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Purpose: The aim of this study was to determine the relative abilities of compartment models to
describe time-courses of 18F-fluoromisonidazole (FMISO) uptake in tumor voxels of patients with
non-small cell lung cancer (NSCLC) imaged using dynamic positron emission tomography. Also to
use fits of the best-performing model to investigate changes in fitted rate-constants with distance
from the tumor edge.
Methods: Reversible and irreversible two- and three-tissue compartment models were fitted to
24 662 individual voxel time activity curves (TACs) obtained from tumors in nine patients, each
imaged twice. Descriptions of the TACs provided by the models were compared using the Akaike
and Bayesian information criteria (AIC and BIC).
Two different models (two- and three-tissue) were fitted to 30 measured voxel TACs to provide ground-

truth TACs for a statistical simulation study. Appropriately scaled noisewas added to each of the resulting
ground-truth TACs, generating 1000 simulated noisy TACs for each ground-truth TAC. The simulation
study was carried out to provide estimates of the accuracy and precision with which parameter values are
determined, the estimates being obtained for both assumptions about the ground-truth kinetics.
A BIC clustering technique was used to group the fitted rate-constants, taking into consideration

the underlying uncertainties on the fitted rate-constants. Voxels were also categorized according to
their distance from the tumor edge.
Results: For uptake time-courses of individual voxels an irreversible two-tissue compartment model
was found to be most precise. The simulation study indicated that this model had a one standard devi-
ation precision of 39% for tumor fractional blood volumes and 37% for the FMISO binding rate-
constant.
Weighted means of fitted FMISO binding rate-constants of voxels in all tumors rose significantly

with increasing distance from the tumor edge, whereas fitted fractional blood volumes fell signifi-
cantly. When grouped using the BIC clustering, many centrally located voxels had high-fitted FMISO
binding rate-constants and low rate-constants for tracer flow between the vasculature and tumor, both
indicative of hypoxia. Nevertheless, many of these voxels had tumor-to-blood (TBR) values lower
than the 1.4 level commonly expected for hypoxic tissues, possibly due to the low rate-constants for
tracer flow between the vasculature and tumor cells in these voxels.
Conclusions: Time-courses of FMISO uptake in NSCLC tumor voxels are best analyzed using an
irreversible two-tissue compartment model, fits of which provide more precise parameter values than
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those of a three-tissue model. Changes in fitted model parameter values indicate that levels of
hypoxia rise with increasing distance from tumor edges.
The average FMISO binding rate-constant is higher for voxels in tumor centers than in the next

tumor layer out, but the average value of the more simplistic TBR metric is lower in tumor centers.
For both metrics, higher values might be considered indicative of hypoxia, and the mismatch in this
case is likely to be due to poor perfusion at the tumor center. Kinetics analysis of dynamic PET
images may therefore provide more accurate measures of the hypoxic status of such regions than the
simpler TBR metric, a hypothesis we are presently exploring in a study of tumor imaging versus
histopathology. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf
of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.12416]
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1. INTRODUCTION

The radiotracer 18F-fluoromisonidazole (FMISO) diffuses
passively into cells, where it is reduced and in hypoxic envi-
ronments is irreversibly bound, allowing hypoxic tumor sub-
volumes to be imaged via positron emission tomography
(PET) of FMISO uptake.1–3 Survival rates for patients with
locally advanced non-small cell lung cancer (NSCLC) are
currently poor following chemoradiotherapy (CRT) and might
be improved by selectively boosting radiation doses delivered
to these hypoxic subvolumes.3–6 To do this, most effectively
requires knowledge of the degree of hypoxia, which can be
estimated either from uptake levels in single FMISO images
collected 2–4 h after tracer injection,7 or by analyzing the
kinetics of FMISO uptake in dynamic sequences of PET
images (dPET) in order to determine rate-constants of FMISO
intracellular binding. Generally for static imaging, a tumor-to-
blood ratio (TBR) threshold of 1.4 is used to indicate hypox-
ia.7 FMISO kinetics analysis can be performed at the whole
tumor level or voxel-by-voxel, and for head-and-neck cancers
has generated indices that correlate with RToutcomes.8

Several methods have been used to analyze dPET data, the
most common approaches being compartment modeling9 and
the spectral analysis technique developed by Cunningham
and Jones.10 In compartment modeling, time-courses of
tumor tracer uptake are often described using a model com-
prising two-tissue compartments representing intra-tumor
free and bound tracer, which, together with blood-borne tra-
cer, account for the total tumor tracer uptake.11,12 Figure 1
schematically illustrates this model alongside an alternative
with three-tissue compartments, the additional compartment
describing the tumor interstitium lying between the vascula-
ture and cells.13 Tracers generally diffuse from blood vessels
into the interstitium and are then transported across the cell
membrane to be bound intracellularly. Each of these pro-
cesses potentially has different rate-constants. This means
that modeling time-courses of tumor tracer uptake sequen-
tially (as in the three-tissue compartment model) may differ
to that by merging the processes (two-tissue compartment
model) and so both are investigated in this work.

