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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by neurological
dysfunction, including memory impairment, attributed to the accumulation of amyloid β (Aβ)
in the brain. Although several studies reported possible mechanisms involved in Aβ pathology,
much remains unknown. Previous findings suggested that a protein regulated in development and
DNA damage response 1 (REDD1), a stress-coping regulator, is an Aβ-responsive gene involved in
Aβ cytotoxicity. However, we still do not know how Aβ increases the level of REDD1 and whether
REDD1 mediates Aβ-induced synaptic dysfunction. To elucidate this, we examined the effect of
Aβ on REDD1-expression using acute hippocampal slices from mice, and the effect of REDD1 short
hairpin RNA (shRNA) on Aβ-induced synaptic dysfunction. Lastly, we observed the effect of REDD1
shRNA on memory deficit in an AD-like mouse model. Through the experiments, we found that
Aβ-incubated acute hippocampal slices showed increased REDD1 levels. Moreover, Aβ injection into
the lateral ventricle increased REDD1 levels in the hippocampus. Anisomycin, but not actinomycin
D, blocked Aβ-induced increase in REDD1 levels in the acute hippocampal slices, suggesting that
Aβ may increase REDD1 translation rather than transcription. Aβ activated Fyn/ERK/S6 cascade,
and inhibitors for Fyn/ERK/S6 or mGluR5 blocked Aβ-induced REDD1 upregulation. REDD1 inducer,
a transcriptional activator, and Aβ blocked synaptic plasticity in the acute hippocampal slices.
REDD1 inducer inhibited mTOR/Akt signaling. REDD1 shRNA blocked Aβ-induced synaptic deficits.
REDD1 shRNA also blocked Aβ-induced memory deficits in passive-avoidance and object-recognition
tests. Collectively, these results demonstrate that REDD1 participates in Aβ pathology and could be a
target for AD therapy.
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1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease associated with memory
and cognitive impairment [1,2]. Although AD is recognized as a global health problem, and various
pathological mechanisms have been revealed, appropriate medicine is yet to be developed due to the
complex pathogenesis [3–5]. Therefore, new targets for preventing AD are urgently needed.

A stress-inducible protein is “regulated in development and DNA damage response 1” (REDD1),
also known as RTP801 or Dig2, which is upregulated in response to a variety of cellular stresses
such as nutrient and energy deprivation [6,7], hypoxia [8], DNA damage [9], and stress hormone
glucocorticoids [10,11]. REDD1, a negative regulator of the mammalian target of rapamycin (mTOR),
is involved in transcription and modulates Akt activity by suppressing mTOR via tuberous sclerosis
complex 1 (TSC1)/tuberous sclerosis complex 2 (TSC2), and inactivation of Ra homolog enriched
in brain (Rheb) [8]. Because mTOR is involved in diverse phenomena, such as autophagy [10],
cell proliferation [6], and cell motility [12], its regulation by REDD1 has the potential to be a
pharmacological target for various neurological diseases. Metformin, a widely prescribed Type
2 diabetes drug, was found to induce mTOR inhibition and cell-cycle arrest through REDD1 [13].

REDD1 is closely associated with neurological diseases because mTOR is a crucial protein that
regulates synapse formation and plasticity [14,15]. Hence, an increase in REDD1 expression was
observed in patients with Parkinson’s disease [16], and dopaminergic neurotoxin 6-OHDA upregulated
REDD1 in vitro [17] and in vivo [18]. Moreover, DDIT4, a REDD1 gene, is a gene responding to amyloid
β (Aβ), a pathological hallmark of Alzheimer’s disease [19]. Additionally, it acts as a critical mediator
of stress-induced synaptic loss and depressive behavior [20]. Previous findings indicated that REDD1
is upregulated by Aβ, and the antisense of DDIT4 inhibits Aβ cytotoxicity [19]. However, we still do
not know how Aβ increases REDD1 levels and how REDD1 is involved in Aβ toxicity. To elucidate
this, we examined the mechanism of Aβ-induced REDD1 upregulation and the role of REDD1 in
Aβ-induced synaptic deficits using acute hippocampal slices from mice. Lastly, we examined the effect
of REDD1 knockdown in memory deficits in AD-like mice models.

