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Simple Summary: Liquid biopsies provide a non-invasive means to diagnose and profile tumors
when tissue is not available. Sequence-based analysis of cell-free DNA (cfDNA) is frequently used
to characterize genomic alterations, with a focus on driver mutations or mechanisms of acquired
therapy resistance. However, the epigenome of cfDNA also contains additional information about
the tumor, which might open new possibilities for clinical applications. Recent highlighted publica-
tions are reviewed on the analysis of fragmentation, epigenomic alterations, as well as nucleosome
modifications using cfDNA in various cancers. The potential, challenges, and future directions of
genomic and epigenomic analysis of cfDNA in oncology are discussed.

Abstract: Cell-free DNA (cfDNA) analysis using liquid biopsies is a non-invasive method to gain
insights into the biology, therapy response, mechanisms of acquired resistance and therapy escape
of various tumors. While it is well established that individual cancer treatment options can be
adjusted by panel next-generation sequencing (NGS)-based evaluation of driver mutations in cfDNA,
emerging research additionally explores the value of deep characterization of tumor cfDNA genomics
and fragmentomics as well as nucleosome modifications (chromatin structure), and methylation
patterns (epigenomics) for comprehensive and multi-modal assessment of cfDNA. These tools have
the potential to improve disease monitoring, increase the sensitivity of minimal residual disease
identification, and detection of cancers at earlier stages. Recent progress in emerging technologies
of cfDNA analysis is summarized, the added potential clinical value is highlighted, strengths and
limitations are identified and compared with conventional targeted NGS analysis, and current
challenges and future directions are discussed.

Keywords: liquid biopsy; cell-free DNA; precision medicine; fragmentomics; epigenomics; DNA
methylation; DNA hydroxymethylation; histone modification; nucleosome positioning

1. Introduction

The development of advanced genomic technologies has caused an upsurge in meth-
ods of cell-free DNA (cfDNA) analysis during the past decade. The potential clinical utility
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of these novel techniques is huge, ranging from the non-invasive monitoring of infections,
to the early diagnosis of graft rejection after solid organ transplantation [1–3], detection of
fetal aneuploidy in pregnant women [4,5], and a wide array of applications in oncology.
The main benefits of cfDNA over tissue analysis for cancer patients are a higher sampling
frequency with reduced procedural risk, as well as the ability of each sample to reflect
all tumor lesions in the body, thus overcoming the obstacles posed by temporal [6] and
spatial [7] tumor heterogeneity. Thus, cfDNA can be used to explore the evolutionary
dynamics of cancers across the entire genomic spectrum. Accordingly, circulating tumor
DNA (ctDNA) can be used to diagnose and profile tumors at initial diagnosis, monitor
disease progression, characterize mechanisms of acquired resistance, identify minimal
residual disease (MRD), and discover potential novel therapeutic targets.

cfDNA sources vary in certain physiological or disease contexts. In healthy individ-
uals, the main sources of cfDNA are lymphoid and myeloid cells, consistent with the
frequent turnover of hematopoietic lineage cells in the blood [8]. In cancer, the detection
and quantification of mutations, CNVs, and aneuploidies from tumor-derived cfDNA have
been successfully used to monitor advanced disease and treatment response [9–11]. CfDNA
concentrations were shown to be elevated in cancer patients (even at localized disease) com-
pared with healthy individuals [12,13]. Multiple studies have also reported the potential of
ctDNA analysis in oligoprogression [14] as well as in early detection of disease progression
(i.e., lead time), in which detection of tumor mutational clones precedes conventional
imaging modalities [15–18]. However, determining the source of cfDNA (i.e., tumor vs.
healthy tissue) remains a prevailing limitation in genomic analyses of cfDNA. Another
limitation is that—while it is possible to track tumor progression based on cfDNA single
nucleotide variations (SNVs) and copy number variations (CNVs)—definitive identification
of a tumor’s tissue-of-origin based on these parameters is not always possible.

Beyond the conventional cfDNA analysis using targeted NGS (tNGS) [19,20], epige-
nomic changes in tumor tissues also vary during tumor initiation and progression [21].
In addition, DNA methylation and chromatin modifications or transcription factor bind-
ing sites have been described to be highly tissue specific [22–26], and could be used to
resolve the tissue-of-origin in early cancer detection [27–29]. For example, SEPT9 promoter
methylation is a biomarker for the early detection of lung adenocarcinoma and colorectal
cancer (CRC) [30,31]. cfDNA fragments also harbor information about the nucleosome oc-
cupancy in tissues, which might inform about their cell-of-origin [8]. Still, a major challenge
hindering translation into clinical applications is the low abundance of analytes derived
from certain tumor types, such as prostate [32], glioblastoma [33], and renal cancers [34],
especially in early tumor stages [35].

2. Fragmentation Patterns of cfDNA

For many years, it has been known that the size distribution of cfDNA is not random
and might contain information about the mechanisms of its release [36]. The cfDNA size
peak of ~167 bp reflects the length of the DNA strand wrapped around nucleosomes
(147 bp) plus linker DNA fragments of 20 bp. This pattern is generated via caspase-
dependent DNA cleavage, which implies that a large fraction of cfDNA is released from
cells undergoing apoptosis. However, recent studies suggesting that cfDNA fragmentation
depends on certain pathological conditions, such as cancer [37–41], have fueled research
on the identification of additional fragmentation mechanisms (Table 1).

2.1. Shortening of cfDNA Fragments in Cancer

Jiang et al. [42] demonstrated that the cfDNA fragment length profile in patients
suffering from hepatocellular carcinoma (HCC) was shifted towards lower sizes compared
with healthy individuals (145 bp). They estimated the fractions of ctDNA based on the
prevalence of copy number alterations (chromosome arm-level z-score analysis). Samples
with high fractions of ctDNA showed increased proportions of fragments <150 bp, whereas
ctDNA content and fragments between 150 and 180 bp were not correlated. When analyz-
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ing fragment size distributions of different tumor entities, Mouliere et al. made similar
observations, showing that tumors known to shed high amounts of ctDNA (e.g., lung or
colorectal cancer) into the bloodstream also presented increased proportions of fragments
<150 bp, compared with low ctDNA cancers (e.g., renal cancer, glioblastoma) and to cfDNA
from healthy donors [41]. cfDNA shortening was also observed during pregnancy, where
DNA derived from the fetus is ca. 20 bp shorter than maternal cfDNA [43,44], and between
donor and host cfDNA in organ transplant recipients [45].

