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With the continuous development of bioinformatics and public database,

more and more genes that play a role in cancers have been discovered.

Synaptotagmins (SYTs) are abundant, evolutionarily conserved integral

membrane proteins composed of a short N-terminus, a variable linker domain,

a single transmembrane domain, and two C2 domains, and they constitute

a family of 17 isoforms. The synaptotagmin family members are known

to regulate calcium-dependent membrane fusion events. Some SYTs play

roles in hormone secretion or neurotransmitter release or both, and much

evidence supports SYTs as Ca2+ sensors of exocytosis. Since 5 years ago,

an increasing number of studies have found that SYTs also played important

roles in the occurrence and development of lung cancer, gastric cancer,

colon cancer, and other cancers. Down-regulation of SYTs inhibited cell

proliferation, migration, and invasion of cancer cells, but promoted cell

apoptosis. Growth of peritoneal nodules is inhibited and survival is prolonged

in mice administrated with siSYTs intraperitoneally. Therefore, most studies

have found SYTs serve as an oncogene after overexpression and may become

potential prognostic biomarkers for multiple cancers. This article provides an

overview of recent studies that focus on SYT family members’ roles in cancers

and highlights the advances that have been achieved.

KEYWORDS

synaptotagmin, cancer, overexpression, biomarker, prognosis, oncogene

Introduction

Synaptotagmins (SYTs) are a family of membrane-trafficking proteins composed of
a short N-terminus, a variable linker domain, a single transmembrane domain, and two
C2 domains (C2A and C2B domains) (1). The C2 domains are binding sites of Ca2+.
SYT1–3, 5–7, and 9 have C2 domains, while the others do not (2). SYTs are known to
regulate calcium-dependent membrane fusion events. At present, it has been found that
humans have 17 synaptotagmin isoforms whose structure can be predicted by AlphaFold
Protein Structure Database (3, 4) (Figure 1). The structure of some SYTs has been
resolved for a long time (5–7). SYTs are involved in postsynaptic receptor endocytosis
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(8), synaptic vesicle exocytosis (9), synaptic plasticity (10), and
vesicle trafficking (11). Since 5 years ago, an increasing number
of studies have found that SYTs also play an important role in
the occurrence and development of lung cancer, gastric cancer
(GC), colon cancer, and other cancers (12–15) (Supplementary
Figure 1). This article provides an overview of recent studies
that focus on SYT family members’ roles in cancers and
highlights the advances that have been achieved (Table 1).

Roles of synaptotagmin family
members in cancers

SYT1

SYT1 is located at the vesicular membrane of nerve and
endocrine cells. It is considered to be the main Ca2+ sensor
in neurotransmission and hormone secretion processes and
plays a vital role in Ca2+-induced secretion processes (16). In
a recent study, downregulation of SYT1 significantly suppressed
the proliferation, invasion, and migration of colon cancer cells,
but induced cell apoptosis. These results suggested that SYT1
may serve as an oncogene in colon cancer (17).

SYT7

SYT7 resides on human chromosome 11q12.2 and encodes
a predicted single-pass 46-kDa transmembrane protein (18).
SYT7 encodes a protein that plays a central role in the regulation
of calcium-dependent lysosome exocytosis (19), facilitation of
central synapses (20, 21), and the regulation of membrane
trafficking during synaptic transmission (20, 22). SYT7 is
currently the most studied isoform in oncological diseases.