2. Results

2.1. Aβ Increased REDD1 Levels in the Hippocampus

To examine whether Aβ regulates REDD1 expression, we tested the REDD1 levels in Aβ-treated
hippocampal slices from mice. The hippocampal slices, treated with Aβ (1 µM) for 4 h,
showed significantly increased REDD1 levels (t6 = 7.802, p < 0.05, n = 4/group; Figure 1A). Moreover,
intracerebroventricular injection of Aβ (10 µM, 3 µL) into the hippocampal CA1 region increased
REDD1 levels 24 h postinjection (t6 = 3.871, p < 0.05, n = 4/group; Figure 1B). These results suggest that
Aβ may upregulate REDD1.
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Figure 1. Amyloid β (Aβ) increased regulated in development and DNA damage response 1 
(REDD1) protein levels in the hippocampus. (A) Aβ-induced REDD1 upregulation. Hippocampal 
slices were incubated with Aβ for 4 h. (B) Aβ-induced REDD1 upregulation in the hippocampus. Aβ 
was injected into the fissure layer of the hippocampal CA1 region. Bar = 50 μm. Data represented as 
mean ± SD with raw data. * p < 0.05 vs. vehicle-treated group. 

2.2. Fyn/ERK/S6 Signaling Is Involved in Aβ-Induced REDD1 Translation 

To test whether Aβ affects REDD1 transcription or translation, we tested anisomycin and 
actinomycin D in the acute hippocampal slices. In this experiment, anisomycin, but not actinomycin 
D, blocked Aβ-induced upregulation of REDD1 (Figure 2A,B), suggesting that Aβ regulated the 
translation of REDD1. Previous studies suggested that Aβ affected Fyn/ERK/S6 signaling, which is 
involved in protein translation [21]. Therefore, we tested whether this signaling was also involved in 
Aβ-induced REDD1 overexpression in the hippocampal tissue. Aβ (1 μM for 4 h) significantly 
increased Fyn/ERK/S6 signaling in the hippocampus (Figure 2C,D). Next, to test whether this 
signaling is required for Aβ-induced upregulation of REDD1, we tested inhibitors of these molecules 
in the hippocampal tissue. PP1, a Fyn inhibitor; U0126, an ERK inhibitor; SL0101-1, a S6 inhibitor; 
and MPEP, an mGluR5 inhibitor blocked Aβ-induced upregulation of REDD1 in the hippocampal 
tissue (Figure 2E,F). These results suggest that Fyn/ERK/S6 signaling is involved in Aβ-induced 
upregulation of REDD1. 

Figure 1. Amyloid β (Aβ) increased regulated in development and DNA damage response 1 (REDD1)
protein levels in the hippocampus. (A) Aβ-induced REDD1 upregulation. Hippocampal slices were
incubated with Aβ for 4 h. (B) Aβ-induced REDD1 upregulation in the hippocampus. Aβ was injected
into the fissure layer of the hippocampal CA1 region. Bar = 50 µm. Data represented as mean ± SD
with raw data. * p < 0.05 vs. vehicle-treated group.

2.2. Fyn/ERK/S6 Signaling Is Involved in Aβ-Induced REDD1 Translation

To test whether Aβ affects REDD1 transcription or translation, we tested anisomycin and
actinomycin D in the acute hippocampal slices. In this experiment, anisomycin, but not actinomycin
D, blocked Aβ-induced upregulation of REDD1 (Figure 2A,B), suggesting that Aβ regulated the
translation of REDD1. Previous studies suggested that Aβ affected Fyn/ERK/S6 signaling, which is
involved in protein translation [21]. Therefore, we tested whether this signaling was also involved
in Aβ-induced REDD1 overexpression in the hippocampal tissue. Aβ (1 µM for 4 h) significantly
increased Fyn/ERK/S6 signaling in the hippocampus (Figure 2C,D). Next, to test whether this signaling
is required for Aβ-induced upregulation of REDD1, we tested inhibitors of these molecules in
the hippocampal tissue. PP1, a Fyn inhibitor; U0126, an ERK inhibitor; SL0101-1, a S6 inhibitor;
and MPEP, an mGluR5 inhibitor blocked Aβ-induced upregulation of REDD1 in the hippocampal
tissue (Figure 2E,F). These results suggest that Fyn/ERK/S6 signaling is involved in Aβ-induced
upregulation of REDD1.