The biological and physical processes responsible for cfDNA shortening are not
fully understood. Epigenomic processes might play a role, since hypomethylated cfDNA
fragments tend to be shorter than hypermethylated DNA [46,47]. Considering that DNA
methylation influences nucleosomal packaging [48], hypomethylated cfDNA might be less
densely associated with nucleosomes and therefore more susceptible to nucleases.

Several studies have investigated the shortening of cfDNA for improved tumor de-
tection [37,38,41,49]. For example, Mouliere et al. [41] achieved up to 11-fold ctDNA
enrichment by analyzing cfDNA fragments between 90 and 150 bp only. Consequently,
they were able to improve the detection of copy number variations (CNV) and single
nucleotide variations (SNV). Further studies corroborated the enhanced sensitivity of CNV
and SNV detection after selecting short cfDNA fragments using either in vitro or in silico
enrichment methods [34,38,41,50,51]. Cristiano et al. [37] applied a different approach in
which the length variations of ctDNA were considered in a position-specific manner using
shallow whole genome sequencing (sWGS). They compared the fractions of small (100 to
150 bp) to large (151 to 220 bp) cfDNA fragments within 5 Mb bins throughout the genome
in samples from 236 healthy donors and 245 patients suffering from various cancers. cfDNA
fragments of healthy individuals were highly concordant with and reflected the fragmen-
tation of lymphocytic nucleosomal DNA. The cfDNA fragmentation from patients was
much more variable and exhibited regional increases in particular fragment lengths. In a
subset of these samples, the degree of fragmentation alterations was correlated to the SNV
fractions. This suggested that position-specific alterations of cfDNA size profiles could
be used for cancer detection. Using machine learning (ML) on the cfDNA fragmentation
profile data, cancer patients could be identified with a sensitivity of 73% and a specificity
of 98%. The tissue-of-origin was correctly classified in 61% of cases [37]. Smith et al.
applied a random forest algorithm for ctDNA detection based on cfDNA fragmentation
features obtained from sWGS of plasma and urine DNA in renal cell carcinoma (RCC)
patients [34] and obtained 91.7% prediction accuracy. This result indicates that sWGS is
an inexpensive approach which can identify samples for targeted NGS analyses to detect
potentially actionable gene-specific alterations (Figure 1).

While double-stranded DNA (dsDNA) library preparation is insensitive to highly
degraded cfDNA, single-stranded (ssDNA) libraries can capture such molecules and might
provide a better insight into shorter-sized DNA molecules: using ssDNA library prepara-
tion and quantitative PCR, a cfDNA population with a significantly shorter fragment length
profile (30 to 130 bp) was identified compared with the standard dsDNA method [8,52–54].
These data also revealed that circulating DNA does not only associate with nucleosomes
but also tends to be occupied by transcription factors (TFs) with size ranges between 20 and
90 bp [54]. In addition, ssDNA sequencing data showed that nucleosome-associated cfDNA
presents high numbers of ssDNA breaks that are missed in the preparation of conventional
dsDNA libraries. These single-stranded nicks were found to be more frequent in samples
of cancer patients compared with healthy individuals, indicating higher nuclease activity
in patients [53,54]. The recovery of very short DNA molecules might also improve the
detection of mitochondrial cfDNA that revealed promising results in the differentiation
between HCC patients and healthy donors [42], or of recipient vs. donor cfDNA after lung
transplantation [52]. In contrast, fragments >250 bp present only a minor fraction of the
cfDNA repertoire and have received little attention so far. However, one study observed
that mutated cfDNA was also enriched for fragments between 250 and 320 bp compared
with non-mutated cfDNA fragments [41].
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2.2. Cancer-Associated Alterations of cfDNA Fragment End Sequences

The ends of cfDNA fragments provide insights into the biology of cfDNA fragmenta-
tion and were also shown to have potential clinical implications in cancer patients. Such
informative characteristics include the genomic location of the fragment ends [55,56], their
sequence context at the 5′-end [39,57–59], and single-stranded 5′ protruding (“jagged”)
ends [60,61]. Whole genome sequencing (WGS) of cfDNA from pregnant women has
shown that cfDNA fragment ends are not equally distributed in the genome [55]. These
“plasma DNA preferred ends” were linked to genomic regions with open chromatin, em-
phasizing that cfDNA is preferentially cleaved at accessible sites of the genome [62]. Since
chromatin accessibility differs between cell and tissue types [8,63], the fragment ends of ma-
ternal and fetal cfDNA vary considerably and are characteristic for their tissues-of-origin,
i.e., hematopoietic cells [42,64,65] vs. placental trophoblasts, respectively [55].

Similar observations were made in HCC patients. Jiang et al. [56] identified cfDNA
fragment end coordinates specific for HCC and validated their tumor association in a
cohort of 90 HCC patients, 32 healthy donors, 67 chronic hepatitis B virus (HBV) carriers,
and 36 patients suffering from liver cirrhosis. Enrichment of tumor-associated jagged ends
in cfDNA was only found in HCC patients, further corroborating the concept of tissue- or
tumor-specificity of cfDNA ends. Moreover, tumor-derived fragment ends were shorter
and correlated to the ctDNA fraction in the same plasma samples.

Chandrananda et al. [57] were the first to show that not only the location but also the
sequence context of cfDNA is associated with distinct biological processes. They reported
an increased abundance of cytosines at the 5′-ends of cfDNA molecules, which was absent
from randomly sheared cellular DNA and mitochondrial cfDNA. This suggests that the
5′-sequence preference is associated with DNA cleavage between nucleosomes. Similar
C-end dominance was detected in murine cfDNA samples [58]. The overrepresentation of
certain fragment end motifs was linked to the cutting preference of different nucleases, par-
ticularly of deoxyribonuclease 1-like 3 (DNASE1L3) [58,59]. DNASE1L3 and DNASE1 are
the most abundant DNases in mammalian plasma [66]. While DNASE1L3 cuts chromatin-
associated DNA at nucleosomal linker regions, DNASE1-mediated cleavage predominantly
occurs at protein-free DNA molecules, generating A-end fragments [40,59]. The expression
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levels of DNASE1L3 are significantly reduced in several cancer entities, including breast,
lung, colorectal and liver cancer [67]. A study on plasma samples from 34 HCC patients
demonstrated that the low expression of DNASE1L3 in HCC coincides with a reduction
of many of the DNASE1L3-associated motifs (e.g., CCCA, CCAG, and CCTG), and an
increase in other motifs in these patients (e.g., TAAA, AAAA, and TTTT) [67]. A global
increase in the end motif diversity was also observed in the cfDNA from cancer patients,
which might be due to the reduced expression of DNASE1L3, resulting in altered cfDNA
end motif compositions. Elevated end motif diversities were observed in different cancer
entities with reduced DNASE1L3 expression levels (e.g., colorectal and lung cancer) [67].