Compared with adjacent normal tissues, SYT7 was found
overexpressed in tissues of GC with hepatic metastasis.
Meanwhile, high expression of SYT7 in primary GC tissues
was closely correlated with hepatic recurrence, metastasis (stage
IV GC), and adverse prognostic characteristics. Knockdown of
SYT7 suppressed the proliferation of GC cells and attenuated
the invasion, migration, and adhesion ability of cancer (13).
It has also been reported that SYT7 is overexpressed in
colorectal cancer (CRC). The higher level of SYT7 was
significantly associated with a higher pathological stage of
CRC. Downregulation of SYT7 inhibited RKO cell proliferation
and colony formation but promoted G2/M arrest and
subsequent apoptosis (15). Another study showed that SYT7 was
significantly overexpressed in hepatocellular carcinoma (HCC)
and was closely correlated with tumor size, differentiation,
vascular invasion, and lymph node metastasis. Meanwhile, SYT7
was also identified as a risk factor for disease-free survival (DFS)
and overall survival (OS). Additionally, knockdown of SYT7 in

HCC could inhibit cell proliferation and colony-forming ability
as well as induce cell cycle arrest (23, 24).

One recent study showed that SYT7 was upregulated in
non-small-cell lung cancer (NSCLC), and its high expression
was positively correlated with T stage and tumor differentiation.
Patients with lower SYT7 expression had longer survival than
those with higher expression (25). Liu et al. reported that
SYT7 served as an oncogene in NSCLC in vitro, including
promoting proliferation, invasion, and migration, but inhibiting
apoptosis of cancer cells. It was also demonstrated that shSYT7
significantly blocked the growth of NSCLC tumor cells in a
xenograft model. The expression of Vimentin and N-cadherin in
cultured cells was decreased after the knockdown of SYT7, while
E-cadherin levels increased (14). The above results revealed
that SYT7 played a vital role in promoting tumorigenesis by
activating epithelial-mesenchymal transition (EMT) in NSCLC.
Another study demonstrated that the expression levels of SYT7
were elevated in both lung cancer tissues and cell lines. In
addition, SYT7 was shown to inhibit senescence and promote
growth and colony-forming capacity in lung cancer cells. The
interaction between SYT7 and P53 further potentiated the
interaction between P53 and its E3 ligase MDM2 (26).

Downregulation of SYT7 can promote cellular apoptosis
and subsequently inhibit the growth of glioblastoma (27). One
study by Wu et al. demonstrated that the expression levels of
SYT7 in osteosarcoma tissues had a positive correlation with
tumor stage. Functional assays showed that SYT7 silencing
could significantly suppress cell proliferation as well as the
colony-forming ability of osteosarcoma in vitro with time
independence. Furthermore, knockdown of SYT7 could also
increase cell apoptosis rates, induce cell cycle arrest with a
decreased proportion of S phase and increased G2 phase, and
inhibit the invasion and migration capability (28). Fu et al.
discovered that downregulation of SYT7 obviously inhibited the
migration and tumor growth of head and neck squamous cell
carcinoma (HNSCC) in vivo. They also found that 1Np63α

could affect HNSCC cells by downregulating the expression
of SYT7 in vitro, including inhibiting proliferation, promoting
apoptosis, and reducing the proportion of cancer cells in G1
phase. Therefore, the 1Np63α/SYT7 axis might be a potential
clinically effective target for the treatment of HNSCC (29).

In summary, SYT7 may serve as an oncogene in GC, CRC,
HCC, lung cancer, glioblastoma, osteosarcoma, and HNSCC.
High expression of SYT7 predicted a poor prognosis in GC,
HCC, and HNSCC. Nevertheless, the precise mechanisms
underlying the biological activity of SYT7 remain to be
elaborated on in these cancers.

SYT8

There are two forms of SYT8 (40 and 50 kDa). The 40-kDa
form was present in the cytosol in the brain, in clonal beta-cells,
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FIGURE 1

Structure of 17 human synaptotagmin family members predicted by AlphaFold. AlphaFold is an AI system developed by DeepMind that predicts
a protein’s 3D structure from its amino acid sequence. AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. Some
regions below 50 pLDDT may be unstructured in isolation.

and in PC12 cells, while the 50-kDa form was localized in
very typical clusters. Further research found that SYT8 is not a
Ca2+ sensor in exocytotic membrane fusion in endocrine cells
(30). There are few studies on SYT8 function; therefore, the
possible functions of SYT8 in the brain or other organs are still
unknown. However, in recent years, several studies have shown
that abnormal expression of SYT8 may affect the occurrence
and development of tumor diseases. SYT8 was overexpressed in
tumor tissues of pancreatic cancer and played important roles
in promoting cell proliferation, invasion, and migration both
in vivo and in vitro. Furthermore, the authors also identified
SYT8 to be involved in signaling via the TNNI2/ERRα/SIRT1
axis (31).

