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Abstract: High data rates challenges and long traces from current state-of-the-art systems imply high
attenuation. In the present article, we will present a detailed process of synthesis of equalizers, for
choosing the correct one for a given application. The methods are based on scattering parameters
applied on interconnections modeled as microstrip or stripline. Firstly, one may have an overview of
types of equalizers, passive, active, and adaptive ones, and a detailed filter synthesis is applied in
microwave systems having as start point the insertion loss of a given trace on a given substrate. Next,
time domain analyses offer a better understanding of the performance of the interconnect, based on
eye diagram inspection and the variation of waveforms with time. Finally, we will present results
based on simulation of the equalizers network in a microstrip technology followed by discussions
and conclusions. The study proposes to use equalizers in either the transmitter or receiver point,
proposes a bridge equalizer with the cost of additional elements but improved constant input, output
impedance, and also a new variant for single ended trace based on microwave resonator is proposed.
Performance is demonstrated by results from simulations.

Keywords: equalization; signal integrity; high-speed; open stub; synthesis

1. Introduction

The challenge to transmit speeds of tens of gigabit per second in current state-of-the-
art systems comes with several aspects concerning transmission media. Both frequency
and time domains allow characterization of how distortion of a waveform travelling along
a trace, even when high-performance techniques and materials are used. Clearly, the
investigation is beyond the trace geometry or type of dielectric material used. The reason
is that we are unable to solve the issue of trace loss effect on signals for high lengths and
high data rates. Compensation techniques are applied in this specific case in a manner to
gain a flat response in frequency, low and high equally. The basics of passive equalization
was elaborated in [1].

Signals must have a finite propagation time or delay in reaching the destination
due to a finite velocity for a given length of the interconnection between transmitter
and receiver. Bits will arrive at a different time, with an offset, than when were sent.
One must determine the sample time at the receiver for correct reconstruction of the original
signal. We will consider for transmitter a digital non-return to zero signal type (NRZ).
Another signaling option for high speed is multi-level pulse amplitude modulation (PAM)
scheme for optimized interconnects as in the chip-to-chip applications, or backplanes [2,3].
For these variants the length will vary from few centimeters to one meter that will need
to support high enough data rates. In the past, increase of data rates came with increased
performance of I/O circuits (input/output), complex coding and modulation schemes, and
use of more complex equalization.

A lossy line with both phase and amplitude distortion will have height pulse reduction
and dispersion so the pulse smears outside of its assigned bit boundaries. Low frequency
energy present in a transmission line will interfere with highly attenuated energy from the
high frequency domain causing intersymbol interference (ISI).
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In practice, it has been demonstrated that for better synthesis of a device, networks
with equalizer (EQ) are positioned in the test fixture as presented in [4]. Jitter histogram,
time, and frequency characteristics are more accurate in this case. As the data rate increases,
the intersymbol interference effects on the jitter increase as well.

A line that does not preserve the proper amplitude and phase relations between
harmonics will yield to distorted pulses. Because line losses are in direct proportion with
the length of the line, the distortion will grow with the line’s length.

Additionally, the characteristics of the lossy line of a lowpass filter, bandwidth limita-
tion, and length dependency of the insertion loss (IL) result in amplitude attenuation and
altering the phase relationship between harmonics. Since most digital signals have high
edge rates, they will combine odd harmonics of the fundamental frequency. The transmis-
sion line’s loss is given by dielectric, conductor, and radiation characteristics, but for the
present work the significant ones are the dielectric loss and skin depth due to conductor
loss [5]. Several references provide analytical solutions to compute losses in a transmission
line designed in a certain technology [5] but also software tools [6] are highly suitable to
evaluate properly, accurately, the loss profile to be frequency dependent if algorithms are
developed for materials parameter. The width of the line is a factor that influences the
losses, as skin effect is inverse proportional to the width’s trace.

In the time domain, the effect of ISI is summarized as spread of the pulses travelling
along the line with bandwidth limitation and in worst-case scenario it will smear into the
neighboring time slots, leading to distortion of a bit within a symbol due to interference
caused by pre- or post- bit from the transmitted stream.

Another cause of ISI is the residual energy caused in the line by signal reflections due
to impedance mismatch, not at the ends where it can be controlled via internal impedance
at the ports, but along the transmission line.