Table 1. Fragmentomic features of cfDNA in cancer.

cfDNA Fragment
Feature Method Analyte Control Cohort Cancer Entity

Tested Result Reference

Fragment length
shortening WGS Plasma Healthy controls (n = 32), HBV

(n = 67), liver cirrhosis (n = 36) HCC (n = 90)
Short cfDNA fragments

preferentially carry
tumor-associated CNVs

[42]

Fragment length
shortening sWGS CSF n/a Glioma (n = 13)

Detectable CNVs in CSF
correlates with higher

abundance of short (<145 bp)
cfDNA fragments

[51]

Fragment length
shortening

tNGS;
ddPCR Plasma n/a

Melanoma (n = 8),
CRC (n = 3), and
pancreatic (n = 2)

cancer

2-fold enrichment of SNVs in
short (<142 bp) cfDNA

fragments
[38]

Fragment length
shortening

sWGS;
tNGS Plasma n/a

High-grade serous
ovarian cancer

(n = 13)

Up to 11-fold enrichment of the
mutated cfDNA fraction in

short fragments (90 to 150 bp)
[49]

Multiple fragment
size features

sWGS;
tNGS Plasma Healthy controls (n = 144)

Multiple
cancerentities

(n = 200)

Enhanced CNV/SNV detection
by short fragments;

fragmentation feature-based
cancer classification

(AUC = 0.99)

[41]

Position-specific
fragment length

variations
WGS Plasma Healthy controls (n = 245) Multiple cancer

entities (n = 236)

Cancer detection based on
genome-wide cfDNA
fragmentation profiles

(AUC = 0.94)

[37]

Preferred end
coordinates WGS Plasma Healthy controls (n = 32), HBV

(n = 67), liver cirrhosis (n = 36) HCC (n = 90)

Cancer classification based on
fragments at tumor-associated

preferred end coordinates
(AUC = 0.88)

[56]

Fragment end
motifs WGS Plasma Healthy controls (n = 38), HBV

(n = 17) HCC (n = 34)
Increased fragment end motif
diversity in patients compared

with controls
[67]

Jagged ends WGBS Plasma Healthy controls (n = 8), HBV
(n = 17) HCC (n = 34)

Cancer classification based on
the increased jaggedness in

cancer patients
[60]

Jagged ends WGBS Urine Healthy controls (n = 39) Bladder cancer
(n = 43)

Cancer classification based on
the decreased jaggedness in

cancer patients
[61]

AUC, area under the curve; CNV, copy number variation; CRC, colorectal cancer; CSF, cerebrospinal fluid; ddPCR, digital droplet PCR; HBV,
hepatitis B virus; HCC, hepatocellular carcinoma; sWGS, shallow whole genome sequencing; tNGS, targeted next-generation sequencing;
WGB, whole genome bisulfite sequencing; WGS, whole genome sequencing.

More recently, cfDNA molecules were found to possess single-stranded 5′ DNA
overhangs [60,61]. The presence of these jagged ends is normally masked by the end
repair step during conventional sequencing library preparation. To identify jagged ends,
overhangs are extended using nucleotides with detectable characteristics. For example,
methylated cytosines can be introduced during overhang elongation, and high abundance
of methylated CH sites (H: A, T, or C) at DNA fragment ends reflects the “jaggedness” of
the original DNA molecules. Analysis of plasma DNA in DNASE1-deficient mice showed
a decreased abundance of jagged ends compared with wild-type mice, suggesting that the
jaggedness of cfDNA is related to DNASE1 activity [60]. The expression level of DNASE1 is
elevated in HCC tumors compared with normal liver tissue, and cfDNA in HCC patients is
more prone to have jagged ends compared with plasma from healthy donors [60]. Fragment
end analysis of urinary cfDNA from bladder cancer patients revealed that stage-dependent
reduction of DNASE1 expression coincided with reduced jaggedness of cfDNA compared
with controls [61].



Cancers 2021, 13, 5615 6 of 20

The possibility of inferring the tissue-of-origin from cfDNA fragmentation profiles
provides a new layer of information that was previously missed. The correlation of the
expression levels of nucleases to the abundance of fragment end motifs and jagged end
fragments could guide the selection of cfDNA biomarkers in the future.

3. Nucleosome Positioning and Chromatin Modifications in cfDNA
3.1. Deducing Gene Expression from Nucleosome Positioning and Occupancy

One strategy to identify the cfDNA tissue-of-origin takes advantage of unique nucleo-
some positioning patterns in different cell types [68,69]. Snyder et al. [8] performed deep
sequencing of cfDNA from healthy donors and applied a heuristic approach to generate
genome-wide nucleosome occupancy based on the “windowed protection score” (WPS)
metric (Table 2). Regions protected from digestion (e.g., by nucleosomes) yield high WPS
values, while unprotected DNA regions are marked by low WPS scores. Further anal-
ysis of peak-to-peak spacing of nucleosome calls revealed that, in healthy samples, the
high proportion of widened nucleosome spacing (~260 bp) is comparable to observations
made in cells of lymphoid or myeloid origin. This finding corroborated the notion that
hematopoietic cell death is the prevalent source of cfDNA in healthy individuals. Further,
the study utilized nucleosome spacing across gene bodies to infer gene expression levels
from cfDNA. Open chromatin and active transcription correlated with tighter spacing
between nucleosomes. By using nucleosome spacing within gene bodies as a surrogate
for gene expression, it was possible to identify cell type specific signatures from deep
cfDNA sequencing. The utility of this approach was illustrated by establishing correlations
between nucleosome signatures from cfDNA of cancer patients (i.e., small cell or squamous
cell lung cancer, colorectal adenocarcinoma, hepatocellular carcinoma, and ductal carci-
noma in situ breast cancer) and gene expression signatures of cancer models (i.e., human
cell lines and primary tissues) with the same tissues-of-origin. The method succeeded
in matching three out of five test cases. While the study revealed the potential of using
nucleosome tracks for predicting the cellular origin of tumors, it was limited by the low
number of plasma samples tested, which were themselves biased towards harboring high
aneuploidy metric scores (all were from stage IV patients).

