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Indirect protection from vaccinating children
against influenza in households
Tim K. Tsang1,2, Vicky J. Fang1, Dennis K.M. Ip1, Ranawaka A.P.M. Perera 1,3, Hau Chi So1, Gabriel M. Leung1,

J.S.Malik Peiris1,3, Benjamin J. Cowling 1 & Simon Cauchemez4,5,6

Vaccination is an important intervention to prevent influenza virus infection, but indirect

protection of household members of vaccinees is not fully known. Here, we analyze a cluster

household randomized controlled trial, with one child in each household randomized to

receive influenza vaccine or placebo, for an influenza B epidemic in Hong Kong. We apply

statistical models to estimate household transmission dynamics and quantify the direct and

indirect protection of vaccination. Direct vaccine efficacy was 71%. The infection probability

of unvaccinated household members in vaccinated households was only 5% lower than in

control households, because only 10% of infections are attributed to household transmission.

Even when that proportion rises to 30% and all children are vaccinated, we predict that the

infection probability for unvaccinated household members would only be reduced by 20%.

This suggests that benefits of individual vaccination remain important even when other

household members are vaccinated.
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Influenza causes substantial morbidity and mortality in
humans every year1,2. Children generally face the highest risk
of influenza virus infection each year3,4, while the risk of more

severe disease for infected people is highest at the extremes of
age5,6. Most transmission is thought to occur in indoor settings
including households, schools, and workplaces7–9.

Vaccination is one of the most important tools to prevent
infection and transmission of influenza viruses. While the direct
effect of vaccination has been demonstrated in both vaccine trials
and community studies10,11, the conditions under which indirect
protection of vaccination starts to become significant are less
clear12. Vaccination campaigns targeting a large fraction of
children can substantially increase herd immunity13–15 but the
impact is less clear when the intervention is performed at a
smaller scale. For example, can we expect parents and siblings of a
child to benefit from that child’s vaccination, even when vacci-
nation coverage remains limited at the population level? The
evidence here is more mixed with two small household studies
reporting indirect protection against influenza-like illness16,17,
while a third one reported no significant indirect protection
against influenza virus infection18.

The absence of indirect protection at the household level would
seem paradoxical since (i) children are important vectors of
influenza transmission, (ii) a substantial proportion of trans-
mission events are believed to happen in the household

environment19,20, and (iii) the vaccine has a strong direct effect.
The lack of clear demonstrated effect could also be due to small
sample sizes and/or limitations of the statistical analyses used in
past studies.

Here, to assess the potential indirect benefits of influenza
vaccination in the household environment, we analyzed data
from a randomized placebo-controlled trial of influenza vacci-
nation in children21 with sophisticated statistical and mathema-
tical models that provide a thorough characterization of the
dynamics of influenza transmission in households and the impact
of vaccination on these dynamics. We estimate that the indirect
protection is limited (~20% reduction of risk), which is lower
than the direct vaccine efficacy (71% reduction of risk). This
suggests that the benefits of individual vaccination remain
important even when other household members are vaccinated.

Results
Study participants. Seven hundred and ninety-six households
were enrolled in the study, including 796 children aged 5–17 who
were randomly allocated to receive influenza vaccination or pla-
cebo and their 2234 household contacts (i.e., other members of
the household). Of those 2234 contacts, 225 (10%) reported
receiving vaccination during the study period. Serologic data from
these contacts were not used in the analysis because of the dif-
ficulty in interpreting serology following vaccination22. In
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Fig. 1 Flow chart of participants in our study. Since our inferential framework is able to impute infection status, some of the individuals with missing final
outcome could nonetheless be included in the analysis. We include households with at least one household members with paired sera that covered the
epidemic
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addition, 312 household contacts did not provide serum samples.
For the modeling study, we analyzed data from 745 households
(2564 participants) in which at least one household member had
paired sera that covered the epidemic. Of the 745 households, 446
and 299 households included a child that was randomized to
receive influenza vaccine or placebo, respectively (Fig. 1).

There were three rounds of sera collection in our study (Fig. 2),
and the characteristics of household contacts in the vaccine and
control groups were similar (Supplementary Tables 1–3). The
surveillance data in Hong Kong indicated that almost all of the
paired sera could cover the epidemic (Fig. 2). In total, we
collected 3185 paired sera. From these sera, we identified 161
influenza B infections, defined as 4-fold or greater rises in
antibody titers against B/Brisbane/60/2008-like virus measured by
the hemagglutination inhibition assay for at least one paired
serum. The proportion of child contacts in control households
that had 4-fold or greater rise was 16% (20/128), which were
higher than 9% (17/194) in the child contacts of vaccine
recipients. However, those differences were not statistically
significant (Supplementary Table 4).