The present paper is focused on evaluation of interconnects in terms of previously
presented aspects and different equalization schemes are applied to prevent ISI degradation
evaluated via time and frequency domain analysis, based on simulation results. First, in
Section 2, materials are selected for substrate, a certain technology is associated to the
transmission link, distributed parameters are associated to model the interconnect, several
properties of the transmitted signals on traces affected by higher and higher data rates and
by increased length so increased attenuation, followed by general aspects of the EQ. In the
same section particularities of passive, active, and adaptive EQs are then highlighted and
compared in terms of functionality and complexity. Section 3 presents results of the passive
EQs starting with a synthesis of the lumped elements based schemes and distributed ones
using microstrip resonant structures. For the first part of this section, the synthesis process
starts from the insertion loss of the analyzed link with a derivative resistor-capacitor (RC), a
series of resistor-inductor (RL), or a combination of the two in a resistor-inductor-capacitor
(RLC)—based EQ are first evaluated and in the end a bridge T filter is proposed for constant
input and output impedance optimization function. For the second part, microstrip-based
EQs, open stub structure will make the high-pass effect of EQ rise earlier and two variants
of this model are implemented with a new schematic elaborated. The final section of
conclusions summarize the synthesis presented in this paper.

2. Materials and Methods

Since energy is conserved in a system, a part of the transmitted power goes into the
trace before it reaches the load. The energy is given by electric and magnetic fields and can
be modeled by inductor and capacitance per unit length as it is illustrated in Figure 1a–c.
Typical technologies applied in interconnects analyses are microstrip (Figure 1a) and
striplines (Figure 1b) for top or bottom traces or internal layers in a multilayer printed
circuit board (PCB). Signals are always pairs of current–current flows in one terminal and
flows out the other one. On these interconnects, high data rates are used in order to get
bigger bandwidth, meanwhile keeping as much as possible a compact size of a digital or
analog communication system.
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Figure 1. Transversal sections illustrating the E and H field intensities lines: (a) microstrip,
(b) stripline, and (c) equivalent circuit for a very small line length ∆z� λ.

The particularities of high versus low frequency signals focus on distortion at high
frequencies such as ground bounce, ringing, variation of propagation time, crosstalk,
balanced, or unbalanced interconnects that are easily framed in frequency domain or
time domain. For a given type of technology, the equivalent circuit with per unit length
parameters for a very short length comparing to the wavelength, ∆z� λ, is represented
in Figure 1c.

2.1. Typical Characteristics of Signals on Interconnections

The input data at the interconnection near end is a sequence of bits introduced as file
associated to the ARBS element (arbitrary, user-specified bit sequence) as arbitrary 0 s and
1 s for binary signaling condition. The sequence highlights the difference in propagation of
high-speed data rate signals versus time variation. In Figure 2a, typical representation of
pulse is presented to explain the main parameters that are setup in the design.
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Figure 2. Pulse characteristics.

As different harmonics of a given signal travel down a transmission line with different
velocities and arrive at the end point with different propagation times, another aspect that
can be deduced is the dispersion of the signal. A delay can be associated to a phase shift as
harmonics are out of phase with one another.
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Lossy line will make the pulse with altering amplitude and phase distortion have
decreased amplitude, rounded edges, and its base will widen. The wider the base the
smearer into adjacent bits, the bigger the energy spread of current bit.

In Figure 3 on the left-hand side, a series of 1 s followed by a series of 0 s (in green) at
the input of the line, with no rise and fall times and 1 V for the amplitude, will show increase
overshoot and undershoot at the output of the line, as it results from the representation on
the right-hand side (in red) (representation in a and b). Only changing the pattern in the
data stream and alternate 1 and 0, the output waveform will evidentiate overshoot and
undershoot similar as in previous case, but worth mentioning that a string of back-to-back
1 s reaches the receiver with higher amplitude than does the single 1 pulse.
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Figure 3. Voltage as variation in time: (a) at the input of the interconnection for back-to-back same
polarity and (b–d) output of a microstrip line; (e) input voltage for high-speed data rate and (f) output
voltage at the far end of microstrip line.

The lowpass characteristic of a lossy line, that includes losses in both dielectric and
conductor materials, distorts the pulse shape. The pulse will be rounded as successive
harmonics are eliminated given the distortion phenomena and the pulse will be attenuated
with the increase of the line length or the increase of the losses. As the data stream
contains pulses of various widths we will have gradually attenuated and phase shifts on
the harmonics. Phase distortion in the pulse will give no longer flat-topped and bottomed
and shows peaks as the improper phasing causes the harmonics to combine inadequately.
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If only amplitude distortion is present, the lossy line attenuates each harmonic differently.
The effect of the improper combination of the amplitudes results in an output waveform
with severe rounding of the corners, eliminated sharp edges, smoothed pulse with lower
overall amplitude as it can be seen in Figure 3d with a zoom in on the smoothed edge.
Another very important aspect that should also be mentioned is the spread of the pulse
outside of the region occupied by the undistorted pulse.