High expression scores of the dual-marker expression
panel (MAGED2 and SYT8) were significantly correlated
with higher tumor stage, more lymph node or peritoneal
metastasis, and more vascular invasion. Moreover, compared
with single markers, the C-index of the combination panel
was obviously higher. Patients with GC can be precisely
stratified into high, intermediate and low risk by this dual-
marker predictive signature after gastrectomy (32). The authors
also found that the optimal expression panel comprised four
constituents (SYT8, MAGED2, FAM461, and BTG) among
32,767 combinations with a C-index value of 0.793. Both OS and
DFS decreased incrementally with increasing expression scores
(33). Kanda et al. found that the expression levels of SYT8 were
higher in GC tissues of patients with peritoneal recurrence or
metastasis. Downregulation of SYT8 in GC cells was correlated
with inhibition of cell invasion, migration, and fluorouracil
resistance. The growth of peritoneal nodules was significantly

suppressed by intraperitoneal administration of SYT8-siRNA
into nude mice engrafted with GC cells, and survival was also
prolonged (34).

Finally, it may be concluded that SYT8 may serve as
an oncogene in pancreatic cancer and GC. The underlying
mechanism in pancreatic cancer could be involved in
TNNI2/ERRα/SIRT1 signaling pathway.

SYT12

SYT12 encodes proteins involved in regulating transmitter
release in the nervous system (35). Moreover, SYT12
phosphorylation by cAMP-dependent protein kinase is
essential for hippocampal mossy fiber long-term potentiation
(36). In the field of oncology, a prospective cohort study
investigated the effect of biomarkers (SYT12, ITGA2, and
CDH3) on outcomes of papillary thyroid cancer (PTC)
patients. SYT12 as a single marker provided the best prediction
performance of initial metastasis (specificity: 54%; sensitivity:
72%) compared with ITGA2 and CDH3. For long-term
outcomes, the best performance was obtained by combining
American Thyroid Association risk stratification with SYT12,
with a specificity and sensitivity of 73 and 88%, respectively (37).
The above results suggest that SYT12 may serve as a prognostic
biomarker in PTC but warrants to be further validation in
larger populations. In The Cancer Genome Atlas (TCGA)
cohort, SYT12 was significantly upregulated in PTC. Moreover,
the expression levels of SYT12 were positively related to the
incidence of lymph node metastasis. Functional experiments
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TABLE 1 Potential functions of SYTs in cancers.

References Isoform Location Prognostic
predictors

IN VIVO IN VITRO Functions

Lu et al. (17) SYT1 Colon cancer
√

Promote cell proliferation, invasion, and migration, inhibit
apoptosis

Xiao et al. (27) SYT7 Glioblastoma
√

Inhibit cellular apoptosis, promote cell growth

Kanda et al. (13) SYT7 Gastric cancer
√ √

Promote cell proliferation, invasion, migration, and adhesion
ability

√
Increase hepatic metastasis

Wang et al. (15) SYT7 Colorectal cancer
√

Promote cell proliferation and colony formation, inhibit G2/M
arrest and apoptosis

Liu et al. (14) SYT7 NSCLC
√

Promote cell proliferation, invasion, metastasis and EMT,
inhibit apoptosis

√
Promote growth of tumor

Fei et al. (26) SYT7 Lung cancer
√

Inhibit cell senescence, promote growth and colony forming
capacity

Wu et al. (28) SYT7 Osteosarcoma
√

Promote cell proliferation, colony forming capacity, invasion
and migration capability, inhibit apoptosis