Direct effect of vaccination. We found that children who had
received influenza vaccination had a lower susceptibility com-
pared with children who had received the placebo (relative sus-
ceptibility: 0.29; 95% CI: 0.17, 0.47, Fig. 3a). Models assuming no
direct effect of vaccination performed substantially worse (ΔDIC:
32.4). The vaccine efficacy, computed by one minus relative
susceptibility, was therefore 71% (95% CI: 53%, 83%).

Household transmission dynamics. Based on the data from both
vaccinated and control households, we estimated that unvacci-
nated adult contacts had lower susceptibility than unvaccinated
child contacts (relative susceptibility: 0.39; 95% CI: 0.28, 0.54,
Fig. 3b). Ignoring this difference substantially worsened model fit
(ΔDIC: 33.0). We also estimated that the relative susceptibility of
unvaccinated contacts with an intermediate level of HAI titer and
with a high level of HAI titer was 0.48 (95% CI: 0.23, 0.90) and

0.42 (95% CI: 0.17, 0.89), respectively, compared with those with
a low level of HAI titer, respectively (Fig. 3c). The model without
protection effect from pre-season HAI titers performed sub-
stantially worse (ΔDIC: 14.0).

We estimated the probability of infection from the community
over the study period for children and adults with a low level of
HAI titer was 12% (95% CI: 10%, 15%) and 5% (95% CI: 4%, 6%),
respectively (Fig. 4a). When exposed to an infected member in a
household of size 2 or 3, children and adults with low levels of
HAI titers had a probability of infection of 18% (95% CI: 7%,
34%) and 8% (95% CI: 3%, 14%), respectively (Fig. 4b), while
those in a household of size larger than or equal to 4 had a
probability of infection of 7% (95% CI: 2%, 14%) and 3% (95%
CI: 1%, 6%), respectively. Models ignoring the effect of household
size performed substantially worse (ΔDIC: 9.3).

For this influenza B epidemic, we estimated that the proportion
of cases attributed to household transmission for all households,
vaccine households and control households was 12% (9%, 21%),
10% (6%, 21%), and 13% (9%, 24%), respectively.

Indirect effect of vaccination. We evaluated the effect of two
vaccination strategies (strategy 1: vaccinate one child in each
household, i.e., the study design of our trial; strategy 2: vaccinate
all children in the household) on the probability of infection for
unvaccinated contacts by simulation (Supplementary Figure 1).
We found that, compared to the no vaccination scenario, the
probability of household infection for unvaccinated adult contacts
was almost halved under both strategies, with a relative prob-
ability of 0.69 (95% posterior predictive interval (PPI): 0.54, 0.85)
under strategy 1 and 0.55 (95% PPI: 0.40, 0.74) under strategy 2
(Fig. 5). However, the reduction to the total probability of
infection was only marginal (relative probability 0.95; 95% PPI:
0.90, 0.99 for strategy 1 and 0.93; 95% PPI: 0.87, 0.98 for strategy
2) because community was by far the main source of infection in
our study (Supplementary Figure 1).

We estimated that, in this influenza B epidemic, only 10% of
cases were attributed to household transmission (hereafter we
denoted this proportion as P); but other studies estimated this
proportion at around 30%19,20 in influenza A outbreaks. We
therefore assessed how estimates of the indirect benefit of
vaccination would be impacted if proportion P increased, for a
constant probability of infection from the community. We found
that the proportion P had little impact on the reduction of
household transmission due to strategies 1 and 2 (Fig. 5). Indeed,
for adult contacts, irrespective of P, the relative probability of
infection from a household member was around 0.68 in strategy 1
and 0.53 in strategy 2. However, as P increased, the indirect effect
of vaccination on the total probability of infection became more
important. Overall, when P was equal to 30%, the relative
probability of infection was 0.89 (95% PPI: 0.80, 0.96) and 0.83
(95% PPI: 0.72, 0.93) for strategy 1 and 2, respectively, compared
with no vaccination (Fig. 5). Sensitivity analyses suggested that
these results were robust with respect to the small proportion of
infection with inconclusive source (Supplementary Figures 2–5).