Degradation of the signal is severe if the line cannot properly maintain the amplitude
and phase distortions. The effect of a bandwidth-limited channel as a transmission line has
on signal propagation is explained in next sections and in extenso in other texts [7,8].

Following, we present the steps for matching at f = 10 GHz the ports for a given
substrate. RO3003 is used for the analyses. Details for the substrate are as follows: dielectric
constant εr = 3, loss tangent tan δ = 0.001, substrate thickness h = 1.524 mm, conductor
thickness t = 17.5 µm. [9] The waveforms at the input and output of a microstrip line for
RO3003 are represented in Figure 4.
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waveform at the output of the interconnect.

For matching the circuit, the Smith diagram is used below starting with mismatch in
Figure 5a, using TxLine synthesis tool from Microwave Office (MWO) [6], the synthesis
tool for different technologies included in MWO [6]. In Figure 5b, the progressive wave is
obtained as the magnitude of the return loss is in the center of the Smith chart at 10 GHz,
or, based on Nyquist rate frequency, the data rate is 20 Gbit/s.
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To determine the trace transfer function, below we represent the frequency variation
of the insertion loss (IL). The frequency characteristics based on IL are similar to a low pass
filter as can be deduced from Figure 6b. For the 10 GHz frequency selected to synthesize
the circuit, the reflection loss presents general minimum of −80 dB (for a step in simulation
process of 0.01 GHz) for the impedance port in Figure 6a.
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2.2. General Aspects on EQ

If the system implies a high data rate and long interconnections, the waveform at the
input and output of the trace will be similar with the ones represented in the below figure.
A received stream as in Figure 7, represented in red of the transmitted data stream implies
definitely a solution to reconstruct the initial signal. A good solution is an EQ.
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line with high data rate transmission.

An EQ is a network designed with lumped elements or distributed ones, as transmis-
sion lines, active elements, or adaptive system, placed at one of the two ends of a trace or
in both. Considering the generator at one end, the load at the far end, the current produced
by the generator in the load should have a frequency variation that will compensate the
insertion loss of the trace due to the dielectric and conductor losses that tend to increase
with the increase of frequency. The EQ has to amplify the signal to count the attenuation at
each low and high frequencies domains to avoid ISI. In other words, the EQ has to amplify
high frequency oscillated wave or to reduce the signal magnitude at the low frequencies
wave so the EQ will compensate and balance the two frequency domains, high and low.
Given the components or function of the EQ, we shall have different variants:
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• Active
• Passive
• Adaptive

Whether the components used in the EQ are active or passive ones, the EQ are
commonly sorted as active EQ or passive EQ. The characteristic of EQ in this case should
be similar to a high pass filter function. In the next section, passive EQ are analyzed and
implemented in MWO.

2.3. Passive Equalization

The mathematical expression relates the transfer function of the EQ as the inverse of
the line’s transfer function as in the relation [2]:

HEQ(f) = H−1
line(f), (1)

or, if the transfer function of the line is known actually as the IL of the line or the S21
scattering parameter, the EQ transfer function is defined by the relation:

HEQ(f) = Hcomp(f)/Hline(f), (2)

The meaning of Hcomp(f) is the overall transfer function of the system after EQ is
part of transmitter, channel, or receiver system and is represented at theoretical level in
Figure 8c. In the frequency domain, Hcomp(f) is obtained by multiplication of HEQ(f) and
Hline(f) and in time domain, as convolution of associated time domain impulse functions
for line and EQ. Amplitude and phase distortion in the new circuit with the EQ added
needs to reverse the effects of the interconnect to a perfectly original signal form. This is
the ideal case, but in practice, there is no perfect EQ and throughout of the following work,
we will demonstrate that there are various implementations, discrete and distributed, that
compensate the line’s imperfections for multi-gigabits per second signaling systems.
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Figure 8. Transfer functions: (a) lossy line (b) EQ and (c) compensated line (dashed trace).