2.3. REDD1 Is Required for Aβ-Induced Synaptic Dysfunction

To determine if REDD1 is a mediator of Aβ-induced synaptic dysfunction, we tested the effects
of a REDD1 inducer, a transcriptional inducer [22,23], and REDD1 shRNA in synaptic plasticity.
REDD1 inducer (50 µM for 4 h) blocked high-frequency stimulation (HFS)-induced long-term
potentiation (LTP) induction (t8 = 3.737, p < 0.05, n = 5/group; Figure 3A). Moreover, REDD1 inducer
decreased mTOR/Akt signaling in the hippocampal slices (Figure 3B). These results suggest that REDD1
activation negatively regulates synaptic plasticity and inhibits mTOR/Akt signaling.

Next, to test whether REDD1 is required for Aβ-induced synaptic dysfunction, we tested the effect
of REDD1 shRNA on Aβ-induced synaptic dysfunction. Aβ (1 µM for 4 h), which was aggregated for
24 h, blocked hippocampal LTP, which is induced by HFS (t8 = 3.901, p < 0.05, n = 5/group; Figure 3C).
Seven days after the injections of REDD1 shRNA, hippocampal slices from mice were prepared for
electrophysiology (Figure 3D). Aβ treatment significantly suppressed LTP levels in the scramble-treated
hippocampal slices. In the short hairpin REDD1 (shREDD1)-injected hippocampal slices, Aβ failed to
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Figure 2. Fyn/ERK/S6 signaling is involved in Aβ-induced REDD1 translation. (A,B) Aβ increased 
REDD1 with translational modulation. Hippocampal slices were incubated with Aβ for 4 h with or 
without anisomycin (40 μM) or actinomycin D (50 μM). (C,D) Aβ activated Fyn/ERK/S6 signaling. 
Hippocampal slices were incubated with Aβ for 4 h. (E,F) Fyn/ERK/S6 signaling is required for 
Aβ-increased REDD1. Hippocampal slices were incubated with Aβ for 4 h with or without PP1 (10 
μM), U0126 (50 μM), SL0101-1 (50 μM), or MPEP (10 μM). Data represented as mean ± SD with raw 
data. * p < 0.05 vs. vehicle-treated group. # p < 0.05 vs. Aβ-treated group. 
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potentiation (LTP) induction (t8 = 3.737, p < 0.05, n = 5/group; Figure 3A). Moreover, REDD1 inducer 

Figure 2. Fyn/ERK/S6 signaling is involved in Aβ-induced REDD1 translation. (A,B) Aβ increased
REDD1 with translational modulation. Hippocampal slices were incubated with Aβ for 4 h with or
without anisomycin (40 µM) or actinomycin D (50 µM). (C,D) Aβ activated Fyn/ERK/S6 signaling.
Hippocampal slices were incubated with Aβ for 4 h. (E,F) Fyn/ERK/S6 signaling is required for
Aβ-increased REDD1. Hippocampal slices were incubated with Aβ for 4 h with or without PP1 (10 µM),
U0126 (50 µM), SL0101-1 (50 µM), or MPEP (10 µM). Data represented as mean ± SD with raw data.
* p < 0.05 vs. vehicle-treated group. # p < 0.05 vs. Aβ-treated group.
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knockdown blocked Aβ-induced LTP impairment. REDD1 shRNA (m) lentiviral particle or scramble 
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Figure 3. REDD1 is required for Aβ-induced synaptic dysfunction. (A) REDD1 inducer suppressed
hippocampal long-term potentiation (LTP). Hippocampal slices incubated with REDD1 inducer (50 µM)
for 4 h. Data represented as mean ± SD. (B) REDD1 inducer suppressed mTOR signaling in the
hippocampus. Data represented as mean ± SD with raw data. (C) Aβ suppressed hippocampal LTP.
Hippocampal slices incubated with Aβ (1 µM) for 4 h. Data represented as mean ± SD. (D) REDD1
knockdown blocked Aβ-induced LTP impairment. REDD1 shRNA (m) lentiviral particle or scramble
lentiviral particle was bilaterally injected into hippocampal fissure layer. Hippocampal slices prepared
and incubated with Aβ for 4 h, 7 d after lentiviral injection. Data represented as mean ± SD.