We denote by xCyK, a model comprising a linear chain of
x-tissue compartments (excluding blood-borne tracer) and y
rate-constants: thus two- and three-compartment models with
reversible flow between each compartment are named 2C4K

and 3C6K. In order to associate rate-constants with particular
models we add the subscript xC to their names, except for
rate-constants of the two-tissue compartment model. Binding
of FMISO is generally considered irreversible, and therefore
alongside the 2C4K and 3C6K models, it is also useful to
explore simpler two- and three-compartment models 2C3K
and 3C5K in which the rate-constant of flow from bound to
unbound tracer compartments is set to zero. In common with
other work, the first rate-constant (K1) is capitalized indicat-
ing it has units of ‘mL min�1 mL�1

’ tissue compared to
‘min�1

’ for the other rate-constants. Compartment configura-
tions other than linear chains, such as branching models, are
also possible, however, transformation analysis can some-
times reduce these models to equivalent models with linear
chains of compartments.14

In this work, we investigate which linear chain compart-
ment model best describes time-courses of FMISO uptake in
individual voxels of tumors in patients with non-small cell
lung cancer (NSCLC) imaged using dynamic PET. We use
statistical simulations to identify the model whose fits to the
time-course data provide the most precise estimates of tracer
kinetics rate-constants. We hypothesize that perfusion and
potentially hypoxia may change with distance from the tumor
edge and so we explore the relationship between fitted rate-
constant values and voxel distance from the tumor edge, an
issue that has not been studied to date.

While dynamic FMISO PET scans have previously been
analyzed using compartment modeling,8,15–17 such work has
not been carried out for NSCLC patients. With the exception
of Casciari et al. who proposed a detailed model based on
the chemical pathways of FMISO reduction and binding,
researchers have not explored models more complex than
2C4K in connection with FMISO uptake.2 The 2C3K model
(or close variants) has mostly been used, with one group
using the reversible 2C4K model to investigate the kinetics of
FMISO uptake by brain tissue.18

2. MATERIALS AND METHODS

2.A. FMISO-PET image data

Pre-clinical research has shown that the investigational
drug Buparlisib (Novartis, Basel, Switzerland) reduces tumor
hypoxia in vivo.19 A clinical trial underway in Oxford,
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NCT02128724, has the primary aim of determining the maxi-
mum tolerated dose of Buparlisib in NSCLC patients treated
palliatively using radiotherapy, and the secondary goal of vali-
dating the pre-clinical results in these patients, who are
imaged using FMISO-PET at baseline and 7 days after
administration of the drug without any other intervention. Fol-
lowing the second FMISO-PET scan, the patients commence
palliative thoracic radiotherapy consisting of 20 Gy delivered
in five fractions over a week. The study has been approved by
the local ethics committee and signed informed consent
obtained from all patients.

Patients were imaged supine with their arms by their side
using a Discovery 690 PET/CT scanner (GE Healthcare, Mil-
waukee, USA). They were injected with 370 MBq FMISO
30 s into PET imaging, which continued for 45 min and
resumed for 10 min intervals at 2 and 4 h post-injection.
Prior to each PET acquisition a CT scan was performed for
localization and PET attenuation correction. The PET data
were reconstructed using a time-of-flight ordered subset
expectation maximization algorithm (VPFX, GE Healthcare)
with a standard 6.4 mm Gaussian filter applied post-recon-
struction (with resulting image resolution approximately
7 mm). Respiratory motion correction was not performed,
see details in the Discussion. The first 45 min of data were
binned into two parallel time sequences, S1 (1 9 30 s,
12 9 5 s, 6 9 10 s, 6 9 30 s, 10 9 60 s, 6 9 300 s) and
S2 (1 9 30 s, 60 9 1 s, 12 9 10 s, 4 9 30, 10 9 60 s,
6 9 300 s), and reconstructed as images on a matrix of
5.5 9 5.5 9 3.3 mm3 voxels. Data collected during the two
later 10-min intervals were processed as single frames. The
PET/CT images collected at 2 and 4 h post-injection were
rigidly registered (CT-to-CT) to the dynamic PET/CT image
using an automatic registration tool in the Hermes Hybrid
Viewer (Hermes Medical Solutions AB, Stockholm, Swe-
den), followed by manual adjustment (matching to the tumor
region) when required.

Primary tumors were outlined on the images by an experi-
enced radiologist. Cylindrical blood volumes of diameter
10 mm were defined within the central part of the descending

aorta, whose typical diameter is 25 mm, on five or more con-
secutive PET axial slices.20 TACs representing time-courses
of mean tracer activity concentrations within each of the
tumor volumes-of-interest (VOIs) and blood volumes were
obtained from PET sequences S1 and S2 respectively. Activ-
ity data from the 10-min frames collected at 2 and 4 h post-
injection were appended to the TACs.

Kinetic analysis was performed on all 24 662 individual
voxel FMISO time-activity curves (TACs) obtained from nine
primary tumors in nine patients, each imaged twice (Table I).
The primary tumors are in a variety of anatomical locations
within the lung, generally in the upper lobe. Patient 2 had a
necrotic center. Example images of FMISO uptake at 4 h
post-injection (p.i.) are shown in Fig. 2. Differences between
tracer uptake before and after drug administration are not
reported here, as this information will be published on com-
pletion of the trial.