Points of insertion of the EQ are either at the receiver end, post-emphasis, or to the
transmitter, pre-emphasis. In the first case, the driver’s output current is increased over
the nominal value when the bit is transitioning [2]. The analysis done in the pre-emphasis
block is based on single bit or multiple bits from the data stream. Firstly, the current is
reduced by a predetermined amount only when at transitions 0 to 1 or 1 to 0. For bits with
same polarity, the nominal current value is lower. The high-frequency transitions are, in
conclusion, pre-emphasis relative to the back-to-back same polarity bits (series of 1 s or
0 s) thus high frequency-like domain is transmitted with more energy than low frequency
domain [2].
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Based on the location of the emphasis system in the chain we shall have as depicted in
the below Figure 9:

• Pre-emphasis
• Post-emphasis
• Pre- and post-emphasis
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Often, high-speed designs use the eye diagram to evaluate system performance.
The construction of the eye diagram assumes slices into sections of the time domain
signal waveform followed by overlaying process [5,10]. These sections are considered a
small number of symbols in length. Folding the input signal on a time segment of length
equal to the symbol period allows voltage amplitude representation on the vertical axis,
while on the horizontal is the time variation that includes typically one or two symbols.
Signal distortions are easy to be demonstrated on the eye diagrams [10]. The closer the eye,
the more distortion we have on the signal and larger eye opening implies more margin to
the voltage and timing requirements.

There are several metrics that can be achieved by representation of the eye: a mask
can evidentiate unwanted crossings, corners, transitions, and also gives a feedback of the
jitter measurements. The height of the eye should be large enough to ensure the voltage
thresholds for high and low levels assuming additive noise additionally degrades the
system performance. Furthermore, the eye should be wide enough to provide adequate
timing margins for the receiver. The variations in voltage and timing are noise and jitter
and using these metrics one can calculate the system’s budget. The mask mentioned earlier
in this section represents a forbidden region that should not be crossed over imposed in
the eye diagram representation (in black represented in Figure 10a). It is a method to find
the minimum voltage height and time width at the receiver end in a signaling systems
affecting the amplitude and phase due to loss and mismatch. It is based on peak distortion
analysis method.

Crossing the mask’s limits, we can also estimate the probability of receiving erronate
bits, so we measure the bit error rate (BER) defined as the ratio of the erroneous receive
bits over the total number of transmitted bits in a sufficiently long time interval [5].

Continuous time linear EQ has analog elements and does not require digital devices
for implementation. Schematics based on passive components have parallel and/or series
inductors, capacitors, and resistors connected to the line at its ends based on EQ behavior.



Sensors 2021, 21, 1222 9 of 22

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22 
 

 

tem performance. Furthermore, the eye should be wide enough to provide adequate tim-
ing margins for the receiver. The variations in voltage and timing are noise and jitter and 
using these metrics one can calculate the system’s budget. The mask mentioned earlier in 
this section represents a forbidden region that should not be crossed over imposed in the 
eye diagram representation (in black represented in Figure 10a). It is a method to find the 
minimum voltage height and time width at the receiver end in a signaling systems affect-
ing the amplitude and phase due to loss and mismatch. It is based on peak distortion 
analysis method. 

 

 
Figure 10. Time domain analysis: (a) eye diagram typical representation with mask represen-
tation (in black), and corners marked (in red), (b) eye diagram for the specific arbitrary random 
sequence applied and determined at the output of the trace, and (c) eye diagram and metrics 
at initial point of transmission. 

Crossing the mask’s limits, we can also estimate the probability of receiving erronate 
bits, so we measure the bit error rate (BER) defined as the ratio of the erroneous receive 
bits over the total number of transmitted bits in a sufficiently long time interval [5]. 

Continuous time linear EQ has analog elements and does not require digital devices 
for implementation. Schematics based on passive components have parallel and/or series 
inductors, capacitors, and resistors connected to the line at its ends based on EQ behavior. 

2.4. Active Equalization 
EQ can also be designed with the use of active elements as amplifiers to gain im-

provement. The active EQ usually consists of passive EQ and additionally an amplifier is 
used to enhance the signal’s level in the entire frequency domain, high and low. The main 
disadvantage of this type of active EQ is the overall cost, as more active and passive circuit 
components are used, but also the increased area occupied by EQ will result in large di-
mensions of the system. This method is often done by using a split-path approach [11]. 
The input is split in two paths: one that has unity gain and another is to be high frequency 
boost. At the end, the two signals are summed into a new equalized input signal into the 
lossy line [2].  