2.4. REDD1 Knockdown Rescued Aβ-Induced Memory Impairments

To determine whether REDD1 is involved in Aβ-induced memory impairments, we used an
intracerebroventricular injection of the Aβ model [24]. Aβ was injected into the lateral ventricle 7 days
after shREDD1 injection. Behavioral tests were conducted 7 days after Aβ injection (Figure 4A). In the
passive-avoidance test, shREDD1 or Aβ injection did not affect step-through latency in the acquisition
trial (F2,19 = 0.7345, p > 0.05, n = 7–8/group; Figure 4B). In the test trial of the passive-avoidance
test, Aβ reduced step-through latency in scramble-injected mice, but not in shREDD1-injected
mice (F2,19 = 7.141, p < 0.05, n = 7–8/group; Figure 4C). The object-recognition test revealed no
significant difference in total exploration time (F2,19 = 0.794, p > 0.05, n = 7–8/group, Figure 4D).
Discrimination index showed that Aβ impaired recognition memory, and shREDD1 blocked this
impairment (F3,26 = 17.95, p < 0.05, n = 7–8/group; Figure 4E). These results suggest that REDD1
knockdown abolished Aβ-induced memory loss.
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Figure 4. REDD1 reduction rescued Aβ-induced memory impairment. (A) REDD1 shRNA (m) lentiviral
particle or control lentiviral particle was bilaterally injected into hippocampal fissure layer. Aβ was
injected into the lateral ventricle 7 d later than the shRNA injection was. (B,C) REDD1 knockdown
blocked Aβ-induced passive-avoidance memory deficit. Data represented as mean ± SD. ** p < 0.01
vs. sham group; # p < 0.05 vs. scramble + Aβ group. (D,E) REDD1 knockdown blocked Aβ-induced
object-recognition memory deficit. Data represented as mean ± SD. # p < 0.05. ** p < 0.01.

3. Discussion

In the present study, REDD1, an mTORC1 repressor, was found to be upregulated by Aβ,
which requires Fyn/ERK/S6 cascade. REDD1 is required for Aβ-induced synaptic deficit and memory
loss. REDD1 blocked memory loss in an AD-like mouse model, suggesting that REDD1 could be a
potential pharmacological target for memory loss in AD patients.
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REDD1 is an upstream repressor of mTORC1 signaling and is upregulated in response to various
stressors [25–27]. REDD1 expression is induced by protein expression as part of the endoplasmic
reticulum stress response, including activating transcription factor 4 (ATF4) [28]. Upregulation of
REDD1 was found in an AD brain [29,30]. However, the mechanism of upregulation of REDD1 and
its role in AD are yet to be elucidated. Aβ increased the mRNA levels of REDD1, and the antisense
REDD1 gene blocked Aβ cytotoxicity [19]. In the present study, we found that REDD1 is required for
Aβ synaptotoxicity and AD-like memory impairment.

REDD1 is also upregulated in other brain diseases, including major depressive disorder [20,27].
REDD1 is required for stress-induced synaptic loss and depressive behavior. This process requires
mTOR suppression-induced repression of translation of synaptic proteins, which results in basal
synaptic deficit. In the present study, REDD1 activator suppressed hippocampal LTP in the Shaffer
collateral pathway, suggesting that REDD1 suppresses either basal synaptic functions or synaptic
plasticity. REDD1 suppresses mTORC1 [31,32]. Various synaptic stimulations, including glutamate
and neurotrophins, activate mTORC1, thereby stimulating protein translation-induced changes
in the synapse [33–35]. mTORC1 induces translocation of the AMPA receptor to the synaptic
region via the S6K1 pathway [36,37]. PERK, mTORC1, and eEF2 interact during LTP induction [38].
These studies demonstrated that REDD1 upregulation could induce synaptic dysfunction through
mTORC1 suppression, and this may be a mechanism of synaptic deficit in various stressful conditions
of the brain, including AD. In the present study, we found that Aβ upregulated REDD1. Suppression of
REDD1 expression with shRNA blocked Aβ-induced synaptic plasticity impairment, suggesting that
REDD1 is a mediator of Aβ synaptotoxicity.