2.B. Kinetics analysis and model fitting

Kinetics analysis was carried out using PMOD software
(PMOD Technologies, Z€urich, Switzerland). Input functions
describing tracer flow into tumors were obtained by fitting a

Two-tissue compartment model 2C4K (2C3K when k4 = 0)

Three-tissue compartment model 3C6K (3C5K when k6-3C = 0)

K1 k3

k2 k4

bindingperfusion

perfusion bindingdiffusion across cell membrane

K1-3C k3-3C k5-3C

k2-3C k4-3C k6-3C

Free tracer in 
arterial blood, 
vB-3C

Compartment 1: 
free 
interstitial 
tracer

Compartment 3: 
bound 
intracellular 
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FIG. 1. Two- (a) and three- (b) tissue compartment models. Flow rates from one compartment to another are defined by rate-constants (k values), tracer concen-
trations in the various compartments, and compartment volumes.12 The fraction of the tumor volume occupied by blood is denoted in each model as mB.

TABLE I. Details of the imaged patients and primary tumors analyzed. ‘PS’
denotes performance status, ‘adeno’ adenocarcinoma, and ‘squam’ squamous
cell.

Patient Sex PS Stage
Histological

type
Primary tumor
volume (mL)

1 F 1 IV Adeno 13

2 M 1 IIIa Squam 510

3 M 1 IV Adeno 105

4 M 1 IV Squam 29

5 F 1 IV Adeno 135

6 F 1 IV Squam 180

7 F 1 IV Adeno 44

8 M 0 IV Squam 188

9 M 1 IV Squam 40
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standard model of tracer plasma concentration developed by
Feng et al.21,22 to decay-corrected blood TACs, using the
Marquard–Levenberg algorithm to achieve the best match
between the measured and modeled blood data as gauged by
the weighted sum-of-squares:

SS ¼
XN

i¼1
wi CPET tið Þ � Cmodel tið Þð Þ2 (1)

in which CPET(ti) and Cmodel(ti) are the imaged and modeled
mean activity concentrations at time ti, the mid-point of the
ith of N time-points, and wi is the relative weighting factor for
the time-point, given by

wi ¼ Dti exp �ktið Þ=CPET tið Þ (2)

where Dti is the duration of the ith frame and k is the decay
constant for 18F.13,22

Mathematical representations of the two- and three-tissue
compartment models of tumor tracer uptake were then fitted
to the decay-corrected FMISO uptake TACs measured for
single voxels, given the tracer influxes described by the input
functions.12,13 Fitted model parameters were optimized to
minimize the weighted square difference defined by Eq. (1),
now between imaged and modeled tumor TACs. Model
fitting was initiated from 100 randomly generated sets of
starting values to attempt to reach global rather than local
best fits.

A parameter termed kflux was calculated:

kflux ¼ K1k3
k2 þ k3

(3)

kflux�3C ¼ K1k3k5
k2k4 þ k2k5 þ k3k5

(4)

for two- (kflux) and three-tissue (kflux�3C) compartment mod-
els respectively. For irreversible models (k4 = 0 or
k6�3C = 0) kflux represents the rate of tracer uptake given a
steady-state unit input, or equivalently the tumor uptake at an
infinitely late time-point divided by the area under the real
input-function.13

2.C. Assessment of model fits

The Wald-Wolfowitz runs test was used to determine the
adequacy of descriptions of FMISO uptake TACs provided
by compartment model fits.23,24 To further assess the relative
abilities of the different models to describe the data, we used

the Akaike information criterion (AIC)25 corrected for small
sample size26 and the Bayesian information criterion (BIC).26

Information criteria characterize the relative abilities of differ-
ent models to describe data, penalizing more highly parame-
terized models which are likely to over fit data, in favor of
models that are more parsimonious but retain sufficient
parameters to adequately describe the data.

AIC and BIC values were calculated by adding to a scaled
form (SSscale) of the sum-of-squares of Eq. (1) the terms
2M + 2(M + 1)(M + 2)/(N � M � 2) and M lnN respec-
tively, where M denotes the number of model parameters in a
model and N the number of data-points fitted. The scaled
sum-of-squares used is given by

SSscale ¼ SS
SF

¼
XN

i¼1
wi

CPET tið Þ � Cmodel tið Þð Þ2
SF

¼
XN

i¼1

CPET tið Þ � Cmodel tið Þð Þ2
r2est CPET ðtiÞ

(5)

where SF is a scale factor and r2est CPET ðtiÞ an estimate of the
statistical variance of the imaged mean activity concentration
of the VOI, given by

r2est CPET ðtiÞ ¼ SF CPET tið Þexp ktið Þð Þ=Dti (6)

with the best model having the lowest calculated AIC or BIC
(scaled) score.

The number of radioisotope decays occurring within a
VOI is Poisson-distributed, and if all decays were detected
during PET imaging and accurately attributed to the VOI, SF
would be the reciprocal of the VOI volume. In practice, how-
ever, SF takes a larger value due to noise-propagation during
image reconstruction and because many decays go unde-
tected.13,22,24 For good fits to TAC data and accurate esti-
mates of the variance of imaged activity concentrations,
SSscale has a chi-square distribution with (N-M) degrees-of-
freedom.

