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Peptide-mediated ‘miniprep’ isolation of extracellular vesicles is
suitable for high-throughput proteomics
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A B S T R A C T

Extracellular vesicles (EVs) are cell-secreted membrane vesicles enclosed by a lipid bilayer derived from
endosomes or from the plasma membrane. Since EVs are released into body fluids, and their cargo
includes tissue-specific and disease-related molecules, they represent a rich source for disease
biomarkers. However, standard ultracentrifugation methods for EV isolation are laborious, time-
consuming, and require high inputs. Ghosh and co-workers recently described an isolation method
utilizing Heat Shock Protein (HSP)-binding peptide Vn96 to aggregate HSP-decorated EVs, which can be
performed at small ‘miniprep’ scale. Based on microscopic, immunoblot, and RNA sequencing analyses
this method compared well with ultracentrifugation-mediated EV isolation, but a detailed proteomic
comparison was lacking. Therefore, we compared both methods using label-free proteomics of replicate
EV isolations from HT-29 cell-conditioned medium. Despite a 30-fold different scale (ultracentrifugation:
60 ml/Vn96-mediated aggregation: 2 ml) both methods yielded comparable numbers of identified
proteins (3115/3085), with similar reproducibility of identification (72.5%/75.5%) and spectral count-
based quantification (average CV: 31%/27%). EV fractions obtained with either method contained
established EV markers and proteins linked to vesicle-related gene ontologies. Thus, Vn96 peptide-
mediated aggregation is an advantageous, simple and rapid approach for EV isolation from small
biological samples, enabling high-throughput analysis in a biomarker discovery setting.
ã 2016 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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Body fluids represent a rich source of disease biomarkers as
they pass or perfuse different tissues and can be easily sampled.
However, these fluids tend to have a complex composition and
exhibit a large dynamic range of protein levels. This has hampered
protein biomarker discovery to date. Yet, virtually all biofluids
harbor a potential treasure trove in the form of extracellular
membrane vesicles (EVs) emanating from cells that, depending on
the circumstances, selectively load the vesicles with some of their
contents and secrete them into the surroundings [1,2]. EVs are
believed to serve intercellular communication and macromolecu-
lar shuttling to nearby and distant cells, affecting diverse processes
such as those involved in cancer progression [3]. They offer a
stabilizing environment for long-distance journeys of their cargo
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[4], which consists of proteins, nucleic acids and lipids—some of
them telltale components that reflect the (state of the) cellular
origin of secretion. Thus, EVs carry an informative sub-proteome
that is segregated from dominating constituents precluding
analysis of whole biofluids. Hence, EVs could be exploited as
stockpiles of indicators for pathologic conditions in the parental
tissue, a notion for which an encouraging case in point was
published recently [5]. Mechanistically, EVs can arise in two ways:
‘exosomes’ are endosome-derived vesicles released into the
extracellular space from the lumen of multivesicular bodies,
whereas ‘microvesicles’ (also termed ‘ectosomes’) pinch off
directly from the plasma membrane and can reach larger sizes
[6,7]. As yet there is no ‘gold standard’ EV isolation method [8], and
most procedures yield mixtures of vesicles (there being no
distinguishing physicochemical features enabling separation of
exosomes and ectosomes) and varying amounts of contaminating
material. To date, the most commonly used method involves
fractionation of biological fluid through differential centrifugation
followed by one or more ultracentrifugation steps to collect crude
ics Association (EuPA). This is an open access article under the CC BY-NC-ND license
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Fig.1. Proteomic analysis of EVs from HT-29 cell-conditioned medium. (A) General scheme of the workflows for EV isolation by ultracentrifugation (UC-EV, left) and by Vn96-
peptide mediated aggregation (HSP-EV, right) as well as common downstream analysis steps. The asterisk in the box denoting “6-fold concentration” indicates that time-
consuming concentration was used for both UC-EV and HSP-EV, but only required for UC-EV so as to accomodate samples in ultracentrifugation tubes; it is not needed for the
HSP-EV workflow but was included to start with an identical input proteome. (B) Protein gel pattern of all EV fraction replicates (numbered 1–3). U, UC-EV; H, HSP-EV; MW,
molecular weight marker.
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or purified EVs [9]. Unfortunately, due to sample-, equipment- and
tube-specific parameters as well as protocol variations, this
procedure suffers from disappointing lab-to-lab reproducibility;
furthermore, it requires a large amount of starting material while
providing inefficient EV recovery, and high centrifugal forces may
affect vesicle quality [10]. Moreover, ultracentrifugation can only
be performed with a limited number of samples and is laborious as
well as time-consuming (especially when employing buoyant
density-based “floatation”), whereas high-throughput screening
requires a fast and easy ‘miniprep’ procedure for small-sized
samples. This has impeded application to large clinical cohorts for
biomarker discovery. Alternative methods obviating ultracentrifu-
gation exist – some coming in commercial kits – that utilize
precipitation with polymers, size exclusion chromatography,
ultrafiltration, or (immuno) affinity capture [7,11]. Recently,
another method for EV isolation has been described [12], involving
the use of a specific peptide (Vn96) that not only exhibits high
affinity for 70-kDa heat shock proteins (HSPs), but also has the
capacity to aggregate EVs. It was proposed that Vn96 peptides
bring down vesicles through their binding of HSPs decorating the
EV surface. HSPs have been found to be secreted and bound to the
surface of cells and vesicles [13,14], some ranking high among the
top 100 most encountered EV components [6] and implicated in
MVB loading [15,16]. Importantly, the EV-aggregating propensity
of Vn96 peptides allows for a simple single-step collection
procedure with centrifugation in a standard centrifuge. Micro-
scopic, western blot and microRNA analyses underscored the value
of this new approach for EV isolation from both cell-conditioned
media and biofluids [12]. However, a detailed proteomic analysis
was lacking.