Controversial data were obtained regarding the role of mTOR in AD. In AD patients, mTORC1 was
upregulated in the brain [39]. In Tg2576 mice, mTOR knockdown reduced amyloid deposits
and ameliorated memory impairment [40]. Rapamycin, an mTOR inhibitor, decreased amyloid
deposits and tau tangles, and reduced cognitive deficits in 3xTg and PDAPP mice [41,42]. However,
several studies reported the downregulation of mTOR signaling in the Tg2576 model [43,44]. This could
be due to differences in different mTOR complexes, including mTOR complex 1 (mTORC1) and
complex 2 (mTORC2). The mTORC1 complex plays a critical role in synaptic plasticity [45–47].
However, the precise role of mTORC2 is yet to be elucidated. Several studies revealed that mTORC2
may be involved in myelination of oligodendrocyte [48] and glutamate synaptic transmission [49].
Prolonged, but not acute, treatment with rapamycin was reported to lead to interference with
mTORC2 [50]. These data suggest that mTORC1 and mTORC2 might be differently modulated by
rapamycin and Aβ.

Collectively, the present study demonstrates that REDD1 is required for Aβ-induced synaptic
dysfunction and memory impairment. However, REDD1 is not involved in the process of Aβ generation
and metabolism.

4. Materials and Methods

4.1. Animals

CD-1 mice weighing 25–30 g (male, 6 weeks old) were purchased from Samtako (Osan, Korea).
The mice were habituated to the living environment for 1 week before each experiment.
Experiments were started with 7 week old mice. Mice had freely available food and water, and were
bred in a space with a 12/12 h dark/light cycle. Animals were raised according to National Institutes
of Health (NIH) guidelines for the care and use of laboratory animals (NIH publications no. 8023,
revised 1978), and all experiments were approved by the Institutional Animal Care and Use Committee
at Dong-A University (DIACUC-approve-20-5, 20 May 2020).
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4.2. Materials

Rabbit anti-REDD1, rabbit anti-GAPDH, rabbit antiphosphorylated extracellular signal-regulated
kinase (pERK), rabbit anti-ERK, mouse anti-mTOR, and rabbit anti-Akt antibodies were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Rabbit antiphosphorylated Src family
kinase (pSFK), rabbit anti-Fyn, rabbit anti-pS6, and rabbit anti-S6 antibodies were purchased
from Cell Signaling Technology (Beverly, MA, USA). Aβ1–42 was purchased from AnaSpec
(San Jose, CA, USA). REDD1 shRNA (m) lentiviral particles were purchased from Santa
Cruz Biotechnology (sc-45807-V, Santa Cruz, CA, USA). Anisomycin, actinomycin D, PP1,
U0126, SL0101-1, and MPEP were purchased from Tocris Bioscience (Ellisville, MO, USA).
6-(1,3-Dioxo-6-(piperidin-1-yl)-1H-benzo[de]isoquinolin-2(3H)-yl)hexanoic acid (REDD1 inducer)
was purchased from Sigma-Aldrich (St. Louis, MO, USA) [23]. All other materials were obtained from
normal commercial sources and were of the highest grade available.

4.3. Aβ1–42 Preperation and Injection

We added 1.0% NH4OH directly to the Aβ1–42 (35–40 µL to 0.5 mg peptide or 70–80 µL to
1 mg peptide). This solution was immediately diluted with 1X phosphate-buffered saline (PBS) to a
concentration of 1 mg/mL. The solution was gently vortexed and sonicated at room temperature until
fully miscible. Aβ1–42 (10 µM) was incubated at 37 ◦C for 24 h to obtain various soluble oligomeric
species, and 5 µL of Aβ or vehicle (PBS) was then acutely injected into the left lateral ventricle by hand
under isoflurane anesthesia (induction 3% and maintenance 2%) [51]. Experiments started 7 days after
the injection.