  

(a) (b) 

(c) 

Figure 10. Time domain analysis: (a) eye diagram typical representation with mask representation (in black), and corners
marked (in red), (b) eye diagram for the specific arbitrary random sequence applied and determined at the output of the
trace, and (c) eye diagram and metrics at initial point of transmission.

2.4. Active Equalization

EQ can also be designed with the use of active elements as amplifiers to gain im-
provement. The active EQ usually consists of passive EQ and additionally an amplifier is
used to enhance the signal’s level in the entire frequency domain, high and low. The main
disadvantage of this type of active EQ is the overall cost, as more active and passive circuit
components are used, but also the increased area occupied by EQ will result in large
dimensions of the system. This method is often done by using a split-path approach [11].
The input is split in two paths: one that has unity gain and another is to be high frequency
boost. At the end, the two signals are summed into a new equalized input signal into the
lossy line [2].

2.5. Adaptive Equalization

Systems that are more complex employ training sequences for transmitter’s compen-
sation settings for tuning to the best performance. After a given period, the adjustment
is remade. The transmitter and receiver are set to automatically adapt to the changing
conditions of the interconnect. For this purpose, the scheme requires that the transmitter
and receiver communicate with each other in a known and predictable way [5]. At inter-
mediate data rates, the EQ coefficients are often set based on the average characteristic
of the line. The design of the link introduces dependencies on technology corners that
need to be compensated by the EQ via calibration and adaptive techniques of the EQ
parameters for the actual channel. Usually variants of least mean square (LMS) algorithm
are implemented. For rates in orders of Gb/s, Sign-Sign LMS is often the only option
due to very short time needed to determine the EQ parameters. Based on probabilistic
considerations applied to the sampled pulse response, the LMS convergence methodologies
estimate the evolution in EQ structure [12]. This approach is based on permutation matrix
to take into account the probability of the transmitted sequences and find adjustments
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to the LMS parameters. Evaluation in terms of cost, constraints, implementation, power,
performance of CTLE (Continuous Time Linear Equalizer), FFE (Feed-Forward Equalizer),
DFE (Decision Feedback Equalizer), or FEC (Forward Error Correction) for high data rates
in [12] and [13] conclude that while DFE can reduce channel ISI with short tap length, FFE
is needed to compensate pre-cursor ISI and compensate the power-voltage variations of
transceivers, and also fits in DSP (Digital Signal Processing) implementation.

The benefit of adaptive equalization is the ability to adjust lengths and data rates.
The main disadvantages are an increased complexity and power consumption.

3. Results

Some of the EQs presented variants in previous sections are implemented in MWO
Schematic. The substrate’s parameters are presented in Table 1.

Table 1. RO3003 substrate.

Relative Dielectric
Constant (/)

Loss Tangent of
Dielectric (/)

Dielectric Thickness
(mm)

Conductor
Thickness (µm)

3 0.001 1.524 17.5

Data stream PORT_ARBS was used with declaration of variable called DataSeq as in
relation (3) in the simulation project as global variable and for PORT_ARBS the symbol
sequence is assign to DataSeq.

DataSeq = {1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1}, (3)

The data input stream is defined as series of 1 s and 0 s as represented in Figure
11. Below are represented variants of bits sources, ARBS and PRBS, pseudorandom bit
sequence, at the input of a microstrip line with the substrate RO3003. Symbol rate is set
in both sources at 10 GHz, samples per symbols at 16, and in the case of PRBS, 64 is the
number of symbols and 1 bit in symbol via BITW, bit width.

Rates = {1, 2.5, 5, 10, 20, 30, 40}
ModFreq = Rates [4]
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Figure 11. Voltage variation with time: (a) input signal arbitrary, user specified bit sequence (ARBS) source at 10 GHz
(green) and output after 10 cm microstrip line (pink) and (b) input signal pseudorandom bit sequence (PRBS) source at 10
GHz (green) and output after 10 cm microstrip line (red).

Similar effects can be observed in both representations. The signal at the output of the
microstrip line is highly distorted, both in amplitude and in phase, increased overshoot
and undershoot due to frequency transmitted.

For 50 ps rise and fall times, the signal is represented in Figure 12 with the input and
output waveform in (a) and the eye diagram at the output of the microstrip line.
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Figure 12. Voltage variation with time for 50 ps rise and fall times (a) and eye diagram associated at the output of the
microstrip line (b).

3.1. Passive EQ-Lumped Elements, Synthesis

Passive EQ does not amplify any components of the signal, low or high frequencies
that pass through it but rather attenuates the low frequency signal components.