For three randomly selected voxels within each tumor vol-
ume, we therefore estimated SF as the value of SS/(N-M)
obtained from the fit of the model having the lowest number
of parameters of any model passing the runs test for that
TAC. For each tumor volume, the average SF value obtained
for the three selected voxels was then used for all the voxels
within the volume and all model fits, as it was impractical
to calculate an individual SF for every voxel. The average
voxel SF with the weighting factor used here was 9.2 � 4.1

FIG. 2. Two example FMISO PET/CT images 4 h p.i. (pre-Buparlisib) on an SUV scale 0–3 for two different patients. [Color figure can be viewed at wileyonli-
nelibrary.com]

Medical Physics, 44 (9), September 2017

4668 McGowan et al.: Kinetics of FMISO uptake in NSCLC 4668



(one standard deviation, s.d.). Similarly, rather than calculat-
ing AIC and BIC scores for all 24 662 voxels, we instead cal-
culated them for a 30 voxel subset comprising the three
voxels randomly selected from each of 10 tumor volumes.

It is also possible to use unscaled (logarithmic) forms of
the AIC and BIC;13 we have calculated values for these quan-
tities too, denoting them AIC and BIC (unscaled).

2.D. Accuracy and precision of fitted rate-constants

The compartment model providing the best description of
tumor TACs may not be the one whose fitted parameter val-
ues lie closest to the true tracer uptake rate-constants, the
determination of which is the primary goal of kinetics analy-
sis. Therefore, we have used a statistical simulation procedure
to assess which model produces the most accurate and pre-
cise rate-constant estimates.

For the voxel-by-voxel analysis, 2C3K and 3C5K model
fits to the 30 voxel TACs used in the AIC/BIC analysis were
taken as ground-truth, with the corresponding parameter val-
ues of these fits taken as ground-truth rate-constants (see
Table III).

For each of the resulting 60 ground-truth TACs, 1000 noisy
TACs were simulated by adding normally distributed random
variables, with variances given by Eq. (6), to the activity con-
centrations of the individual time-frames.13,27–29 These simu-
lated TACs had similar noise levels to the measured TACs
(example measured TACs shown in Fig. 3). The simulated
TACs were then fitted using the 2C3K and 3C5K models.

The simulated noise introduces random uncertainties and
systematic error (bias) into fitted parameter values, adding to
any underlying bias that results from mismatches between the
fitted models and the ground-truth TACs used to generate the
simulated TACs. For each ground-truth TAC, the bias in a fit-
ted model parameter was calculated as the difference between
the mean parameter value in the fits to the 1000 simulated
noisy TACs and the ground-truth parameter value, while the
variance was obtained from the spread around the mean
parameter value.

For both ground-truth models, individual biases obtained
for the 30 associated ground-truth TACs were combined to
determine the mean bias (MB) and variance of bias values
(r2B). The mean variance (r2P) was calculated for each parame-
ter as the average of the parameter variances obtained for the
30 ground-truth TACs. For any particular measured TAC, the
difference between the mean bias and the unknown individ-
ual bias in the fit to that TAC combines with the statistical
uncertainty to create a total 1 standard deviation uncertainty
on a fitted parameter given by

rT ¼ r2B þ r2P
� �1=2

(7)

This uncertainty cannot be eliminated and is therefore of
particular concern, whereas MB represents a constant offset
on all fitted values which would cancel if parameter values
were interpreted in the light of studies of associations
between outcomes or biomarkers and previous parametric
images with the same mean bias.3,8 Alternatively for some

imaging investigations carried out pre- and post-intervention,
the bias error on individual voxels might perhaps be constant,
in which case rP would be the uncertainty of concern.

We calculated MB, rB, rP, and rT values for the model
parameter mB which describes the fractional tumor volume
occupied by the blood, for the kflux and kflux�3C composite
flux-constants of the fitted two- and three-tissue compart-
ment models,13,22 and for all individual rate-constants of the
fitted models for which directly related rate-constants exist
within the ground-truth compartment models. Some rate-con-
stants of fitted models are not directly related to any single
ground-truth model parameter: for example, processes
described by the two-tissue compartment K1 parameter are
split between rate-constants K1�3C and k3�3C in three-tissue
compartment models. For such rate-constants, we have calcu-
lated rP values alone.

2.E. Clustering of fitted rate-constant data

When useful, fitted parameter values for any single rate-
constant parameter obtained for all 24 662 tumor voxels were
clustered using in-house MATLAB code (version R2014a,
MathWorks, Natick, MA, USA) according to an information
criterion-based method of Liu et al.16 extended to factor
patient-to-patient bias variation into estimates of total uncer-
tainties on fitted parameter values.

This clustering consisted of the following steps:

1. A number of discrete cluster levels K was assumed.
2. Parameter values xc of each voxel c (1, . . ., NT) were ini-

tially grouped into K discrete levels of value Xcluster�b

(b = 1, . . ., K) using a weighted k-means clustering
algorithm. The weights associated with each point, wc,
were defined as

wc ¼ rB
2 þ rc

2
� ��1

(8)

where rB is the variability (one s.d.) of patient-specific
bias for that parameter (from Table IV) and rc is the statisti-
cal uncertainty (one s.d.) on the fitted parameter value (xc).

