation
is more apparent for metadisorder systems with larger g (Fig. 4, I to
N; for g = 4 and 6), allowing not only separate control of localization
andwave transport with g and s but also robustness of wave transport to
the disorder Dk, analogous to the difference between clustering and
characteristic path length in small-world networks (1).
Fig. 3. 1D metadisorder systems. (A) A schematic of a 1D metadisorder system
composed of coupled waveguides, analogous to the randomly coupled pendulums
with different self-oscillating features, such as oscillating period (rod length) and gain
or loss parameters (color). Eachwaveguide has different real parts of self-energy due to
changing the width of the waveguide (note S1). The colors of the waveguides repre-
sent the imaginary part of self-energy: gain and loss (treated in note S4). (B to I) De-
signed eigenstates and optical potentials, eigenstate propagations (B to E), and
eigenvalues (neff) (F to I) of 1D metadisorder systems are calculated by using the
CMT for plane wave (vm(x) = 1) (B and F), Gaussian wave (vm(x) = exp[−x2/(2·s2)]) (C
andG), interfacewave (vm(x) = exp[−|x|/(2·s )]) (D andH), and surfacewave (vm(x) = exp
[−|x−xL|/(2·s )]) (E and I) eigenstates, where the spatial bandwidth s = Lst/16 in (C) to (E)
and (G) to (I), the left boundary xL =−Lst/2, and Lst is the overall potential length.Dk =k0
in (B) to (E) for the extreme degree of disorder. Blue symbols represent Dk = k0, green
symbols represent Dk = 0.53·k0, and black dotted lines represent Dk = 0 in (F) to (I). All
of the other parameters are the same as those in Fig. 2, based on note S1.
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Fig. 4. Non-Anderson metadisorder systems with disorder-induced wave
transport. (A) Shapes of designer eigenstates vm(x) = exp[−|x|g/(2·sg)] with different
g. (B toN) Eigenstate localization (w) andwave transport (a) for Anderson disorderwith
identical elements (B), g = 1 Anderson-likemetadisorders (C to E), and g= 2 (F to H), g=
4 (I to K), and g= 6 (L to N) non-Andersonmetadisorders . Inmetadisorder systems, the
bandwidths of designer eigenstates are s = Lst/16 (C, F, I, and L), s = Lst/24 (D, G, J, and
M), and s = Lst/32 in (E, H, K, and N). Error bars denote the SD of 200 ensembles in (B) to
(N). All of the other parameters are the same as those in Fig. 2, based on note S1.
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Extension to 2D metadisorder systems for designer
wave functionalities
The eigenstate design in a V-reciprocal space allows for its extension to
multidimensional problems in a straightforward manner by including
all of the coupling coefficients in a multidimension in the network
matrix K. Here, we consider 2D disordered systems, obtained by the
random deformation of the periodic lattice (Fig. 5A). Figure 5B shows
Yu et al. Sci. Adv. 2016;2 : e1501851 14 October 2016
an example of disordered coupled resonator systems from the randomde-
formation of a 17 × 17 square lattice (see note S7 for the practical realiza-
tion of 2D coupled resonator systems in the terahertz regime).

Figure 5 (C to H) and movies S1 to S6 show collective and ordered
light behaviors in highly disordered systems, which support strongly
correlated phase information over the entire system. By adjusting each
resonant frequency of constituent resonators following Eq. 2, we design
∆ ∆ ∆ ∆ ∆ ∆

∆∆ ∆

[ f [ f

[ ]

ReReRe

C D E
f f f

Re[ f] Re[ f] Re[ f]

Im[ f] Im[ f] Im[ f]