Building on the insights presented by the previous study, Ulz et al. [63] explored the
potential of using nucleosome occupancy at promoters based on WGS of cfDNA, to infer
gene expression signatures associated with various cell types. This hypothesis relied on
the premise that in actively transcribed genes, the promoter region including sequences of
1 kilobase (kb) downstream of the transcription start site (TSS), is a nucleosome-depleted
region (NDR), which allows docking of the transcription initiation machinery. Flanking the
NDR are uniformly positioned nucleosomes. Since the DNA at NDRs is not protected once
shed into the circulation, sequence coverage of this region is poor. Hence, the read depth at
the TSS of active genes is low, with distinct oscillations around the NDR. This is in contrast
to higher read depths expected at the TSSs of inactive genes where nucleosome array
packaging is denser. Upon comparison of read depth of cfDNA from healthy individuals
with publicly available micrococcal nuclease assay datasets, a high concordance (>90%) of
cfDNA fragments was found to be derived from white blood cells, validating the utility of
this method. Accordingly, Ulz et al. established a metric for gene expression based on read
depth coverage of the 2-kb region centered at the TSS and within the NDR defined from
−150 bp to +50 bp with respect to the TSS. Read depths of these regions were normalized
against relative copy numbers to account for the contribution of copy number changes
to absolute read counts. This approach was successful in inferring the 100 most highly
and least expressed genes in plasma with an accuracy of 91%. To test the feasibility of
the method in clinical samples, the study performed WGS on matched primary tumor
and plasma DNA, as well as tumor RNA-seq from two patients with metastasized breast
cancer. Integrating these data, it was possible to identify copy number variations (CNVs)
to estimate the ctDNA fraction and facilitate accurate predictions of gene expression from
promoter read depths. This analysis was limited to regions with high ctDNA allele fre-
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quencies, revealing practical caveats of the method, particularly its low prediction accuracy
for samples with low tumor load and hence unsuitability in MRD monitoring, as well as
in assessing cfDNA from patients with tumors known to shed minimal ctDNA. Nonethe-
less, the robustness of the method was tested in cfDNA from patients with metastasized
cancer of various origins (i.e., colon, prostate, breast, lung; n = 426), and 51.6% of the
samples were amenable for promoter read depth analysis. Despite the limitations, using
NDR quantification at promoter regions expands the repertoire of analyses that can be
performed on cfDNA, while also enabling deduction of gene expression from WGS data
of cfDNA. A commentary [70] proposed an improvement of the method, which requires
deeper sequencing of cfDNA to identify and enrich for specific regions pertinent to the
disease context. This way, the sequencing costs can be mitigated while the most informative
genomic regions are sufficiently covered.

The work on cfDNA fragmentation patterns was further expanded by Sun et al. upon
their development of a novel approach of utilizing tissue-specific open chromatin regions
to infer the tissue-of-origin [71]. The method takes cfDNA orientation into consideration
and differentiates the upstream (U) and downstream (D) ends of the DNA fragment based
on their alignment to the reference genome. The group reproduced the nucleosomal
periodicity of ~190 bp as reflected by the depth of coverage at nucleosomes and linkers.
Depending on the phasing of the fragment end peaks, it was possible to deduce regions
of open chromatin. This was based on the previous observation that open chromatin
regions harbor regulatory elements in the absence of nucleosomes which are flanked by
well-phased nucleosome arrays. The group developed a metric termed “orientation-aware
cfDNA fragmentation” (OCF) value, which measures the differential phasing of U and D
fragment ends. Due to the specific chromatin landscapes in different tissue types, distinct
ranges of OCF values were accordingly observed in various tissue controls. Finally, OCF
analysis was applied to noninvasive prenatal testing, patients with liver pathologies such
as liver transplantation and hepatocellular carcinoma, colorectal cancer, and lung cancer
patients. This cfDNA assay does not require high sequencing depths (median depth: 3.2×),
which differentiates it from the other nucleosomal positioning approaches described above.

3.2. Inference of Transcription Factor Binding

In addition to establishing a method to map nucleosome positions from cfDNA
sequences, Snyder et al. [8] also deduced the occurrence of TF binding using shorter
cfDNA fragments associated with cleavage next to transcription factor binding sites (TFBS),
as opposed to longer cfDNA fragments associated with cleavage between nucleosomes.
Extending this work, Ulz et al. [72] generated a metric which measures the accessibility
of TFBS from cfDNA nucleosome coverage patterns. On initial analysis, read depths
at TFBS inform of TF binding, indicative of TF activity specific to certain cell lineages.
Accessibility scores were generated for 504 TFs, each with 1000 well-characterized TFBSs.
Detection thresholds for TFBS accessibility differences from normal samples were defined,
and the measured deviations of accessibility scores were used to validate signature TF
activities in prostate, breast, and colon cancer-derived cfDNA. The study also presented
three potential clinical applications of TF analysis. First, in a prostate cancer case which
transdifferentiated to a treatment-emergent small cell neuroendocrine (t-SCNC) subtype,
two plasma samples collected in a 12-month interval showed decreased accessibility of
AR binding sites, reflecting the androgen-independent pathology of t-SCNC. Reduced
accessibilities were also observed for HOXB13, NKX3-1, and REST. These observations
suggest the possibility of cfDNA TF analysis for molecular tumor subtyping. Second,
plasma samples from early-stage colon adenocarcinoma patients (COAD stage I, n = 197;
stage II, n = 280), and from individuals with no cancer diagnosis (n = 177) were compared,
to assess the resolution limits of TF-based cancer detection. In stage I and II COAD cancers,
tumors are still localized and consequently, the tumor fractions from cfDNA for most
samples measured less than the detection limit of an established algorithm. However,
statistically significant changes in binding by colon cancer-associated TFs were already
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apparent for early-stage patients compared with healthy controls. Further, upon model
training by logistic regression analysis on 504 TFs, using a subset of early-stage COAD
samples, the method was able to correctly identify stage I and II patients with precisions of
74% and 84%, respectively. These results highlight the utility of the approach to establish
classifiers for predicting early-stage cancers, which is currently a fundamental weakness of
cfDNA technologies. Finally, nucleosome positioning studies typically require deep WGS
of cfDNA. Notably, Snyder et al. [8] utilized 1.5 billion reads per sample to perform TF
footprinting, which would translate to exorbitant clinical costs. In contrast, the current
method [72] can perform reliable TF analysis even when sequencing is downsampled to
50 million reads (Figure 1).