3. Matrix Zbc was generated by assigning the matrix ele-
ment (b,c) a value of 1 if voxel c was included in clus-
ter level b, and 0 otherwise.

4. An iterative expectation maximization (EM) algorithm
was used to refine the initial clustering, adjusting
Xcluster�b and Zbc values to maximize the mixture-
likelihood.

5. After convergence, BIC was calculated as BIC
(K) = �2 ln L(K) + K lnNT. where NT is the total num-
ber of voxels clustered.

6. Steps 1 to 5 were repeated for a range of K levels (typi-
cally 1–20).

7. The cluster grouping with the lowest BIC was taken to
be the best clustered representation of the data after tak-
ing into account the underlying uncertainties on the fit-
ted rate-constants.
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2.F. Distance categorization of fitted rate-constants

In-house MATLAB code (version R2014a, MathWorks,
Natick, MA, USA) was used to determine the distance of
each tumor voxel (dimension 5.5 9 5.5 9 3.3 mm3) from
the nearest edge of the outlined tumor. Voxels were then sep-
arated into four distance categories: edge (the outermost shell
of voxels), outer (voxel center up to 5.5 mm inside the tumor
outline), inner (between 5.5 and 11 mm inside the outline),
and central (greater than 11 mm inside the outline).

To assess whether average fitted parameter values varied
with distance from the tumor edge, weighted means (�x) of the
unclustered values were calculated for each distance category
as

�x ¼
PND

d¼1 wdxdPND
d¼1 wd

(9)

where xd is the parameter value for the dth of ND voxels
within a distance category and wd the weighting as defined in

Eq. (2). Statistical significances of differences between
weighted means were assessed using Welch’s t-test for sam-
ples of unequal variance.

3. RESULTS

3.A. Voxel-by-voxel kinetics analysis

Totaled AIC and BIC scores for fits to the TACs of the 30
voxel subgroup studied in the assessment of model perfor-
mance are shown in Table II, together with numbers of runs
test passes. Fits of the 3C5K model passed the runs test for
all these voxels, had lower total AIC and BIC scores than fits
of the 2C3K, 2C4K, and 3C6K models, and had the lowest
individual scores for more voxels than the other models.

Table III shows the mean rate-constants used for the statis-
tical simulation work. Table IV shows statistical simulation
results for ground-truths represented by fits of the 2C3K and

FIG. 3. Fits of the 2C3K model to two example voxel TACs. Time post-injection is plotted on linear (a/b) and logarithmic (c/d) scales.
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3C5K models to measured TACs. When 2C3K model fits
were used to represent the ground-truth, 2C3K fits to the sim-
ulated data had lower mean biases and total uncertainties than
3C5K fits (e.g., 38% rT for k3 compared to 597% rT for
k5�3C). Similarly, when the ground-truth was instead repre-
sented by 3C5K model fits, 2C3K fits to the simulated data
still generally had lower variances than 3C5K fits (although
their mean biases were higher) and total uncertainties on
2C3K fit parameters were also generally lower or no worse
than those on fitted 3C5K parameter values (e.g., 65% rT for
k3 compared to 153% rT for k5�3C). Since mean bias can in
principle be eliminated by appropriate normalization using
previous imaging data, whereas variance and total uncer-
tainty cannot, the 2C3K model appears the best option for fit-
ting to single voxel TACs, providing the most precise fitted
parameter estimates.

Fits of the 2C3K model to two example TACs are plotted
in Fig. 3. An example of a voxel TAC fitted better by 3C5K
than 2C3K is shown in Fig. S1. An example fit of Feng’s
input function to an image-derived blood TAC is shown in
Fig. S2. Mean fitted model parameter values for all 24,662
voxels are shown in Table V.

3.B. Clustering of fitted rate-constants

Values obtained from fits to the 24,662 voxels clustered
into 6 independent levels for the 2C3K model parameter vB,
14 independent levels for K1, 7 independent levels for k2, and
4 independent levels for k3. Figure 4 shows a slice through
the tumor parametric map obtained for k3 (the nominal rate-
constant for FMISO binding) for Patient 6 imaged pre-Bupar-
lisib, together with the clustered version of the map.
Although unclustered maps contain a broad and continuous
range of parameter data, the clustered maps provide a repre-
sentation in which the data is grouped into a discrete set of

levels, chosen to best represent the voxel data taking into con-
sideration the individual fitted parameter values and known
total uncertainties on them. A set of parameter values having
large uncertainties and covering a certain range will be
grouped into fewer clusters by our scheme than another set
covering the same range but with smaller uncertainties,
reflecting the reduced information of the more uncertain
dataset.