Jin et al. (24) SYT7 HCC
√ √

Promote cell proliferation and colony-forming ability

Fu et al. (29) SYT7 HNSCC
√ √

Promote cell proliferation, inhibit apoptosis
√

Promote migration and tumor growth

Kanda et al. (34) SYT8 Gastric cancer
√

Promote cell invasion, migration, and fluorouracil resistance
√

Promote the growth of peritoneal nodules, shorten survival
time

Fu et al. (31) SYT8 Pancreatic cancer
√ √

Promote cell proliferation, invasion and migration

Eizuka et al. (38) SYT12 OSCC
√

Promote cell proliferation, invasion, and migration

Liu et al. (39) SYT12 LUAD
√ √

Increase the proliferation and migration
√

Increase the volume and weight of the tumors

Jin et al. (12) SYT12 PTC
√

Promote cell colony formation, proliferation, invasion and
migration, inhibit the process of apoptosis

Kanda et al. (42) SYT13 Gastric cancer
√ √

Promote cell activity of invasion and migration, but did not
alter proliferation and apoptosis

√
Promote the growth of peritoneal nodules, shorten survival
time

Zhang et al. (47) SYT13 LUAD
√

Promote proliferation and clonal activity, inhibit apoptosis,
increase migration capacity

Li et al. (45) SYT13 Colorectal cancer
√

Promote cell proliferation, colony formation, invasion,
migration and EMT

√
Promote growth of tumor

Sheng et al. (51) SYT14 Glioma
√

Promote cell proliferation and colony formation, inhibit
apoptosis

NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; OSCC, oral squamous cell carcinoma; LUAD, lung
adenocarcinoma; PTC, papillary thyroid cancer.

in vitro showed that knockdown of SYT12 inhibited cell
colony formation, proliferation, migration, and invasion ability
of PTC cell lines, but accelerated the process of apoptosis
(12).

Eizuka et al. found that SYT12 was overexpressed in
both oral squamous cell carcinoma (OSCC)-derived cell lines
and primary OSCC tissues. Knockdown of SYT12 in OSCC
inhibited cellular proliferation, invasion, and migration and
arrested the cell cycle in G1 phase. Meanwhile, L-dopa (L-
3,4-dihydroxyphenylalanine), which has been approved for
Parkinson’s disease, could reduce cellular SYT12 expression,

allowing cells to acquire a cellular phenotype similar to
SYT12 knockdown. Therefore, L-dopa is expected to become
a new drug for the clinical therapy of OSCC by regulating
the expression level of SYT12 (38). Analysis through the
public database TCGA database revealed that SYT12 expression
was significantly increased in tissues of lung adenocarcinoma
(LUAD). Moreover, SYT12 was confirmed to be correlated
with advanced tumor stage and poor prognosis. SYT12 also
promoted LUAD cell proliferation and migration in vitro and
increased the weight and volume of tumors in mice xenograft
models. In parallel, SYT12 could activate the PI3K/AKT/mTOR
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signaling pathway by increasing the level of phosphorylation of
PIK3R3 (39).

To summarize, SYT12 may serve as an oncogene in PTC,
OSCC, and LUAD. High expression of SYT12 predicted poor
prognosis in LUAD. The underlying mechanism in LUAD could
be involved in signaling via the PI3K/AKT/mTOR axis.