3.3. Histone Modification of cfDNA Nucleosomes as a Measure of Transcriptional Activity

Sadeh et al. [29] developed a chromatin immunoprecipitation (ChIP) method appli-
cable to cell-free nucleosomes in plasma, followed by sequencing (cfChIP-seq), taking
advantage of intact histone marks to define gene expression signatures present in plasma
DNA and trace their tissues-of-origin (Table 2). In this study, cfChIP-seq was performed
in <2 mL of plasma using antibodies targeting marks of active promoters (H3K4me3 or
H3K4me2), enhancers (H3K4me2 or H3K4me1), and gene bodies of actively transcribed
genes (H3K36me3). Accordingly, H3K4me3 pulldown of cfDNA from healthy individuals
yielded considerably overlapping occupancies with reference H3K4me3 ChIP-seq maps of
monocytes and neutrophils, verifying the main contributors of cell-free nucleosomes in
healthy plasma. Moreover, cfDNA H3K4me3 enrichment at promoters was consistent with
the expression levels of genes in hematopoietic cells based on reference tissue expression
data. To test whether cfChIP-seq could predict gene expression changes in patients with
underlying pathological conditions, H3K4me3 precipitation was performed on plasma
from healthy donors, from patients diagnosed with metastatic CRC, and patients with
autoimmune, metabolic, or viral liver disease or with acute myocardial infarction. Us-
ing published ChIP-seq data, the authors generated cell type-specific gene expression
signatures to be used as references. cfChIP-seq was able to reflect the tissue-of-origin of
the most relevant cfDNA contributors in each of these pathologies, based on H3K4me3-
inferred transcriptional program activation. The study also challenged the abundance of
erythroblast-derived cfDNA in plasma from healthy donors, as previously reported [64,73].
Instead, the authors observed enrichment for megakaryocyte-specific genes, implying that
megakaryocytes are major contributors of cfDNA in healthy individuals. For the metastatic
CRC cohort, a highly discriminative CRC classifier was generated based on COAD genes
from the TCGA dataset (area under the ROC curve [AUC]: 0.94). Furthermore, the CRC
signature scores derived from longitudinal cfChIP-seq data showed changes reflecting
the disease status of patients at particular points of the therapy lines. The study also
explored inter-tumor heterogeneity through cfChIP-seq-derived expression signatures.
Five signatures were generated that could stratify metastatic CRC based on gene expres-
sion programs and duplication events. However, it remained unclear if these signatures
would correlate with the genotypic background of the CRC tumors. Overall, Sadeh et al.
developed a nuanced approach for cfChIP-seq analysis that should be extended to larger
cohort numbers and perhaps other tumor entities.
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Table 2. Histone modifications and nucleosomal positioning in cfDNA from plasma.

Cf Nucleosome
Feature Method

Control Cohort Used
for Method

Establishment
Cancer Entity Tested Result Reference

Nucleosome
positioning

Evaluation of
windowed protection

score (WPS) using deep
WGS

Pooled (n = 1) and
individual cfDNA (n =

2) from healthy controls

Small and squamous cell lung
cancer, colorectal

adenocarcinoma, hepatocellular
carcinoma, ductal carcinoma in

situ breast cancer

Matched 3 out of 5 cancer test
samples to a reference
cell-of-origin model

[8]

Nucleosome
depleted regions

Analysis of promoter
read depth using deep

WGS

cfDNA from healthy
controls
(n = 104)

Colon (n = 128), prostate
(n = 139), breast (n = 125), lung

(n = 31) cancers

Identified expressed cancer
driver genes from cfDNA in

regions with copy number gains
[63]

Nucleosome
phasing

Analysis of differential
phasing of upstream

and downstream
cfDNA fragments using

WGS

Pooled cfDNA
(n = 32) from healthy

controls

Hepatocellular carcinoma
(n = 90), colorectal (n = 11), and

lung (n = 9) cancers

Positive correlation of
nucleosome phasing between

cell-of-origin and patient cfDNA
[71]

Nucleosome
footprinting

Assessment of
transcription factor

accessibility score using
WGS

cfDNA from healthy
controls (n = 24)

Prostate (n = 8), breast (n = 2),
colon (n = 1) cancers

Identified cell lineage
reprogramming in prostate
cancer; identified increased
accessibility by tumor entity

specific TFs in breast and colon
cancer samples

[72]

Histone
modifications cfDNA ChIP-seq

cfDNA from healthy
controls
(n = 61)

Metastatic colorectal cancer
(n = 56)

Colorectal cancer classifier was
established based on histone

modification occupancy-inferred
expression; longitudinal

monitoring reflected the clinical
status of patients

[29]

Histone
modifications cfDNA ChIP-qPCR n/a Non-small cell lung cancer

(n = 14)

Correlation of H3K36me3
occupancy and gene expression
in lung cancer associated genes

[74]

WGS: whole genome sequencing.

Although still in its infancy, conceptually, cfChIP-seq might be used as a surrogate for
gene expression and hence be informative of expression signatures that can trace the tissue-
of-origin of cfDNA. The potential clinical utility of this strategy includes estimation of
tumor load, identification of cellular processes, and assessment of inter-tumor heterogeneity.
One advantage of cfChIP-seq over nucleosome positioning approaches is the requirement
of significantly fewer sequencing reads. Since ChIP parallels a targeted pulldown approach
that reduces coverage of a large part of the genome, informative data can be acquired at
lower sequencing costs.

In a proof of principle study, Vad-Nielsen et al. correlated the expression of lung
cancer-associated genes with H3K36me3 enrichment in plasma via cfChIP [74]. H3K36me3
pulldown reflected the repression of SAT2 and ALK, and the constitutive activation of
ACGT1 in cfDNA derived from NSCLC patients. The authors also showed that differential
expression of KRT6 paralogs in lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC), as observed in published immunohistochemical and gene expression
data, can be captured by H3K36me3 cfChIP. Despite these interesting data, the study
remained exploratory and limited by its small sample size. Moreover, its application for
cell-of-origin or tumor subtype identification requires specific markers with distinct and
differential expression in the tissue or tumor of interest.

4. Epigenomic Modifications of cfDNA

Many studies have characterized epigenomic DNA patterns in tissues of cancer pa-
tients and healthy individuals [75–78], which were also found to be detectable in cfDNA.
Their tissue specificity, which is largely retained in cfDNA [79,80] and the high number of
alterations in cancer, provide additional information that complements other liquid biopsy
approaches (Figure 1).