4.4. REDD1 shRNA Injection

REDD1 shRNA (m) lentiviral particles were bilaterally injected into the hippocampal fissure
layer. Mice were placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA) under
isoflurane anesthesia (induction 3% and maintenance 2%). Target injection site coordinates were as
follows: AP, 2.0 mm; ML, ±1.25 mm; DV, 1.75 mm [52]. Injections were performed using a 5 µL
Hamilton syringe operated by a Harvard Apparatus Pump II Dual Syringe micropump. Needles were
left in place for an additional 60 s to allow for the fluid to diffuse. Each side was injected individually,
one immediately after the other, with 2 µL/side of REDD1 shRNA (m) lentiviral particles (1 × 107 in
2 µL) at a rate of 0.2 µL/min.

4.5. Immunohistochemistry for REDD1

Mice were anesthetized using isoflurane (3%) at 24 h after Aβ injection, and perfused transcardially
with 100 mM phosphate buffer (pH 7.4), followed by ice-cold 4% paraformaldehyde. Brains were
removed and postfixed in phosphate buffer (50 mM, pH 7.4) containing 4% paraformaldehyde overnight.
Brains were immersed in a solution containing 30% sucrose in 50 mM phosphate-buffered saline (PBS)
and stored at 4 ◦C until sectioning. Frozen brains were coronally sectioned on a cryostat at 30 µm,
and sections including the hippocampal area (from −1.50 mm posterior to the bregma as defined in the
mouse brain atlas) were stored in a storage solution at 4 ◦C.

Free-floating sections (thickness, 30 µm) were incubated for 24 h in PBS (4 ◦C) containing rabbit
anti-REDD1 (1:500 dilution), 0.3% Triton X-100, and 1.5% normal serum. Sections were incubated for
90 min with FITC-conjugated secondary antibody (1:1000 dilution). Lastly, the stained brain sections
were mounted onto glass slides using Richard–Allan Scientific mounting medium (Thermo Scientific,
Waltham, MA, USA). Images of histochemical samples were obtained with a Zeiss LSM 700 (Carl Zeiss
AG, Oberkochen, German), and images were analyzed using ImageJ software (NIH, Bethesda, MD,
USA). For the analysis of REDD1 immunoreactivity, the CA1 regions of hippocampal tissue were
quantified. Quantification of REDD1 immunoactivity was performed by determining the percentage
of fluorescence intensity using ImageJ software (NIH, Bethesda, MD, USA).
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4.6. Acute-Hippocampal-Slice Preparation

Artificial cerebrospinal fluid (ACSF) was composed of NaCl (124 mM), KCl (3 mM), NaHCO3 (26 mM),
NaH2PO4 (1.25 mM), CaCl2 (2 mM), MgSO4 (1 mM), and D-glucose (10 mM). We rapidly isolated the
mouse hippocampus and submerged it in chilled ACSF. For tissue slicing, we used McIlwain tissue
chopper. Hippocampal slices of 400 µm thickness were incubated in ACSF (20–25 ◦C, 2 h) before
the experiment.