Model variations. Models assuming difference in infectivity
between children and adults performed substantially worse
(ΔDIC: 32.0). We explored models that incorporated potential
differences in infectivity between vaccinated and non-vaccinated
individuals but the sample size was insufficient to provide robust
estimates.

Model adequacy. We simulated 1000 data sets with parameter
values drawn from the posterior distribution. The predicted final
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Fig. 2 Timeline of the study and influenza virus activity for influenza B
epidemic in Hong Kong. The black line denotes the local influenza activity in
Hong Kong, as approximated by influenza-like illness consultation rates
multiplied by the proportion of laboratory specimens testing positive for
influenza B virus (ILI+ proxy). The green, blue, and black lines indicate the
pairs of sera drawn in rounds 1+ 2, rounds 2+ 3, and rounds 1+ 3,
respectively
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size distribution was consistent with the observed data and the
model fit was judged adequate (Supplementary Table 5).

Inference and model validation. In the simulation study, we
found no important systematic bias. Moreover, 86 to 100%
(depending on the parameter) of the 95% credible intervals
covered the simulation value in the simulation study (out of
50 simulated data sets), suggesting that the algorithm was able to
estimate adequately the posterior distribution (Supplementary
Table 6).

Discussion
In this study, we estimated the transmission dynamics of influ-
enza B virus in households, exploring factors affecting trans-
mission and quantifying the effectiveness of direct protection for
children and its indirect benefit for their household contacts. The
direct protection was estimated here by serology to be 71% and
this was consistent with previous estimates of vaccine efficacy
based on PCR-confirmed infections of 66% (95% confidence
interval: 31–83%)21. We also tested the hypothesis that household
members can benefit indirectly from vaccination of other
household members due to prevention of introduction of influ-
enza viruses into households.

We found that vaccination could reduce the probability of
household transmission. However, its impact on the overall
probability of infection in household contacts was small because,
in this influenza B epidemic, household transmission represented
only about 10% of all transmission events. The estimated pro-
portion of transmission occurring in households was surprisingly
low given other studies found it to be closer to 30%19,20 for
influenza A epidemics. Therefore, we conducted further simula-
tions to evaluate the indirect benefits of vaccination for household
members when the proportion of household transmissions was
higher. We estimated that when a third of transmissions occurred
in households, the probability of infection of adults could be
reduced by 20% if all children were vaccinated in the household.
To be able to assess when indirect benefits of vaccination can be
expected in the household setting, it is therefore important to
better understand factors that may drive variations in the relative
contribution of households to the overall epidemic. These varia-
tions might be due to differences in the influenza strains (our
study was based on influenza B infections, while the previous
estimates were mostly based on influenza A infections). It is also
possible that the probability of infection from the community

might be stronger in Hong Kong due for example to crowded
public transportation system and schools.

If a substantial proportion of individuals was vaccinated in the
community, the probability of infection from the community
could decrease due to herd immunity as shown in other
studies13–15. In our study, 48/534 (9%) children and 177/1700
(10%) adults were vaccinated. However, this may not reflect the
population coverage as our study selected household with at least
one unvaccinated child. From a separated household transmis-
sion study conducted in Hong Kong23,24, 39/218 (18%) of child
contacts and 111/923 (12%) of adult contacts of index cases were
vaccinated. Another household study reported that the vaccine
coverage for elderly was 27%25. Therefore, the overall vaccine
coverage rate in Hong Kong is low and the results of our study
cannot directly be compared with such studies.

In the presence of a household member infected by influenza
B/Victoria, we estimated that the transmission probability was
14% for children and 5% for adults, with a pre-season titer of <
20. These estimates were similar to those from a case-ascertained
study of influenza B/Victoria virus transmission conducted in
Hong Kong26. Moreover, those estimates were also generally
similar to estimates of the secondary infection probabilities for
influenza A viruses23,27,28. Our study estimated that children were
around four times more susceptible to influenza B/Victoria virus
infection than adults. This is consistent with a separate case-
ascertained study26 and the age distribution of influenza B/Vic-
toria cases in surveillance data29,30; but higher than estimates
obtained for influenza A virus that indicate children are about
twice as susceptible as adults19,27,28,31. Given that our estimate
was adjusted for pre-season HAI titer, and the impact of beha-
viors on transmission should be similar for influenza A and B
viruses, these differences may be related to inherent differences in
the transmissibility of influenza A and B viruses32.