4.1. Methylation Profiling of cfDNA

Recently, several studies used cfDNA methylation to deconvolute the contribution of
various cell and tissue types to the cfDNA pool [27,64,65,81]. Sun et al. [65] applied whole
genome bisulfite sequencing (WGBS) of cfDNA from 29 HCC patients, four liver transplant
recipients, 15 pregnant women and 32 control subjects. Using reference methylomes from
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11 tissues and three blood cell types, they calculated that 70 to 90% of plasma DNA is de-
rived from white blood cells, in particular lymphocytes and neutrophils. The contribution
of tissue DNA to the cfDNA repertoire varied in accordance with each patient´s physiolog-
ical or pathological condition: liver transplant recipients and HCC patients demonstrated
elevated levels of liver-derived cfDNA, whereas the placental DNA contribution was
higher in pregnancy, when compared with the control group. These results demonstrated
that tissue-specific methylation can be captured from cfDNA and that the contribution
of different tissue types in such data can inform the presence of a tumor and its primary
growth site. Moss et al. [64] took advantage of array-based tissue methylation data to
generate a reference atlas comprising 25 cell and tissue types, including nine hematopoi-
etic and endothelial cell types. Lymphocytes (12.1%), granulocytes (32.0%), monocytes
(10.5%) and erythroid progenitors (29.7%) were identified to be major hematopoietic cells
contributing to the cfDNA pool. DNA contributions from vascular endothelial cells (8.6%)
and hepatocytes (1.2%) were also observed. The application of their deconvolution al-
gorithm to cfDNA from cancer patients (i.e., breast, lung, and colon; n = 11) resulted in
correct classification of the majority of cases and identified associations with the response
to therapy in prostate cancer patients. In four patients with cancers of unknown primary
(CUPs), the deconvolution showed strong tissue-specificity, indicating the tumor´s primary
site. Despite these encouraging results, the practicability of this approach was limited by
the requirement for a large quantity of cfDNA input material (~100 ng) for array-based
methylation analysis.

Apart from the tissue information presented by the cfDNA methylome, the high
prevalence of 5mC alterations in cancer can be exploited for sensitive cancer detection and
classification, even in early stages [82–88] (Table 3). Two recent studies [85,86], used an
affinity-based methodology, termed “cell-free DNA methylation immunoprecipitation”
(cfMeDIP-seq), to enrich and sequence methylated regions from plasma DNA. cfMeDIP-seq
interrogates methylation events on a genome-wide scale and was previously demonstrated
to sensitively detect and classify various cancer entities [89]. The method only requires
minute amounts (1 to 10 ng) of cfDNA input material and is therefore potentially suitable
in a clinical setting. Nassiri and Nuzzo et al. [85,86] used cfMeDIP-seq data to train
ML algorithms for the detection and classification of intracranial tumors as well as RCC
from plasma and urinary cfDNA. Due to their low ctDNA shedding capacity, both tumor
types are difficult to detect using liquid biopsies [9,90]. cfMeDIP-seq accurately detected
intracranial tumors (n = 60) in a cohort of 447 plasma samples (AUC = 0.99), comprising
eight tumor types and individuals without cancer [85]. Furthermore, common primary
intracranial tumors (i.e., hemangiopericytoma, meningioma, low-grade glial-neuronal
tumors, and gliomas; n = 161), which are otherwise challenging to discern by magnetic
resonance imaging, could be distinguished based on cfMeDIP-seq data. An ML classifier
trained on cfDNA-based cfMeDIP-seq data from 97 individuals (n = 69 RCC patients,
n = 15 urothelial bladder cancer patients (UBC), n = 133 controls) separated RCC samples
from the other two subgroups (RCC vs. controls: AUC = 0.99; RCC vs. UBC: AUC = 0.98).
Urinary cfDNA-based classification (n = 30 RCC patients, n = 15 controls) could also
distinguish RCC from control samples (AUC = 0.86) [86], albeit with lower accuracy. Of
note, both plasma- and urine-based analyses included stage I and II RCC patients, further
highlighting the practicality of cfMeDIP-seq in challenging clinical scenarios. Moreover,
successful methylation analysis of urinary cfDNA demonstrates the utility of urine for
genomic [34,91–93], as well as epigenomic analysis. DNA methylation marks have been
detected in urine sediment in various cancer types such as bladder cancer [94], endometrial
cancer [95], and prostate cancer [96]. Additionally, urinary cfDNA equally offers the
opportunity for DNA methylation analysis in colorectal cancer [97], bladder cancer [98],
and RCC [34].

Combining genomic and epigenomic analysis in assessing methylation status, CNA
and cfDNA fragment analysis via shallow-depth bisulfite sequencing of urinary cfDNA,
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Cheng et al. were able to detect bladder cancer with overall sensitivity of 93.5% and
specificity of 95.8% [98].

Another way to leverage the high sensitivity of methylation analyses from cfDNA is
the utilization of targeted bisulfite sequencing panels. Here, the large number of publicly
available reference methylomes paired with the understanding of the different cell types
contributing to the plasma DNA pool is of substantial value. Several studies used tissue-
and blood cell-derived data to generate cancer-specific methylation sequencing panels.
For instance, Moss et al. [84] designed a breast unique biomarker panel interrogating
the methylation status of three genomic loci. The average signal of these markers could
distinguish breast cancer patients (metastatic: n = 17; localized: n = 30) from healthy donors
(n = 64) with high sensitivity and specificity (80% and 97%, respectively). In longitudinal
plasma samples, the breast-specific methylation signature was also indicative of therapy
response and the presence of residual disease. Similarly, a CRC-specific methylation
panel, covering nine marker regions, demonstrated high accuracy for the detection of CRC
(AUC = 0.96) [99]. Chen et al. [88] designed a larger sequencing panel (10,613 CpGs in
477 genomic regions) to allow simultaneous detection of multiple cancer entities. Training
a logistic regression classifier on the panel-based methylation data, they predicted the
presence of disease across five tumor types (i.e., lung, colorectal, liver, stomach, and
esophagus) with a sensitivity of 88%. Furthermore, they demonstrated that their tumor
detection strategy might be eligible in a cancer screening scenario. In 143 asymptomatic
individuals who were later diagnosed with cancer, the assay detected the disease up to
four years prior to the clinical diagnosis (sensitivity: 95%).