4.7. Western Blot

Acute hippocampal slices were used for mechanism studies. To see the effect of Aβ on REDD1
production and signaling, acute hippocampal slices were incubated with Aβ (10 µM)-containing ACSF
for 4 h. For the blocking test, acute hippocampal slices were incubated with drug (inhibitors)-containing
ACSF for 30 min, and then were incubated with Aβ (10 µM) + drug-containing ACSF for 4 h further.
After incubation, the hippocampal slices were homogenized in ice-cold homogenize buffer (0.32 M
sucrose, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 1 mM sodium orthovanadate, one protease
inhibitor cocktail tablet (Roche, Seoul, Korea) per 50 mL of buffer in 20 mM Tris-HCl buffer (pH 7.4)).
Proteins from the lysates were quantified using a BCA protein assay kit. Proteins (100 µg for caspase-3
or 30 µg for others) were subjected on SDS-PAGE gels for electrophoresis and transferred to PVDF
membranes at 300 mA for 2 h at 4 ◦C in transfer buffer (25 mM Tris-HCl (pH 7.4) containing 192 mM
glycine and 20% v/v methanol). The Western blots were then incubated for 1 h with a blocking
solution (2% BSA or 5% skim milk), then with primary antibodies overnight at 4 ◦C, washed ten
times with Tween20/Tris-buffered saline (TTBS), incubated with a 1:2000 dilution of horseradish
peroxidase-conjugated secondary antibodies for 2 h at room temperature, washed ten times with TTBS,
and finally developed by enhanced chemiluminescence (Amersham LifeScience, Arlington Heights,
IL, USA).

4.8. Electrophysiology

Field excitatory postsynaptic potential (fEPSP) was recorded in the CA1 area (Schaffer
collateral–commissural pathway) of the acute hippocampal slices. Constant stimuli were delivered
through stimulating electrode (0.033 Hz). The slope of the evoked fEPSP was averaged over consecutive
recordings evoked at 30 s intervals. 30 min after the initiation of a stable baseline, high-frequency
stimulation (HFS: 2 trains of 100 pulses at 100 Hz with 30 s interval) was introduced to induce long-term
potentiation (LTP). LTP was quantified by comparing the mean fEPSP slope at 80 min after the TBS
with the mean fEPSP slope during the baseline period. To test the effect of the REDD1 inducer or
Aβ on hippocampal LTP, acute hippocampal slices were incubated with REDD1 inducer (10 µM)
or Aβ (10 µM) before recording (Figure 3A,C). To test the effect of REDD1 shRNA on Aβ-induced
hippocampal LTP deficits, REDD1 shRNA was injected into the hippocampi of the mice, and acute
hippocampal slices were prepared from the mice 7 d after the injection. Acute hippocampal slices were
incubated with Aβ (10 µM) for 4 h before recording (Figure 3D).

4.9. Passive-Avoidance Test

To test the effect of REDD1 shRNA on Aβ-induced memory deficit, REDD1 shRNA was injected
into the hippocampi of mice, and Aβ was injected into the lateral ventricles of the mice 7 d after the
shRNA injection. Passive avoidance started 7 d after the Aβ injection. The passive-avoidance box was
composed of 2 rooms, namely, a dark and an illuminated room, which were separated with a guillotine
door. In a training session, a mouse was located in the illuminated room, and the guillotine door
opened 10 s later. When the mouse crossed the guillotine door and entered the dark room, the door
closed, and 0.5 mA of electric shock was delivered through the grid floor. The next day, the mouse was
relocated to the illuminated room and the guillotine door opened 10 s later. Latency time to enter the
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dark room was measured by 300 s. Behavioral tests and quantification were performed by investigators
blind to the groups.

4.10. Object-Recognition Test

One day after the passive-avoidance test, the mice were habituated to the open field (25 × 25
× 25 cm) with an internal cue on one of the four walls for 10 min. Thirty minutes after habituation,
the mice were re-placed in the same box with two distinct objects. The objects consisted of a glass box
and a plastic cylinder. Mice were allowed to freely explore the objects for 10 min. After 2 h, mice were
placed back into the same box for the test phase. The two objects were again present, but one object
was now displaced to a novel one (metal ball). Mice were allowed to freely explore the environment
and the objects for 5 min. Time spent exploring the displaced and nondisplaced objects was measured
using video-based Ethovision XT System (Noldus, Wageningen, The Netherlands). Behavioral tests
and quantification were performed by investigators blind to the groups.

4.11. Statistics

All statistical analyses and graphs were performed using GraphPad Prism version 5.0 (GraphPad,
San Diego, CA, USA). All in vitro experiments were repeated three times. For multiple comparisons,
data were analyzed by one-way analysis of variance (ANOVA) followed by Turkey’s test for significance
between groups. The t test was only used for comparison between the two groups. Data are expressed
as means ± SD with raw data. Statistical significance was set at p < 0.05.
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