BA F G H

f ff fI J K L M
Re[ f] Im[ ]f

Re

∆ ∆ ∆ ∆ ∆ ∆

ψψψψψ

ψ ψ ψ ψ ψ ψ

Fig. 5. 2Dmetadisorder systems. (A) Schematics of a coupled resonator latticewith identical elements (left) and itsmetadisorder-transformed structure (right). The self-energy
of each element in themetadisorder system is adjusted by controlling the size of the resonator or using gain or lossmaterials. Nearest-neighbor (yellow arrows) and next-nearest-
neighbor (green arrows) couplings are presented. (B to M) 2D metadisorder systems. The practical weak-coupling design for the CMT analysis is calculated in note S7, using
COMSOL Multiphysics, for the terahertz regime (l0 = c/f0 = 265.3 mm). For the periodicity of ax = ay = 0.16·l0, the position of each resonator is randomly shifted by Dx = Dy =
0.03·l0·u(−1, 1) in (B) to (M), and the self-energy of each element is adjusted by f0· (1 + D f) following themetadisorder design from Eq. 2. (B) A sample of the obtained resonator
distribution for the 17 × 17 lattice in (C) to (H). (C to E) Standing-wave collective resonances using real potentials for uniform (C), quadrupole (D), and exponentially localized (E)
distributions. (F to H) Traveling-wave chiral collective resonances, using complex potentials, for dipole (F), quadrupole (G), and octopole (H) distributions. (I to M) Metadisorder-
based functionalities in the 17 × 17 lattice for invisible disorder (I), steered focusing (J), spatial oscillation (K), parity-converted beam splitter (L), and the point-source excitation of
oblique plane waves (M). The fields in input and output waveguides (I toM) aremultiplied by 40 for better visualization. The designed resonance is set to gm = f0 for all cases. See
movies S1 to S11 for the temporal dynamics of each case in (C) to (M).
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free-form standing-wave resonances with a perfectly uniform field
distribution (Fig. 5C), quadrupole phase distribution (Fig. 5D), and de-
signed localization (Fig. 5E), despite randomly deformed interactions
between resonators. Furthermore, the introduction of complex poten-
tials allows for one-way traveling-wave resonances, for example, by
imposing the form of exp(−irq) on vm (Fig. 5, F to H, for the azimuth
q). Such a “chiral” rotation of the phase in collective resonances derives
the orbital angular momentum (OAM) (24) of resonant light. Notably,
although the chiral feature of light in the proposed metadisorder
systems also requires complex optical potentials with gain and loss,
our method involves neither parity-time symmetry nor periodicity
(25). Propagating light with nonzero OAM can also be achieved by using
waveguide-based disordered systems.

Finally, having demonstrated collective resonance modes in highly
disordered systems, we present the excitation of designer eigenstates
(Fig. 5, I to M, and movies S7 to S11) with the external coupling of
conventional waveforms. When the inner connection of the system is
sufficiently strong, the separation of eigenvalues (that is, free spectral
range) becomes sufficiently large to achieve wave dynamics dependent
solely on a single eigenstate. Figure 5I andmovie S7 show the wave flow
through the perfectly uniform collective eigenstate over the entire sys-
tem. Following the property of the eigenstate, the disordered system
becomes “invisible” for incident plane waves, prohibiting any alteration
of phase and amplitude [transmission (T), ~100%; zero effective index].
With eigenstate-based metadisorder design, we also implement high-
level functionalities with excellent throughputs, including tunable light
focusing (Fig. 5J; T, ~96%), phase-conserved spatial oscillation (Fig. 5K;
T, ~98%), parity converters (even to odd) (Fig. 5L; T, ~99%) of real po-
tentials, and the point-source excitation of oblique plane waves (5.6°)
(Fig. 5M and movie S11; T, ~97%) using complex potentials. Because
of the spectral selectivity of the designed eigenstate, metadisorder sys-
tems also allow the modal filtering function, or the excitation of target
waveforms from spatially incoherent incidences (note S8).
DISCUSSION
To summarize, we revealed a new class of randomwave systems, that is,
the metadisorder, which can be globally collective and deliberately
controlled. Exploiting metadisorders of non–Anderson-type localiza-
tion, we first derive the counterintuitive relation between localization
and transport, including small-world–like (1) ordisorder-induced transport.
As demonstrated in collective wave dynamics and functionalities, our
eigenstate-based approach also provides a powerful means to control
wave flow while preserving or manipulating the phase information. Al-
though we controlled only the self-energyD for the HamiltonianH =
D +K, ourmethodcanalsobe easily extended todetermine the “network”
K of disordered self-energy distributions for the designer eigenstate, re-
vealing the unexplored regime between order and disorder from the
correlation between diagonal (or self-energy) and off-diagonal (or inter-
action energy) disorders. We emphasize that our method is distinct
from other approaches to handling the flow of waves: the super-
symmetric technique (23, 26–28) controls eigenspectra but transforms
eigenstates in a fixedmanner, and the transformation optics technique
(29) treats a “continuous” potential landscape, lacking the degree of
freedom in interaction energy. From their small-world–inherited dis-
order robustness and globally collective features, we also envisage the
application of metadisorder systems tomany other nontrivial physics,
such as hyperuniformity (30, 31), topological networks (18), or quasi-
particles in disordered potentials.
Yu et al. Sci. Adv. 2016;2 : e1501851 14 October 2016
MATERIALS AND METHODS
Analysis of randomly coupled discrete optical systems
Consider the N-body system composed of weakly coupled optical ele-
ments. In CMT (17) or TB (19) methods, the governing equation, in-
cluding self-energy and interaction energy, becomes