A method to determine the filter’s elements [14] starts from insertion loss represen-
tation applying filters’ synthesis theory before applying any EQ scheme. At the cut-off
frequency, fc, the EQ’s frequency, determined from the dB IL of the trace, the value of the
attenuation is half of the maximum value. In the frequency domain selected of [0, 40] GHz,
the maximum is IL|max = IL| 40 GHz = −0.82 dB so fc ∼= 20 GHz. Applying the theory of
filters’ synthesis, the IL [dB] at a given frequency f is offered here without proof [14] by
the relation:

IL(f) = 10 log

1 +
K2 − 1

1 + K
(

f
fc

)2

, (5)

where factor K determines the filter’s IL, or the amount of attenuation provided, measured
at frequency fc, but is also a measure of the flatness of the transfer function, that should be
equal with the inverse transfer function of the trace. From relation (5), it can be deduced
that the higher the K, the flatter the frequency response. Typically, K ∈ (1, 5) otherwise a
value greater than five causes a flatness of the response in frequency domain and the IL
will increase [2].

Next, value of the factor is determined for the present case for f = 10 GHz. From the
representation of IL, we deduce that IL(10 GHz) = −0.25 dB. From this, K is determined
to have two values, only one corresponding to a positive value in the interval (1, 5), and
that is K = 1.145. There are several architectures to be considered so that the EQ performs
as a high pass filter [14]. For passive type, EQ variants will include RC derivative shunt
of a resistor and a capacitor connected as in Figure 13a or RL series of a resistor and an
inductor connected as in Figure 13b or combination of the two, or bridge type EQs as in
the below representation from Figure 13.
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From K coefficient deduced at the working frequency, the cut-off inductance and
capacitance [14] are:

Lc =
R0

2πfc
Cc =

1
2πfcR0

, (6)

where fc is determined from (7):

fc =
1

2
√

LcCc
=

1
2

IL
∣∣∣∣
[dB]

, (7)

and R0 is the EQ impedance, in this case R0 = 123.65 Ω determined with TxLine. Comput-
ing the values for Lc and Cc results 0.983 nH and 0.0643 pF so that L1 and C2 for the EQ
components are:

L2 = Lc

√
K

K− 1
= 7.25 nH,C1 = Cc

√
K

K− 1
= 0.474 pF, (8)

and the resistive elements are:

R1 = R0(K− 1) = 17.92 Ω, (9)

The computed values of the elements for the EQ networks were used in the MWO [6]
and results are presented in the next subsections.

Another variant as presented in the Figure 13d is the constant input and constant
output impedance bridge T. The values of the components are the same deduced in relations
(8) and (9). The cost of this EQ is increased due to additional resistive parts.

The bridged EQ is also implemented in MWO and presented in the next subsections.
Other EQ networks were implemented in MWO [6] but the performance was limited both
in time and frequency domains.

3.1.1. RC EQ

A passive EQ with RC derivative structure is next integrated in the circuit. Time and
frequency domain analyses present better performance for connecting the EQ prior to the
microstrip trace. The values of the EQ can be determined via an optimization process in
MWO tuning; accordingly, the R1 and C1 values or synthesis process can be applied as it
was presented in earlier subsections. Better results were obtained via synthesis but the
graphical results are presented in Figure 14f,g for keeping R1 = Zmatch of the port, constant
value, and C1 value varying from 1 pF to 7 pF from tuning process. The eye in this case
is close for smaller value of the capacitor and also the reflections are higher in the case of
small values of C1.

The high level peak is at 941 mV. Connecting the EQ at both ends of the line, the eye
diagram resulted is closer comparing to the other two variants and also jitter has a higher
value in this case. Better results were obtained via synthesis process.

Reflection loss presents good response for combination of pre- and post-EQ placed at
both ends of the microstrip line at the working frequency as it is represented in Figure 15.

3.1.2. RL EQ

A passive EQ with RL series connected in parallel to the line is next analyzed both
in frequency and time domains. The values can be either determined via optimization
process in MWO or can be computed in the synthesis process. The resistor is used mainly
for matching purposes at the ports and the series inductor has to compensate the high
frequency loss. The high level peak is at 1.066 V, so the circuit still has overshoots and
undershoots in the waveform representation in Figure 16. Connecting the EQ at both ends
of the line, the resulting eye diagram has a smaller peak compared to the other two variants
(pre- or post-EQ for RL type).
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Reflection loss presents good response for combination of pre− and post−EQ placed
at both ends of the microstrip line as in Figure 17.