A bubble plot of numbers of voxels assigned to K1 and k3
cluster levels is shown in Fig. 5. The size of each bubble rep-
resents the number of voxels contributing to that data-point.
The bubble color represents the proportion of voxels con-
tributing to the bubble that have TBRs > 1.4 at 4 h p.i., the
general consensus when interpreting FMISO PET images
being that voxels with TBRs > 1.4 are hypoxic.30 From the
figure, it can be seen that bubbles containing higher percent-
ages of voxels with TBRs > 1.4 generally also have larger
mean k3 values, as expected since the rate-constant for
FMISO binding is greater in hypoxic tissues.1–3 However,
bubbles within the blue box region of Fig. 5 have low frac-
tions of voxels with TBRs > 1.4, but high mean k3 and very
low mean K1 values which might be considered to represent
hypoxia caused by very poor perfusion. Presumably in this
region, the availability of tracer for intracellular reduction
was limited by the very low perfusion levels, thereby reduc-
ing TBRs.

3.C. Variation in weighted mean rate-constants with
distance from the tumor edge

Weighted means of fitted vB, K1, and k3 parameter values
are plotted against distance from the tumor edge for all voxels
imaged pre-Buparlisib in Fig. 6, together with weighted
mean TBR values at 4 h p.i. Example images of clustered vB,
K1, k3, and TBR values are shown for two patients in Fig. S3.

Moving inwards from the edge, weighted mean values of
vB, the fractional blood volume, fall significantly (P < 0.001)
between successive voxel layers. K1 values also fall signifi-
cantly (P < 0.0001) between the outer and inner layers, and
between the inner and central layers, as might be expected.
However, between the edge and outer voxel layers, K1 rises
significantly (P < 0.001) despite vB falling.

Again moving inwards from the tumor edge, weighted
mean k3 values rise significantly (P < 0.0001) between each
successive layer of voxels. Weighted mean TBR values also
rise significantly (P < 0.0001) between the edge and outer
layers, and between the outer and inner voxels, but then fall
significantly between the inner and central layers
(P < 0.0001).

Figure 7 shows the blue box region from Fig. 5 split into
distance categories (the full version of Fig. 5 split into dis-
tance categories is shown in Fig. S4). Most voxels within this
region are drawn from the inner and central tumor layers. In
the central layer, voxel kinetics are particularly mismatched
with uptake levels, only 23% of these voxels having
TBRs > 1.4 despite their high k3 and very low K1 values. This
mismatch mirrors the decrease in TBR values seen in Fig. 6

TABLE II. Summary of runs test results and AIC and BIC scores for model
fits to 30 randomly selected voxel TACs. Lowest AIC and BIC scores are
underlined, indicating the best model according to that measure. AIC and
BIC values have been calculated using both the scaled and unscaled versions
as indicated in the table.

Model 2C3K 2C4K 3C5K 3C6K

Runs test passes from fits to all 30 TACs

Runs passes 22 27 30 30

Information criteria summed for all statistical simulation TACs

AIC (scaled) 1793 1500 1424 1508

BIC (scaled) 2002 1738 1687 1790

AIC (unscaled) 2826 2595 2473 2549

BIC (unscaled) 2999 2801 2702 2801

Numbers of TACs for which each model has the lowest scores

AIC (scaled) 4 8 18 0

BIC (scaled) 8 7 15 0

AIC (unscaled) 4 6 20 0

BIC (unscaled) 8 7 15 0
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between voxels in the inner and central tumor regions,
despite the increase in mean k3 and decrease in mean K1 val-
ues seen between the two layers.

4. DISCUSSION

An irreversible two-tissue compartment model, 2C3K,
was found to be most useful for fitting FMISO uptake TACs
of individual voxels of NSCLC tumors. Although informa-
tion criterion scores were slightly worse for 2C3K than for
3C5K fits to single voxel TACs, in statistical simulations
2C3K model fits provided more precise parameter estimates
overall than 3C5K fits. The 2C3K model and variants have
been used in previous analyses of FMISO uptake kinetics,
and we will use the model in voxel-by-voxel kinetics analyses
of tumor response to Buparlisib, generating data on the spa-
tial variation in the response.

It is possible to estimate the expected rate-constants from
FMISO within human tissues. Capillary surface areas 50–
260 cm2 g�1 have been reported.31 The surface area-to-
volume ratio for a cylindrical blood vessel, diameter d, is 4/d
and so for a typical diameter 30 lm equals 1.3 9 103 cm�1 32

This implies a vB = (50�260)/1.3 9 103 cm3 g�1 = 4–
15%,31 which is comparable to that used in our simulations
(Table III). The vessel permeability coefficient for sucrose,
molecular weight (MW) 342 amu, is 1 9 10�5 cm s�1 31

FMISO has a MW of 188 amu so this value could be used as
an estimate of FMISO vessel wall permeability. The rate-con-
stant K1�3C can be shown to approximately equal the vessel
wall permeability multiplied by the vessel surface area-to-
volume ratio.32 This would give 0.8 min�1 as an estimate of
K1�3C, broadly similar to the value in our simulations. FMISO
diffuses rapidly within cells so k3�3C would be of the same
order as K1�3C.

2 Rates of FMISO binding from clinical data
have been estimated at 0.001 min�1 for normoxic tissue and
0.005 min�1 in hypoxia tissue,17 which is similar to the
0.002 min�1 mean k3 (and 0.003 min�1 mean k5�3C) used in
our simulation. The 2C3K rate-constant values in Table III are
also broadly similar to those used in the simulations by Wang
et al.27 This suggests that the parameters used for the statistical
simulation are physiologically reasonable. These values are
also very similar to the mean values for all analyzed voxels
(Table V).