The Circulating Cell-free Genome Atlas (CCGA) study is a large scale (n = 8584 cancer
patients; n = 6670 controls) ongoing clinical trial that aims to establish cfDNA sequencing
for the detection and localization of multiple cancer entities. In the first part of the CCGA
study, the interrogation of genome-wide methylation patterns (WGBS) outperformed
the assessment of CNVs and SNVs by whole genome or targeted sequencing [100,101].
The second CCGA sub-study used a bisulfite sequencing panel (1.1 million CpGs in
103,456 regions) to detect and classify more than 50 primary tumor types in 2482 untreated
cancer patients (all stages) and 4207 individuals without cancer. At a specificity of 99.3%,
the test yielded a sensitivity of 43.9% to detect cancers; the tissue-of-origin was correctly
classified in 93% of cancer cases [83]. The third part of the CCGA study is a large clinical
validation of this assay [102]. The multi-cancer early detection (MCED) validation study
included 4077 participants in an independent cohort. The resulting specificity of the test
for cancer signal detection was 99.5%, and overall sensitivity was 51.5%. Cancer signals
were detected across >50 cancer types, and as expected, the test sensitivity increased with
disease. Building on the success of the MCED, large clinical programs are ongoing to
evaluate the performance in a screening population, assess clinical implementation and
safety [103–105].

4.2. 5-hydroxymethylation Profiling of cfDNA

5mC can be reverted to its unmodified state by oxidation steps catalyzed by the ten-
eleven translocation (TET) enzymes [106–109]. Despite its low abundance (5mC: 3–4%
vs. 5hmC: 0.1–1% of all cytosines [110]), 5hmC is more than an intermediate state during
DNA demethylation. 5hmC abundances can remain stable over several cell divisions and
are associated with the activation of nearby genes [111,112]. 5hmC residues accumulate
at borders of CpG islands and prevent 5mC from spreading inside a hypomethylated
region [113–117]. Unlike 5mC, absolute 5hmC abundances vary considerably between
different tissue types [118], which might allow a more precise inference of the tissue-of-
origin using 5hmC as a biomarker.

Altered hydroxymethylomes have been identified in all human cancer entities.
Genome-wide reduction of 5hmC levels is a feature shared by most cancers [119,120]
and can be attributed to the impaired activity of TET enzymes, either through inactivating
TET mutations or mechanisms inhibiting the catalytic activity of TET (e.g., unavailability
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of co-factors or mutations in IDH1/2 genes) [120–122]. In recent years, the analysis of
5hmC from cfDNA has gained traction (Table 3). Song et al. [123] developed a highly sensi-
tive methodology capable of selective enrichment for hydroxymethylated DNA groups,
termed “hydroxymethylation selective chemical labeling” (hMeSEAL). hMeSEAL has been
widely applied for cfDNA-based 5hmC profiling in various tumor entities [124–132]. In a
proof-of-concept study, hMeSEAL was used to profile 5hmC changes in 49 plasma samples
from cancer patients. In lung cancer, global 5hmC levels decreased from low-stage to
metastatic tumors. HCC patients could be successfully differentiated from healthy donors
and HBV-positive subjects based on 5hmC levels within gene bodies. Loci identified to
be hydroxymethylated in HCC contained several genes with increased expression in liver
tissue. This observation was in line with the activating effect of 5hmC on transcription
and supports the concept of 5hmC in cfDNA as a surrogate for non-invasive inference of
gene expression. Furthermore, longitudinal monitoring of 5hmC patterns in HCC patients,
following surgical tumor resection, indicated remission or progression of the disease. Fi-
nally, ML algorithms detected and differentiated lung, liver, and pancreas cancers based on
their 5hmC profiles with prediction accuracies of up to 90% [130]. These promising results
were corroborated by several successive studies applying hMeSEAL on multiple cancer
types (i.e., B-cell lymphoma, lung, liver, colorectal, gastric, esophageal, breast, prostate, and
thyroid cancer). The genome-wide 5hmC profiles were used to derive biomarker panels
for cancer classification, stage prediction or early diagnosis [124,125,129–132].

Table 3. Epigenomic and hydroxymethylation alterations of cfDNA in cancer.

cfDNA
Modification Method Analyte Control Cohort Cancer Entity Tested Result Reference

5mC Illumina 450k
methylation array Plasma

Healthy control
cfDNA (n = 105)

combined to 8 pools

Colon (n = 4), lung (n = 4),
breast

(n = 3) cancer, and CUP (n = 4)

Tissue-of-origin deconvolution
from cfDNA agrees with

clinical findings
[64]

5mC Affinity-based
profiling (cfMeDIP) Plasma Healthy controls

(n = 62)
Multiple cancer entities

(n = 189)

Robust detection and
classification across various

cancer types (AUC = 0.91–0.98
depending on entity and stage)

[87]

5mC Affinity-based
profiling (cfMeDIP) Plasma

Various extracranial
tumors and healthy

controls (n = 387)

Multiple intracranial tumor
types (n = 220)

Accurate detection (AUC = 0.99)
and discrimination of common

intracranial tumor types
(AUC = 0.71–0.95 depending on

the type of brain tumor)

[85]

5mC Affinity-based
profiling (cfMeDIP)

Plasma;
urine

Healthy controls
(n = 133 plasma
samples; n = 15
urine samples)

RCC (n = 69 plasma samples;
n = 30 urine samples), UBC

(n = 15)

Detection of RCC patients
(plasma AUC = 0.99; urine
AUC = 0.86) differentiation

between RCC and UBC (plasma
AUC = 0.98)

[86]

5mC Targeted bisulfite
sequencing Plasma Healthy controls

(n = 64)

Localized (n = 30) and
metastatic

(n = 17) breast cancer patients

Cancer detection and therapy
surveillance based on a
breast-unique 3-marker

methylation panel

[84]

5mC
Targeted bisulfite

sequencing
(PanSeer)

Plasma
Asymptotic
individuals

(n = 414)

Cancer patients
(n = 223) and asymptotic

individuals that were later
diagnosed with cancer

(n = 191)

Cancer detection (up to four
years prior to diagnosis) across

five cancer entities using a
methylation panel covering

447 genomic loci

[88]

5mC Targeted bisulfite
sequencing Plasma Healthy controls

(n = 4207) >50 cancer entities (n = 2482)

Cancer detection in >50 entities
with a specificity of 99.3% and

accurate tissue-of-origin
prediction in 93% of cases

[83]

5hmC
Affinity-based

profiling
(hMeSEAL)

Plasma
Healthy controls

(n = 8), HBV
(n = 7)

Lung (n = 15), pancreatic (n = 7),
gastric (n = 5), breast cancer
(n = 4), HCC (n = 10), CRC

(n = 4), and glioblastoma (n = 4)

Detection of disease/stage
specific 5hmC changes capable

of differentiating lung, liver,
and pancreatic cancers

[130]

5hmC
Affinity-based

profiling
(hMeSEAL)

Plasma Healthy controls
(n = 243) Pancreatic cancer (n = 64)

Classification of pancreatic
cancer patients based on 5hmC

features (AUC = 0.88)
[129]

5hmC
Affinity-based

profiling
(hMeSEAL)

Plasma Healthy controls
(n = 177) Esophageal cancer (n = 150)

5hmC signature-based
detection of esophageal cancer

(AUC = 0.96)
[131]

AUC, area under the curve; CUP, cancer of unknown primary; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; UBC, urothelial
bladder cancer.
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5. Combinatorial Biomarkers for cfDNA Analysis

Epigenomic changes are readily observed at early stages of tumor development [30,133],
opening up their potential as diagnostic tools for early cancer detection, risk stratification
and MRD. Nevertheless, many liquid biopsy-based assays suffer from reduced sensitivity
due to low levels of ctDNA. One promising way to mitigate this obstacle and to increase the
detection success is to screen for multiple targets and combine multi-analyte analysis.