d
dx

yp ¼ igopyp þ ∑
q≠p

ikpqyq ð3Þ

where p = (1, 2,…, N) is the element number, yp is the field at the pth
element, x is the wave evolution axis [time t for coupled resonators (13)
and space x, y, or z for coupledwaveguides (17)], gop is the self-energy of
the pth element, and kpq is the coupling coefficient between the pth and
qth elements. For the steady-state solution (∂x→ ig), Eq. 3 becomes the
matrix eigenvalue problem Hy = gy, where

H ¼
go1 k12 ⋯ k1N
k21 go2 ⋯ k2N
⋮ ⋮ ⋱ ⋮

kN1 kN2 ⋯ goN

2
664

3
775

¼ Dþ K ¼
go1 0 ⋯ 0
0 go2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ goN

2
664

3
775þ

0 k12 ⋯ k1N
k21 0 ⋯ k2N
⋮ ⋮ ⋱ ⋮

kN1 kN2 ⋯ 0

2
664

3
775
ð4Þ

y = [y1, y2,…, yN]
T, D is the diagonal self-energy matrix, and K is

the off-diagonal network matrix. The randomly coupled system can
then be described by assigning random numbers to the components of
theKmatrix. Because each element number p corresponds to the physical
locationof the pth elementXp [for example, p→ xp for 1Dandp→ (xp, yp)
for 2D problems], the obtained eigenstate y can be reexpressed in the
spatial domain y = y(X).

Calculation of the diffusion exponent a
Consider the 1D systemof Fig. 2 (x = y), which has an eigenstate ofyk(x)
and corresponding eigenvalues gk (k = 1, 2,…, N; gk is the effective wave-
vector of yk). For the incidence ofϕi(x) = Sak·yk, the propagating field
can be obtained through the TMM as ϕ(x,y) = Sak·yk·exp(igk·y). To
analyze the transporting feature of the systemwithout boundary effects,
the incident wave was excited at the center waveguide [x= xm, wherem=
(N + 1)/2 for odd N]; we then calculated the spatially varying mean-
square displacement (MSD) (22)M(y) as follows

MðyÞ ¼ x2
� � ¼ ∑

p
ðxp � xmÞ2⋅ fðxp; yÞ

�� ��2
∑
p
jfðxp; yÞj2

ð5Þ

When the MSDM(y) was fitted for y exponentially asM(y)≈ ca·y
a,

we achieved the diffusion exponenta:a =2 for ballistic transport anda =
1 for diffusive transport (22). The calculated results are shown in Figs. 2
(E to G and I) and 4. Note thatm does not have to be the center wave-
guide precisely when N is sufficiently large, and thus, the boundary ef-
fect can be neglected.
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Calculation of modal size
For the 1D system (x = y) with yk(x) and gk, the modal size for each
eigenstate is defined as (9)

wk ¼
∑
N

p¼1
ykðxpÞ
�� ��2•Dxp

" #2

∑
N

p¼1
ykðxpÞj4•Dxp
�� ð6Þ

where Dxp is the size of the pth element, obtained from the distance be-
tween waveguides for each value of the coupling coefficient (see note
S1). See also note S2 for the eigenstate-dependent localizations.

The derivation of Eq. 2
The relation [[Hr]11, [Hr]21,…, [Hr]N1]

T = [gm, 0,…, 0]T in themain text, for
the design of y of spatial representation vm, has the following explicit form

∑
p
v*mpgopvmp þ Kr11

∑
p
v*2pgopvmp þ Kr21

⋮
∑
p
v*Npgopvmp þ KrN1

2
666664

3
777775 ¼

gm
0
⋮
0

2
664

3
775 ð7Þ

Equation 7 can be recast into the form of

v*m1 v*m2 ⋯ v*mN
v*21 v*22 ⋯ v*2N
⋮ ⋮ ⋱ ⋮

v*N1 v*N2 ⋯ v*NN

2
664

3
775

vm1 0 ⋯ 0
0 vm2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ vmN

2
664

3
775

go1
go2
⋮

goN

2
664

3
775

¼
gm � Kr11

�Kr21

⋮
�KrN1

2
664

3
775 ð8Þ

Solving Eq. 8 for go = [go1, go2,…, goN]
T, we arrived at Eq. 2 in themain

text, with the condition of vmi ≠ 0 for all i.
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