When voxels were clustered by their fitted K1 and k3
values, a mismatch was observed between the clustered rate--
constants and proportions of voxels with TBRs > 1.4. The
mismatch occurred in a region with high k3 and very low K1

rate-constants, a combination readily interpretable as indicat-
ing hypoxia due to poor perfusion, and yet less than quarter
of all voxels in the region had TBRs > 1.4. Presumably, the

TABLE III. Mean and standard deviations of the parameter values fitted to the 30 voxel TACs used as ground-truth in the statistical simulations for both 2C3K
and 3C5K models.

2C3K vB (%) K1 (mL min�1g�1) k2 (min�1) k3 (min�1) kflux (mL min�1g�1)

Mean 4.2 0.22 0.27 0.0016 0.0013

SD 5.6 0.098 0.11 0.0012 0.00096

3C5K vB-3C (%) K1�3C (mL min�1g�1) k2�3C (min�1) k3�3C (min�1) k4�3C (min�1) k5�3C (min�1) kflux�3C (mL min�1g�1)

Mean 2.6 0.38 0.91 0.48 0.20 0.0027 0.00088

SD 4.3 0.29 0.76 0.50 0.13 0.0021 0.000015

TABLE IV. Estimates of accuracy and precision for parameter values obtained
from fits of the 2C3K and 3C5K models to single voxel TAC data simulated
by adding voxel-level noise to ground-truth 2C3K or 3C5K models. Values
of MB, rB, rP, and rT are shown for fitted parameters as percentages of the
mean values of directly related ground-truth parameters of the 2C3K or
3C5K models. When no directly related parameter exists, rP is shown alone
as a percentage of the mean fitted parameter value.

Ground-truth 2C3K model
Model fitted Fitted model parameters

2C3K vB K1 k2 k3 kflux
MB (%) �12 �4 �4 �4 �4

rB (%) 13 7 7 6 5

rP (%) 36 20 28 37 29

rT (%) 39 21 29 37 30

3C5K vB�3C K1�3C k2�3C k3�3C k4�3C k5�3C kflux�3C

MB (%) �22 – – – – 398 �5

rB (%) 39 – – – – 591 11

rP (%) 43 199 155 61 64 89 32

rT (%) 58 – – – – 597 34

Ground-truth 3C5K model
Model fitted Fitted model parameters

2C3K vB K1 k2 k3 kflux
MB (%) 53 – – �42 24

rB (%) 85 – – 56 37

rP (%) 44 32 42 33 31

rT (%) 96 – – 65 47

3C5K vB�3C K1�3C k2�3C k3�3C k4�3C k5�3C kflux�3C

MB (%) �5 25 104 90 67 27 �1

rB (%) 15 174 535 208 104 58 13

rP (%) 56 188 227 119 125 142 44

rT (%) 58 257 581 240 162 153 47

TABLE V. Mean and standard deviations of fitted 2C3K model parameter val-
ues for all voxel TACs.

2C3K
vB
(%)

K1

(mL min�1g�1)
k2

(min�1)
k3

(min�1)
kflux

(mL min�1g�1)

Mean 4.1 0.20 0.25 0.0028 0.0019

SD 11.4 0.19 0.18 0.0027 0.0022
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mismatch arose because the quantity of tracer available for
uptake was fundamentally limited by the poor perfusion. If
tumor hypoxia status was reported purely on the basis of TBR
values, the mismatch would potentially lead to an underesti-
mation of hypoxic volume.

We categorized voxels according to their distances from
the tumor edge and calculated weighted mean parameter val-
ues for each distance category (Fig. 6). The weighted mean
fractional vascular volume, vB, fell with distance from the
tumor edge while k3 rose, findings that would be expected if
more central tumor regions were less vascularized (lower vB)
and more hypoxic (higher k3). No previous work appears to
have been published demonstrating this distance dependence
based on PET kinetic modeling, although previous work
using perfusion CT has shown permeability and fractional
blood volumes to be higher at tumor edges than at their cen-
ters.33 The lack of PET studies exploring this distance depen-
dence is likely due to the fact that many of the dynamic
hypoxia PET studies reported to date have been carried out

for relatively small tumors, such as from head-and-neck
cancer.

Weighted mean TBR values rose with distance from the
tumor edge, except between the inner and central layers
where TBR fell. Further analysis showed that many of the
voxels with mismatched TBRs and rate-constants were drawn
from the central layer, indicating that the fall in TBR but rise
in k3 observed in this layer was due to the same mismatch,
and suggesting that the degree of hypoxia at tumor centers
might be underestimated using the TBR measure alone
(Fig. 7). A mismatch between TBRs and K1 and k3 values has
been observed before,15 and proposed as a motivation for per-
forming kinetics analysis, but the mismatch was not spatially
localized within tumors.