SYT13

SYT13 locates at human chromosome 11p11.2 and encodes
a predicted single-pass 47-kDa transmembrane protein (40).
SYT13 also serves as a neuroendocrine marker in the pancreas,
intestine, and brain (41). In an analysis of 200 GC patients, the
expression levels of SYT13 mRNA in patients with peritoneal
recurrence or metastasis were significantly higher than those
in Stage I GC patients. SYT13 knockdown in a GC cell line
obviously reduced cell migration and invasion but did not
alter proliferation and apoptosis. Meanwhile, the growth of
peritoneal nodules is inhibited and survival is prolonged in
mice administrated with siSYT13 intraperitoneally (42). Further
analysis revealed that SYT13 expression was correlated with
shorter peritoneal recurrence-free survival and OS. Multivariate
analysis demonstrated that SYT13 positivity in lavage fluid
was a vital prognostic factor for predicting GC peritoneal
recurrence (P = 0.0246, HR = 3.69, 95% CI = 1.18–12.74)
(43). Kanda et al. constructed a mouse xenograft model with
GC peritoneal metastasis and discovered that intraperitoneal
administration of amido-bridged nucleic acid-modified anti-
SYT13 antisense oligonucleotides could inhibit the formation of
peritoneal metastatic nodules and significantly prolong survival
(44).

SYT13 was overexpressed in CRC samples compared with
the adjacent normal samples. In vitro experiments showed
that silencing of SYT13 could depress the activity of the CRC
cell lines RKO and HCT116, including proliferation, colony
formation, invasion, and migration. In vivo assays also showed
the role of SYT13 in promoting tumor growth. In addition, after
SYT13 knockdown, N-cadherin, Vimentin, and Snail expression
were all inhibited, suggesting that downregulation of SYT13
may inhibit the occurrence of EMT (45). Keck et al. analyzed
RNA isolated from matched primary neuroendocrine tumors of
the small bowel (SBNETs), liver metastases, and normal small
bowel tissue in 12 patients by utilizing RNA-Seq and whole
transcriptome expression microarrays (46). The results showed
that SYT13 was overexpressed in tumorous tissues and was
associated with the progression of SBNETs. However, more
laboratory and clinical investigations are warranted.

Downregulation of SYT13 in the LUAD cell lines A549 and
H1299 could successfully suppress cell proliferation and clonal
activity, but enhance apoptosis. Moreover, the knockdown
of SYT13 decreased the migration capacity of H1299 cells.
These results demonstrated that SYT13 was a vital promoter

in the development of LUAD (47). Furthermore, SYT13 is
overexpressed in both clinical specimens and cell lines of
estrogen receptor (ER)-positive breast cancer. SYT13 was also
revealed to be positively correlated with several oncogenes
predominantly expressed in ER-positive breast cancer by
PCR array analysis (48). These results suggest that SYT13
has a positive correlation with ER-related signaling pathways
in breast cancer.

In conclusion, SYT13 may serve as an oncogene in GC, CRC,
SBNETs, LUAD, and ER-positive breast cancer. High expression
of SYT13 predicted poor prognosis in GC. More investigations
of the mechanism underlying the biological activity of SYT13 in
these cancers are warranted.

SYT14

Aberrant SYT14 was associated with neurodevelopmental
abnormalities (49) and psychomotor retardation (50). Sheng
et al. knocked down the expression of SYT14 in the human
glioma cell line U87MG via RNAi, resulting in significant
inhibition of cell proliferation and colony formation but a
modest promotion of apoptosis. In parallel, more G2/M phase
cells and fewer S phase cells were observed (51). These results
reveal that SYT14 is upregulated in glioma cells and may
participate in the occurrence and development of glioma.

SYT16

SYT16 lacks calcium-sensing as well as a transmembrane
domain (52). Bioinformatic analysis of TCGA database revealed
that the expression levels of SYT16 in glioma samples were
significantly lower than that in normal samples. Moreover,
SYT16 was only expressed in grade II and grade III glioma
and was positively correlated with tumor grade. The higher
the histological grade, the lower the expression. Multivariate
analysis showed that SYT16 was a significant prognostic factor
for glioma (53). Nevertheless, more laboratory studies should be
conducted to further validate the biological activity of SYT16.