To elaborate on these basic findings, here we set out to evaluate
the suitability of Vn96 peptide-mediated EV isolation as a tool to
produce EV minipreps for global proteomics and biomarker
discovery. Specifically, using cancer cell-conditioned medium
(harboring a ‘secretome’) as input material we compared the
HSP-targeting EV isolation method (abbreviated: HSP-EV) with a
standard ultracentrifugation method yielding a 100,000 � g pellet
(abbreviated: UC-EV). Our focus was on the capture of established
EV proteome constituents, with a special emphasis on reproduc-
ibility of protein identification and quantification.

For an overview of the workflow, see Fig. 1(A). To compare HSP-
EV and UC-EV methods, we used either method to process three
aliquots of a single, pooled sample containing crude serum-free
conditioned medium from HT-29 colorectal cancer cells. As input
we used 2 ml for HSP-EV (corresponding to �107 cells, miniprep
scale), and 60 ml for UC-EV (normal scale), thus at the same time
assessing the value of HSP-EV as an EV isolation modality that
should capture enough of the UC-EV ‘standard’ proteome, as well
as testing the possibility of downscaling. Fractions were analyzed
by a combination of one-dimensional gel electrophoresis and
nanoscale liquid chromatography coupled to tandem mass
spectrometry (GeLC–MS/MS) [17]. Fig. 1(B) shows the protein
gel patterns for all EV fractions. The major band at 3–4 kDa in HSP-
EV fractions corresponds to the Vn96 peptide that was added for
EV isolation. For proteomic analyses, gel lanes were cut into five
consecutive slices, and each slice was cut up further and in-gel
digested with trypsin [18]. Extracted tryptic peptides were
separated by reversed-phase nano-LC and analyzed on-line with
a Q Exactive mass spectrometer as described previously [19,20].
Further experimental details can be found in Supplementary
methods.

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.euprot.2016.02.001.