The gold-standard method for determining input func-
tions is direct arterial line sampling. Here we used
image-derived input functions (IDIFs) calculated from
mean tracer activity concentrations within volumes
drawn in the descending aorta, both for patient comfort

FIG. 4. A slice taken from the k3 parametric map obtained for Patient 6 pre-Buparlisib, showing (a) unclustered and (b) clustered k3 values.
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FIG. 5. Bubble plot showing clustered k3 versus K1 values. Bubble size indicates the number of points in each cluster. Bubbles are colored according to the pro-
portion of voxels with TBR (4 h p.i.) > 1.4. The blue box highlights a region of the graph in which k3 values are high, but less than 60% (generally < 40%) of
voxels have TBR > 1.4.
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and safety, and because good agreement has been
demonstrated between directly sampled input functions
and IDIFs obtained from the descending aorta.20 FMISO
is metabolically stable in blood and so metabolite cor-
rection is not required,18 and plasma over blood ratios
are equal (1) and constant.34 As with any IDIF there is
a possibility for bias from partial volume and spill in
effects. However, to minimize these effects the volumes-
of-interest used to obtain IDIFs were located centrally
within the descending aorta.

Errors in voxel TACs may be introduced by the registra-
tion process between the images collected during the first
45 min and a 2 and 4 h scans p.i. Clearly, it is not feasible to
keep a patient on the scanner couch for 4 h, and so images
were collected in three separate sessions during each com-
plete dynamic FMISO study. Any errors were minimized by
getting the patient set up in the same position for each part of
the study, generally by the same member of staff, and also by
performing rigid CT-to-CT registration followed by manual
tumor-to-tumor matching.

As the tumors investigated were situated in the thorax it is
possible that respiratory movement during the PET acquisi-
tion could also impact the voxel TACs. Patients were 4DCT
imaged alongside the PET imaging, and the maximum tumor
movement observed in these 4DCT scans was 5 mm in the
cranial-caudal (CC) direction for a tumor length of 60 mm in
the same direction. The average CC movement for tumors of
CC length 30–110 mm (median 75 mm) was 3 mm. Gener-
ally the tumors investigated were situated in the upper lobe,

and such tumors have been shown to move less than lower
lobe tumors.35

The degrees of vascularity and hypoxia will vary some-
what within each tumor voxel, due both to movement and
because the length-scales on which these quantities vary is
smaller than the 5 mm voxel-size.36 The kinetic models
include a term (vB) to take into account the average vascular
component within the voxel. The resolution of our PET sys-
tem is approximately the same as the voxel size (5 mm), and
so PET imaging is unable to resolve details smaller than this.
Consequently, the results of the PET kinetic modeling
describe the kinetics of FMISO uptake averaged over the
voxel volume.

In this work, we have assessed the performance of kinetic
models using a data-led approach based on information crite-
ria and statistical simulations. The kinetic models investi-
gated here comprised linear chains of compartments.
Branching compartment models may describe the processes
involved in FMISO binding and reduction more accurately,
however transformation analysis can sometimes be used to
reduce branching models to mathematically equivalent linear
representations. For example, a simplified version of the Cas-
ciari et al. model can be shown to be equivalent to the 3C5K
model.

Recently, we have begun a new histological study in which
surgically treated NSCLC patients are imaged using dynamic
FMISO PET ahead of tumor excision. This will enable k3 and
TBR from the FMISO PET to be correlated with pimonida-
zole staining to test the findings of this paper.

FIG. 6. Variation with distance from the tumor edge of weighted mean values of (a) vB, (b) K1, (c) k3, and (d) TBR parameters for all patients pre-Buparlisib.
Error bars show standard errors on the mean. [Color figure can be viewed at wileyonlinelibrary.com]
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5. CONCLUSIONS

The kinetics of FMISO uptake in voxels of tumors in
NSCLC patients were described more precisely by an irre-
versible two-tissue compartment model, 2C3K, than more
complex models. Simulation studies indicated a precision of
39% (1 SD) for fitted values of the tumor fractional blood
volume (vB) and 37% for the FMISO binding rate-constant
(k3).

Weighted mean values of vB fell significantly with dis-
tance from the tumor edge, while weighted mean values of k3
rose significantly. Moving toward tumor centers, k3 values

continued to rise and vB and K1 to fall, all conceptually
indicative of increasing hypoxia; however, TBR indices at 4 h
p.i. fell toward tumor centers. Thus, assessments of FMISO
images made on the basis of FMISO TBR alone (a classic
imaging marker of hypoxia) may underestimate the extent of
hypoxia, particularly at tumor centers.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in
the supporting information tab for this article.

Figure S1. Example voxel TAC fitted better by the 3C5K
model than 2C3K. Time post-injection is plotted on linear
and logarithmic scales.
Figure S2. Fit of the Feng input function to an example
blood TAC. Time post-injection is plotted on logarithmic and
linear scales.
Figure S3. Example axial slices through two tumors showing
clustered values for vB, K1, k3, and TBR. The colors in the
plots indicate which cluster levels each voxel has been
assigned to, with cluster level 1 being the lowest value for
each parameter.
Figure S4. Bubble plots showing clustered k3 versus K1 val-
ues. Bubble size indicates the number of points in each clus-
ter. Bubbles are colored according to the proportion of voxels
with TBR (4 h p.i.) > 1.4. Each plot is separated out to
include voxels from each distance category.
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