We found that an HAI titer of 20–40 was associated with 52%
protection, compared with an HAI titer of < 20. This was similar
to the previous estimates of 50% protection associated with an
HAI titer of 40, compared with an HAI titer of < 1033. We found
that the person-to-person probability of transmission in house-
holds with smaller number of household members was higher, in
agreement with other studies19,34–36.

Our study has some limitations. First, influenza virus infections
in our study were identified by examining consecutive HAI titers
for 4-fold or greater rises, which can suffer measurement error for
various reasons37. We decided to use serology instead of PCR
because PCR was unable to detect asymptomatic infection since
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Fig. 3 Factors affecting the probability of infection. Point and line indicates the point estimate and the 95% credible interval of the relative susceptibility,
respectively. 95% credible intervals are constructed by using MCMC to fit the data with digraph model. a Estimated relative susceptibility of age.
b Estimated relative susceptibility of vaccinees. c Estimated susceptibility of contacts with intermediate (20 or 40) and high ( > 40) level of pre-season
antibody titers, compared with contacts with low ( < 20) level of pre-season antibody titers measured by the hemagglutination inhibition assay,
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swabs were only collected when the participants reported symp-
toms. Second, infections for vaccinated children may be missed
because of the ceiling effect of HAI titers38. For example, some
vaccinated children may have a very high post-vaccination HAI
titer so that even if they were infected after vaccination, their titer
would not increase by 4-fold. This phenomenon could lead to the
overestimation of the direct benefits of vaccination. However, the
estimate of vaccine efficacy based on HAI titers here was very
similar to that based on PCR-confirmed influenza21. Moreover,
only 5% (23/467) of vaccinees had a post-vaccination HAI titers
of > 640, while our ceiling for HAI titers was 2560. Third, we
assumed that infection processes in the different households were
independent of each other in our analysis. This seems to be a
reasonable assumption because households participating in the
study were just a small proportion of those living in Hong Kong,
and around 10–30% of people in Hong Kong received influenza
vaccination. Finally, each household may have slightly different
time of sera collection in each round due to logistical reasons
while our analysis assumed that each household shared the
probability of infection from the community. However, most of
the paired sera covered the epidemic period, based on influ-
enza surveillance in Hong Kong.

In conclusion, we used serology from a household cohort study
to infer household transmission dynamics and evaluate the direct
and indirect benefits at the household level of vaccinating one
child per household. We showed that the indirect benefits
depended on the probability of household transmission. We
found that in a reasonably optimistic scenario where a third of
transmissions occurred in households vaccinating all children in a
household provided limited indirect protection (~20%), which is
lower than the direct vaccine efficacy (71%). This suggests that
the benefits of individual vaccination remain important even
when other household members are vaccinated.

Methods
Study design. Data were collected in a community-based randomized controlled
trial (ClinicalTrials.gov NCT00792051) aiming to evaluate direct and indirect
benefits of influenza vaccination conducted in 2009–201021. Seven hundred
and ninety-six households with at least one child were enrolled, and one child 6–17
years of age in each household was randomly selected to receive either a single
dose of trivalent inactivated influenza vaccination or saline placebo. We collected
serum samples from every household member at enrollment to the study in
August–December 2009 and at the end of the study in August–December 2010.
We also collected a third serum sample from all household members of 33% of
households in April 2010. Children who received influenza vaccination or placebo
also provided an additional serum sample 1 month after vaccination. In total, we
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(Supplementary Methods)
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collected up to four sequential serum samples from participants, and the majority
of participants provided two serum samples. For children who received vaccine or
placebo, the serum samples after vaccination were used as baseline instead of the
serum samples collected at enrollment. Infection for an individual was defined by
4-fold or greater rise in at least one paired serum drawn from that individual. We
included all households in which at least one household member had paired sera
that covered the epidemic in the analyses. Details of sample size justification,
Randomization, Allocation Concealment, and Blinding were reported in a previous
study21 and summarized in the Supplementary Methods.

Ethics. All participants aged 18 years and older gave written informed consent.
Proxy written consent from parents or legal guardians was obtained for partici-
pants aged 17 years and younger, with additional written assent from those aged 8
to 17 years. The study protocol was approved by the Institutional Review Board of
the University of Hong Kong and by the Hong Kong Department of Health Ethics
Committee.