3.1.3. RLC EQ

Implementing RLC EQ results in attenuation of the transmitted signal as the peaks
no longer pass the thresholds. The waveforms and eye diagrams for pre-, post-, and pre-
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and post- microstrip line. The SUBCKT “Filter” is the actual microstrip line. The variant
of either pre- and post- EQ gives less attenuated amplitude. The maximum obtained in
pre-EQ is 924.26 mV and in post-EQ the maximum is 934.53 mV and in case of pre- and
post- the maximum amplitude is 803.41 mV.

Another variant of EQ filter is presented in the below Figure 18. The new EQ filter
is slightly improving the eye opening for the case of implementation as presented in (a)
comparing to the variant in Figure 19a. In Figure 18b, with EQ connected in front of the
link and Zmatch connected derivative to the previous RC structure, both eye diagrams are
represented freezing in the graph, the results given by Figure 19a output circuit.
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In frequency domain, we can see the RL and IL after introducing the EQ in the system.
The IL will need to have a more flat curve due to high frequency compensation. For the
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present design the RL and IL are represented in Figure 20 below. The best match is obtained
using the RLC EQ at the both ends of the microstrip, −61 dB at 9.59 GHz.
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Increasing the data rate to 20 Gbps, the eye diagrams still maintain proper openings
as represented in Figure 21.
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3.1.4. Bridge T EQ

For constant input and output impedance, another solution for EQ network is the
Bridge T network as represented in Figure 22. As explained in the beginning of this section
at the synthesis for this type of networks, the values for inductors, capacitors and resistors
results from the IL characteristic of the line.
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Figure 22. Variant of Bridge T EQ (a) circuit schematic and (b) eye diagrams in pre-, post-, and pre- and post- line for Bridge
T and RLC EQ modified.

If the length will increase, the IL will rise. Keeping the 10 Gbps data rate, the new
eye diagrams for the three variants are presented in Figure 23 with Figure 23a for RL EQ,
Figure 23b for RC EQ and Figure 23c for RLC EQ. The first column in representation of the
length is set to 20 cm and the second one with a length of 50 cm. The eye diagrams still fit
the height and width margins for 20 cm with overshoot and undershoot but highly exceeds
the limits for 50 cm, still with clear open eye.
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Figure 23. Eye diagrams for increased line length for RL (a), RC (b), and RLC bridge T variant (c)
(from left to right): 20 cm and 50 cm.
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The EQ cannot provide the function of equalization for the given IL at these lengths
as distortions increase with the length of the interconnection. In this case, a new synthesis
has to be done.

The waveform at the output of RC and RLC type of EQ are represented in Figure 24.
In the case of RC EQ type implemented, only the pre−EQ variant will reach the high level
but the undershoot exceed the low level. The peaks pass the low level as it is represented
in the voltage variation in RLC EQ case.
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Based on the three variants implemented above one can select based on constraints
applied to the own system.

3.2. Passive EQ—Distributed Parameters

A solution to replace the lumped elements in the EQ is the use of transmission
lines equivalent to the components. Some solutions were proposed [15–19], to include
microstrip-based structures in the EQ form, due to size reduction in the mainline or
wideband frequency response. Solutions for gaining EQ based on ceramic substrate with
microstrip stepped impedance resonators also increase the bandwidth and input/output
return loss as presented in [20]. If the resonant structure is replaced in the EQ with a
composite right-/left-handed (CRLH) structure, a reduced size should be obtained as a
shorter CRLH can realize the same resonant frequency compared to right-handed structure,
in the traditional EQ [21].

Solutions presented include an open stub in an RL EQ series structure [15]. The RL
EQ placed in the middle of the microstrip line will perform the high-pass filtering. At low
frequency, the inductor’s impedance has lower value comparing to the termination resistor,
but its impedance will dominate at high frequency [22]. This method can greatly alleviate
the frequency dependent loss, transform the IL into a flat curve, and though reduce the
ISI. Before the series resistance of the RL network in [15], it is proposed to connect an open
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stub that will be equivalent to a LC-series resonator to shunt the equivalent reactance to
the ground. The schematic is represented in Figure 25a. The open stub has to make the
high-pass effect of EQ sharper, so the frequency response of the transmission line can rise
earlier than in RL EQ [15].
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Figure 25. Open stub EQ: (a) splitted line, (b) pre-EQ with open stub, and (c) eye diagram—in blue
is represented the eye diagram for the proposed EQ.