Cai and colleagues [126] combined a 5hmC signature (based on 64 loci) with exist-
ing diagnostic protein markers (AFP and DCP) to differentiate 135 HCC patients from
165 healthy donors and 62 liver cirrhosis patients. Their diagnostic score (“HCC score”),
based on the two marker types, identified HCC patients with an AUC = 0.93 and was
correlated with the TNM classification of the tumors. Moreover, the HCC score was indica-
tive of recurrence following surgical tumor resection, and reflected the dynamics of tumor
burden in patients with long-term follow-up plasma samples. Another study combined
hMeSEAL-based 5hmC with cfMeDIP-seq-based 5hmC profiling. The combination of these
biomarkers improved the diagnostic power for the detection of pancreatic cancer compared
with using 5mC or 5hmC marker panels alone [127].

Peneder et al. [134] performed a multimodal analysis of cfDNA to overcome the ob-
stacle of low mutational burden in paediatric patients with predominantly Ewing Sarcoma
(EwS). Applying deep WGS on 263 cfDNA samples from patients with EwS (n = 95), other
pediatric sarcomas (n = 31), and healthy controls (n = 22), they combined copy number
alterations, the presence of the EWS-ETS fusion oncogene and cfDNA fragment size distri-
butions. The integrated genetic analysis of CNVs and the detection of the EWS-ETS fusion
gene served for the quantification of the tumor content in cfDNA. Similar to previously
mentioned reports, they found that tumor patients harbored a significantly higher propor-
tion of shorter cfDNA fragments <150 bp compared with healthy controls. Combining
fragment and genetic analysis, this higher proportion of smaller cfDNA fragments was
equally detectable in patient samples in which evidence for ctDNA was missing or only
the EWS-ETS fusion gene but no CNVs were detected. Fragment size selection further
improved CNV analysis and supported the evaluation of CNV dynamics over the disease
courses in a subset of the patients. cfDNA samples from EwS patients showed particu-
lar position-dependent short to long fragment (S/L) ratios in genome-wide 100-kb bins.
By aligning bins with a higher proportion of shorter fragments to regions with known
epigenetic and transcription-regulation alterations, an enrichment of regions with EwS-
associated open chromatin was found. Finally, based on a ML algorithm and the presented
fragmentation analysis methods, cfDNA from EwS patients could be distinguished from
healthy controls with high sensitivity and specificity. This study highlighted opportunities
for data integration by applying several assays on the same starting material (i.e., cfDNA).

6. Challenges and Future Directions

Liquid biopsies are becoming increasingly important in the serial profiling and indi-
vidualized management of malignant diseases. At present, clinically-approved ctDNA
assays act as companion diagnostics that facilitate therapy guidance based on genetic
alterations including SNVs, amplifications, insertions/deletions, and translocations [135].
Despite their clinical relevance, the information that can be gained from cfDNA could be
significantly enhanced by including epigenomic analyses, as outlined here. One step in this
direction is represented by low throughput ctDNA methylation assays, which survey the
epigenomic status of validated biomarkers in bladder, breast, colorectal, cervical, lung, and
prostate cancers [136] with the intention of disease detection and therapy response predic-
tion. Another advantage of epigenomic ctDNA analyses, particularly of those that generate
5mC and 5hmC data, is the declining sequencing cost. At the appropriate sequencing
depth, relevant methylation or hydroxymethylation biomarkers can be identified in a single
reaction. The overall cost of these assays can be further reduced through the design of
hybridization probes to capture regions of interest. Several cfDNA technologies presented
here involve enrichment of genomic targets through antibody- (e.g., MeDIP-seq, ChIP-seq)
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or chemical affinity-based (e.g., hMeSeal-seq) approaches. As a consequence of target
enrichment, moderate sequencing depths of precipitated DNA are sufficient. In contrast,
mutation analysis requires high on-target coverage for ctDNA detection and therefore
high cost. Furthermore, the epigenomic approaches reviewed here do not necessitate high
amounts of input DNA, allowing their application even when cfDNA concentrations are
low (e.g., in patients with localized disease).

There are still a number of challenges that must be met prior to a clinical translation
of epigenomic ctDNA analyses. While many proof-of-principle studies have shown that
fragmentomics, nucleosome positioning, and ChIP-seq of cfDNA can identify the cell(s)-
of-origin and possibly differentiate disease stages, there is still a lack of validation of
these methods in larger multicenter clinical studies. Another challenge lies in the high
quantities of non-tumor cfDNA in cancer patients, which is mostly derived from leukocytes.
Extensive bioinformatic expertise is required to discern epigenomic cancer markers from
the non-tumor background. Considerable opportunities beyond the epigenomic analysis
of cfDNA reside in the inclusion of other molecular analytes from blood or plasma, such
as circulating tumor cells (CTCs), mRNA, miRNA, and extracellular vesicles. CTCs in
particular have been utilized to demonstrate intrapatient heterogeneity which could explain
therapy resistance [137], and to explore the biological mechanisms underlying cancer cell
dissemination [138]. CTC quantification has also been shown to be informative of therapy
response in breast [139], prostate [140], and bladder [141] cancers. The analysis of other
body fluids (e.g., urine, saliva, CSF) could further improve patient management.

7. Conclusions

Liquid biopsies in cancer have advanced from DNA mutations to the epigenome.
In contrast to somatic genetic mutations, epigenetic features are more dynamic, with
the potential of closely reflecting recent physiological alterations. Although challenges
remain, the low amounts of DNA required, the large number of possible markers, and the
comparatively low per-sample cost are substantial advantages of epigenomic analyses. The
integration of different non-invasive markers opens new prospects and augments current
established methods for cancer patient stratification, treatment decision and response
prediction, timely identification of minimal residual disease and tumor recurrence, as well
as early detection.
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