Laboratory methods. All serum specimens were tested in parallel for antibody
responses to B/Brisbane/60/2008-like (Victoria lineage) by hemagglutination
inhibition assays in serial doubling dilutions from an initial dilution of 1:10 using
standard methods27. Antibody titers were the reciprocal of the highest dilution
that completely prevented hemagglutination.

Model details and inference. We developed a statistical framework to estimate
the probability of getting infected in the community during the epidemic period
and the probability of within-household person-to-person transmission from the
serologic data. Such inference is challenging because the chains of transmission are
unobserved and we only know the final infection status of each individual at the
end of the epidemic, also denoted final size data. In such context, methods have
been developed since the 1980 s to perform robust parameter inference that equate
to integrating the likelihood over all possible chains of transmission consistent with
the data19,39–41. Here, we used a method based on directed graphs (digraph)
described in detail in Cauchemez et al.19. and summarized in the Supplementary
Methods. In short, a household of size n is represented by a random directed graph
with n vertices, each representing a household member. Edges are added to
represent possible transmission events. An edge between individual j and indivi-
dual i indicates that if individual j gets infected, then individual i will get infected
too. An edge between the community and individual i indicates that individual i
will get infected.

We considered the digraph as augmented data since the chains of transmissions
were unobserved. We used a data augmentation Markov chain Monte Carlo
approach to jointly explore the parameters and digraph space and estimate the
posterior distribution of the model parameters19,39 (Supplementary Methods).

Model specification. We used this statistical framework to evaluate the direct and
indirect effect of vaccination that may be obtained by blocking introduction of
influenza virus in households, accounting for other possible factors that may affect
the transmission dynamics in households. Therefore, age, level of pre-season HAI
titers, and direct effects of vaccination were considered as factors potentially
affecting transmission. We defined individuals ≤ 18 and > 18 years of age as chil-
dren and adults, respectively. We defined HAI titers of ≤ 10, between 20–40 and ≥
80 as low, intermediate and high level of titers, respectively. We considered models
that allowed the probability of household transmission to vary with the number of
household members, and models that allowed for a difference in infectivity
between children and adults.

We also estimated the proportion of cases attributed to household transmission,
using the method described by Cauchemez et al.19. For each parameter vector
drawn from the posterior distribution, we simulated epidemics in households with
the household transmission parameters unchanged or being set to zero. The case
counts difference between these two scenarios gave this proportion.

Model adequacy. We assessed the model adequacy by comparing the observed
and expected number of infections in households (Supplementary Methods). A
simulation study was conducted to demonstrate that our algorithm could provide
unbiased estimates of model parameters (Supplementary Methods).

Model comparison. Deviance Information Criterion (DIC) was used for model
comparison42. Smaller DIC indicates a better model fit. DIC differences > 5 were
considered as substantial improvement43. Since the likelihood of observed data was
not available, DIC cannot be directed evaluated for a given model44. Therefore, we
used an importance sampling approach to estimate the likelihood for the observed
data and evaluate the DIC19,45 (Supplementary Methods).

Model prediction. We conducted a simulation study to evaluate the indirect
benefit from two vaccine strategies, (1) vaccinating one child in each household (as
in our trial), (2) vaccinating all children in each household. Ten thousand epi-
demics were simulated in 150,000 households with parameters drawn from their
posterior distribution. For each vaccine strategy, we conducted a simulation with

record of the digraphs, so that the source of each infection could be determined
(Supplementary Methods). Hence, for a group of individuals, the probability of
infection from the community (household) could be estimated by the number
of infections from the community (household) in that group over the number of
individuals in that group, with very high accuracy due to large number of
households. For a small group of infections with inconclusive source (maximum
4% in all simulations), half of them were assigned to be infected from community.
Sensitivity analyses were conducted under the assumption that all of them were
infected from the community (households). For a given group (children or adults)
and a given source of infection (household, community or both), the indirect
protection due to a vaccine strategy was measured by the relative probability (in
term of ratio) of infection in that group and from that source under this vaccine
strategy, compared to the probability of infection under no vaccination strategy
(Supplementary Methods).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. Statistical analyses were conducted using R version 3.2.4 (R
Foundation for Statistical Computing, Vienna, Austria). Code is available at Dryad:
https://doi.org/10.5061/dryad.cj62621.

Data availability
The data that were used in this study are available at Dryad: https://doi.org/
10.5061/dryad.cj62621.
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