A new variant of this design is proposed below in Figure 25b. The IL at 10 GHz is
two times lower comparing to the individual trace and the eye diagram is represented in
Figure 25c. Dimensions of the transmission lines that replace the LC resonator equivalent
to the open stub can be deduced via synthesis process for the chosen working frequency.
Another solution may be suited from an optimization process. The values for widths and
lengths of the lines are in Table 2.

Table 2. Dimensioning the open stub EQ.

Transmission Line
Parameters TL1 TL2

Length (mm) 5 4.43
Width (mm) 0.43 1.26

Fitting the input and output impedances of the circuit can further improve this design.
The designed circuit has a return loss at 10 GHz of−53 dB, so better performance comparing
to the purely lumped EQs. Furthermore, the EM analysis may give another approach and
new perspectives for this network.
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4. Discussion and Conclusions

In terms of electrical perspectives, a PCB physical channel is characterized by frequency-
dependent material losses, reflections from discontinuities as connector board interfaces
and interferences from neighboring data paths. Attenuated and dispersed signal leads to
ISI. Reflections are addressed in modern links with via back drilling, T-coil matching net-
works or optimized connector interfaces as presented in [10,17]. Conventional approaches
to EQ design are based on time domain simulations along with experimental validation of
results in an iterative way until specifications are met [10]. For a given frequency range,
an EQ should fit the following rules: approximately flat transfer function, matched input
and output, and low residual losses. An example of amplitude EQ is presented in [16] with
resistor loaded, a resonant unit and the link represented through a transmission line.

In the previous sections, we described the use of EQ in the signaling systems with in
depth analyses on the passive EQ. The performance of the system is limited by ISI due to
frequency-dependent IL of the line. The scope of EQ is to flatten the frequency response of
the transmission system to increase the bandwidth of the line and to be able to increase the
data rates. EQs may be included in the transmitter or receiver or split between the two.

Using the filters’ synthesis approach, we started the analysis from the IL expressed in
dB of the given microstrip single ended line. The K coefficient was resolved and a series
of EQ were synthesized as follows: derivative RC, series RL, combined of the first two
variants for RLC EQ, bridged T RLC, and RL variants with open stub inserted to overcome
the frequency-dependent behavior of the interconnect which were implemented in MWO.
The EQ has to compensate for high frequency attenuation. Clearly, the EQ compensated
for lossy line’s frequency behavior, making IL flatter across frequency domain. However,
the flatness implies an overall attenuated amplitude of the signal. A practical EQ trade off
the IL for flatness response.

The time domain simulation results show clear improvement on the data eye metrics.
Before integration in the circuit of the EQ, overshoot and undershoot were observed in the
waveform at the output of the interconnect due to fast rise and fall time of the simulated
source and because the IL has no flat characteristic in frequency domain. In practice, a real
driver is typically slower and the signal path’s loss is slightly higher so a small overshoot
in simulation can be accepted. The new microstrip resonator structure proposed was
evaluated by simulation means in time domain and evidentiated similar results with the
existing model in [15], but with the advantage of positioning in front of the link. Future
evaluation of the proposed EQ might show some limitations of the structure.

Passive EQs offer the advantage of improved performance with no additional power
consumption. Moreover, we need to mention that this type of EQ fits easier integration into
the silicon. However, they demand tighter control of the components values for typical
digital applications. In addition, variation of the frequency response for passive EQ implies
active circuitry that will tend to degrade the power benefit.

Further investigation is based on the last variant of distributed elements EQ imple-
mented at the schematic level in previous section.
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Abbreviations
The following abbreviations are used in this manuscript:
ARBS Arbitrary Bit Sequence
AWR Applied Wave Research
BER Bit Error Rate
BITW Bit Width
CRLH Composite Right/Left-Handed
CTLE Continuous Time Linear Equalizer
DFE Decision Feedback Equalizer
DSP Digital Signal Processing
EQ Equalizer
FEC Forward Error Correction
FFE Feed-Forward Equalizer
I/O Input/Output
IL Insertion loss
ISI Intersymbol interference
LMS Least Mean Square
MWO Microwave Office
NRZ Non Return to Zero
PAM Pulse Amplitude Modulation
PCB Printed Circuit Board
PRBS Pseudo Random Bit Sequence
PRC Parallel RC
RC Resistor Capacitor
RLC Resistor inductor capacitor
S Scattering
SI Signal Integrity
SLR Series LR
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