A total of 3443 unique proteins (3495 protein groups) were
identified across all EV fractions, with some 3100 proteins
identified per preparation method (Fig. 2(A); see Supplementary
Table 1 for raw database search results and Supplementary
Table 2 for annotated data). The majority ( > 80%) was identified in
at least one replicate with both methods. An inspection of the data
for a selection of established exosome/EV markers including CD63,
CD81, TSG101 and PDCD6IP/ALIX showed that both methods
captured all of these proteins (Fig. 2(B)), with the UC-EV method
giving somewhat higher yields, but not proportional to the 30-fold
difference in input between the two methods. Supplementary
Fig. 1 shows boxplots for a broader selection of proteins often
associated with EVs and vesicle transport as well as some putative
cargo. We have also assessed the overlap of the proteins in our data
set with publicly available EV protein databases ExoCarta,
Vesiclepedia, and EVpedia [21–23](see Supplementary methods
and Supplementary Fig. 2), which showed that less than 5% are not
present in at least one of these repositories. Furthermore, the UC-
EV and HSP-EV proteomes contained 80% of the HT-29 EV
proteome published by Choi et al. [24], covering 95% of their
tetraspanin-centered subnetwork (data not shown). Overlap
analysis of technical replicates indicated that with both isolation
methods a significant proportion of proteins were identified in all
three replicates (73% for UC-EV and 76% for HSP-EV, Fig. 2(C)). This
indicates good reproducibility of protein identification, an impor-
tant prerequisite for global discovery proteomics. Reproducibility
of protein quantification was also similar for both methods. As a
quantitative proxy for protein abundance we used spectral counts,
i.e. the total number of identified MS/MS spectra linked to a protein
[17]. Among triplicates, the average CV% of spectral counts was 31%
versus 27% for UC-EV versus HSP-EV (median of 26% versus 23%,
mode of 16% versus 5%; Supplementary Table 2). Scatter plots and
correlations can be found in Supplementary Fig. 3. Of note, spectral
counts for proteins identified with both methods also showed a
good correlation (Pearson correlation coefficient r = 0.88, Fig. 2(D)).
Using immunoblot analysis, we further verified enrichment of key
EV markers in a typical EV fraction obtained with the HSP-EV
method (Fig. 2(E)). The markers are easily detected in the EV
fraction whereas they are below the detection limit (CD63) or
marginally visible (CD81) in the corresponding supernatant after
EV isolation. To further characterize our UC-EV and HSP-EV
fractions, we performed gene ontology mining of the DAVID
database [25] using proteins that passed a median spectral count
cutoff (Supplementary Table 3; Supplementary Fig. 4 shows top-
scoring term clusters filtered for enrichment score and FDR). The
results further supported both the vesicular content and the
similarity of UC-EV and HSP-EV samples. Top ontologies included
terms related to vesicle structure (membrane-bounded, lumen,
membrane coat) and function (protein localization, protein
transport), proteins important for intracellular vesicle transport
and sorting (cytoskeletal elements, small GTPases), proteins
important for vesicle-environment interaction and homing (junc-
tion/adhesion molecules), as well as putative cargo that especially
seemed to encompass gene expression-related molecules (i.e.,
ribosomal/translational, proteasomal and mRNA splicing compo-
nents) in addition to, e.g., glycolytic enzymes. FunRich, a gene
ontology mining tool which uses a dedicated database focusing on
exosome/EV-related proteins [26] identified ‘exosomes’ and
‘lysosome’ as the most significant cellular components (Supple-
mentary Fig. 4). Our ontology analyses indicate a high similarity
between UC-EV and HSP-EV preparations, although some differ-
ences can be discerned, which is not unexpected as the UV-EV
method removes a subset of large EVs in the intermediate-speed
spin.

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.euprot.2016.02.001.

In summary, we have shown that Vn96-mediated EV isolation
enables reproducible analysis of the EV proteome. In terms of
identified proteins and associated gene ontologies, the HSP-EV
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Fig. 2. Comparison of UC-EV and HSP-EV methods for isolation of extracellular vesicles. (A) Venn diagram showing large overlap of the proteomes identified in EV fractions
isolated with the UC-EV methods or the HSP-EV method. (B) Boxplots normalized spectral counts for a selection of exosome/EV markers identified with both methods (green:
HSP-EV, red: UC-EV). (C) Venn diagrams showing reproducibility of UC-EV and HSP-EV methods as assessed by enumeration of identifications shared among replicates. (D)
Scatter plot showing correlation between average normalized spectral counts (log 2-transformed) for proteins identified in UC-EV fractions and in HSP-EV fractions,
respectively. Inset shows Pearson (r) and Spearman (r) correlation coefficients. E. Immunoblot validation of the capture of classical exosome/EV markers CD63 and CD81 as
well as HSP70 from HT-29 cell-conditioned medium by the HSP-EV method. EV, extracellular vesicle fraction; Sup, EV-depleted supernatant; Lys, HT-29 cell lysate.
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proteome is largely comparable to that of crude EVs isolated by a
standard ultracentrifugation procedure (UC-EV), including classi-
cal exosome/EV markers. The latter are detected in HSP-EV
fractions at a level that is only about twofold lower than that
observed in UC-EV preparations. This result is remarkable
considering the 30-fold lower sample input used for HSP-EV
isolation. While we do not claim quantitative recovery or high
purity of EVs, realizing that it yields inevitably crude and
heterogeneous EV fractions, we conclude that the small-scale
HSP-EV isolation method captures a sufficient amount and
diversity of the EV proteome to render it useful for clinically
relevant comparisons. With multiple methods for EV isolation
available, the specific method used depends on the question and
application for which it is most appropriate [8]. Indeed, the specific
cellular or vesicular origin of biomarkers is not relevant to their
diagnostic use [27]. Further exploring the HSP-EV method with
body fluids like blood is therefore warranted. Given the ease-of-
use, simplicity, and unparalleled speed of this procedure (which is
much less time-consuming than UC-EV) this would open a novel
avenue of EV miniprep isolation in a clinical setting. This may
greatly facilitate biomarker discovery efforts in cancer research as
well as similar endeavors for other diseases. Moreover, it could
pave the way for novel noninvasive applications.
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