Other isoforms

Through bioinformatics analysis in online databases, the
expression levels of SYT4, SYT9, and SYT14 were found to be
upregulated in GC tissues compared with normal tissues and
were negatively correlated with their methylation levels. Both
the hypomethylation levels of SYT4, SYT9, and SYT14 and their
high expression contributed to the suboptimal OS and DFS in
GC. The expression of these three isoforms also played a key role
in immune cell infiltration in GC (54). These findings suggested
that these three isoforms might be reliable prognostic indicators
and potential immunotherapeutic targets in GC patients.
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Future prospects

Although the results from previous studies appear to be
promising, supporting evidence of SYTs as a tumor marker
is still lacking since most studies were retrospective. In the
future, large-scale prospective studies are needed to further
assess the value of SYTs in the diagnosis and prognostic
prediction. We suggest the following for further research:
(1) At present, we still do not understand the mechanism
by which SYTs affect the occurrence and development of
cancer. More work is required to elucidate the proteins and
pathways that interact with SYTs to promote tumor growth and
metastasis for further understanding of the biological functions
of SYTs in cancers. (2) With the continuous improvement of
public databases, more and more tumor markers or potential
prognostic biomarkers have been discovered (55–58). For
example, many SYTs were found significantly associated with
poor prognosis in GC when analyzed using the Kaplan–
Meier plotter (KM plotter) database (Supplementary Figure 2).
However, the vast majority of studies in cancer are focused
on SYT 7, 8, 12, and 13 currently. Thus, the following
studies could be further extended to other isoforms in the
future. (3) In addition, more than two isoforms of SYT
expression abnormalities have been found in some tumors.
For example, the expression of SYT7, SYT8, and SYT13 is
increased in GC tissues, and all three isoforms can promote
the proliferation, migration, and invasion of GC cells (13,
34, 42). Whether there is an intrinsic link between them
also requires further research. (4) The classical function of
SYTs mainly relies on their interaction with Ca2+ via the
C2 domain. Is this Ca2+ sensing activity of SYTs involved in
cancer? Do SYTs affect cancer via Ca2+ binding or independent
of Ca2+ binding? In-depth studies of these issues can give
us a better understanding of the anti-cancer mechanism
of SYTs. (5) To develop SYT-targeted therapy, the dose,
route, frequency, and duration of administration of siSYTs
or inhibitors should be optimized. In addition, the existence
of a synergistic effect of siSYTs in combination with existing
chemotherapeutic agents also needs to be confirmed. Through
the above research, we will obtain a better understanding of
the functions of the SYTs and may find a new target for
anticancer therapy.

Conclusion

In the past 5 years, an increasing number of studies
have demonstrated that SYTs play important roles in the
occurrence and development of cancers. At present, most
studies have shown that SYTs serve as oncogenes after
overexpression. Downregulation of SYTs can inhibit the
proliferation, migration, and invasion of cancer cells, but
promote apoptosis. Through more in-depth research, SYTs

may become a new target for the treatment of tumor
diseases in the future.
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SUPPLEMENTARY FIGURE 1

Synaptotagmins currently known to play an important role in the
occurrence and development of cancers. All these SYTs in this figure
play as oncogenes. SYTs, synaptotagmins; NSCLC, non-small cell lung
cancer; HNSCC, head and neck squamous cell carcinoma; OSCC, oral
squamous cell carcinoma; LUAD, lung adenocarcinoma; PTC,
papillary thyroid cancer.

SUPPLEMENTARY FIGURE 2

Correlation between the expression levels of SYTs and patient survival.
Expression data were analyzed using KM plotter (http://kmplot.com/).
Patients were split by median expression. HRs (hazardous ratios), 95%
CIs (confidence intervals), and log-rank P-values are indicated. (A) The
relationship between overall survival and expression levels of SYTs in
gastric cancer patients. (B) The relationship between relapse-free
survival and expression levels of SYTs in gastric cancer patients.
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