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Abstract: The ability of an oocyte to undergo successful cytoplasmic and nuclear maturation,
fertilization and embryo development is referred to as the oocyte’s quality or developmental
competence. Quality is dependent on the accumulation of organelles, metabolites and maternal RNAs
during the growth and maturation of the oocyte. Various models of good and poor oocyte quality
have been used to understand the essential contributors to developmental success. This review covers
the current knowledge of how oocyte organelle quantity, distribution and morphology differ between
good and poor quality oocytes. The models of oocyte quality are also described and their usefulness
for studying the intrinsic quality of an oocyte discussed. Understanding the key critical features of
cytoplasmic organelles and metabolites driving oocyte quality will lead to methods for identifying
high quality oocytes and improving oocyte competence, both in vitro and in vivo.
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1. Introduction

Oocytes vary in their ability to undergo maturation and support embryonic development.
This ability is referred to as developmental competence or oocyte quality. An oocyte’s capacity
to resume meiosis, complete maturation, undergo successful fertilization, and support normal embryo
development is gradually acquired as the oocyte grows [1–4]. During growth from the primordial
follicle stage to ovulation, cytoplasmic organelles replicate and reserves of proteins and RNAs required
for post fertilization development are stored [5,6]. Growing oocytes are influenced by factors that
regulate follicular growth and by interactions with the surrounding granulosa cells and follicular fluid.
While sperm are of course essential for successful fertilization and embryo development, many of
the cellular and molecular mechanisms required for fertilization and early embryo development are
inherent to the oocyte [6,7]. Therefore, inadequate oocyte growth and maturation adversely affects
fertilization and subsequent embryo development. As Swain and Pool [6] wrote: “a prerequisite of
obtaining a healthy embryo is first obtaining a healthy oocyte”. Unfortunately, we still lack a clear
understanding of the essential features of a good quality oocyte.

In sheep and cattle, between 20% and 40% of embryos are lost during the first two weeks of
pregnancy [8,9]. O’Connell et al. [9] reported the majority of early embryo loss in sheep occurs
between Days 4 and 14 of gestation (12%), with 6% lost before Day 4 of gestation and minimal losses
between Days 14 and 30. This suggests the importance of both oocyte quality and the oviductal
environment for embryo survival prior to implantation. Insufficient oocyte quality can also affect
post-implantation pregnancy as evidenced by Ptak et al. [10]. These authors monitored pregnancy
loss in adult ewes following transfer of blastocysts produced in vitro from adult or pre-pubertal
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lamb oocytes. Pre-pubertal oocytes are known to have poor developmental competence [11]. While
60% of embryos transferred from lambs survived at Day 40 of gestation, there was significant loss
between Days 40 and 60 of gestation with further loss before term [10]. There was no significant
pregnancy loss from embryos transferred from adult ewes after Day 40 of gestation.

Assisted reproductive technologies (ART) are widely used to overcome infertility in all animals
including humans. ART techniques such as in vitro production of embryos (IVP) with cryopreservation
and embryo transfer, offer the ability to increase the rate of genetic gain in farmed animals [12] and to
conserve endangered species. Progeny can be produced from high genetic value females by oocyte
collection and IVP, in situations such as prepuberty, pregnancy or after death. Juvenile in vitro
embryo transfer (JIVET) can decrease the generation interval and increase the rate of genetic gain for
livestock-improvement by producing embryos and offspring from juvenile animals [13].

Despite ART being widely used, success rates are still low. For example, the live birth rate from
an average of 1.6 embryos transferred per women under the age of 35 years is 43.4%, per egg-retrieval
cycle, as reported by the Society for Assisted Reproductive Technologies in 2014 (SART; www.sart.org).
The rate of implantation steadily declines with age. Therefore, even for the younger age group with
good pregnancy prognosis, the majority of the embryos transferred will not implant [14]. Diseases
such as cancer, autoimmune or hematological conditions often require chemotherapy or radiotherapy
treatment that can result in premature ovarian failure [15]. Relatively new techniques, such as
the cryopreservation of oocytes or ovarian tissue, are being developed and used to retain fertility in
these patients. However, the live birth rate per vitrified mature oocyte is currently only 5.9% [16].
Cryopreservation and in vitro maturation of immature human oocytes is even less successful [17].

In cattle, around 20–30% of oocytes retrieved and fertilized in vitro develop into transferable
embryos, with 50% of the embryos transferred resulting in pregnancy and 5–10% of these lost before
birth [18]. Success rates in sheep and goats appear similar to that observed in cattle [19]. Hence, across
the board improvements in the selection of good quality oocytes and embryos, and culture systems
that can promote these are required.

Oocytes must undergo correct nuclear and cytoplasmic maturation following the luteinizing
hormone (LH) surge. Nuclear maturation is dependent on the formation and maintenance of the
meiotic spindle which requires centrosomal proteins, such as the nuclear mitotic apparatus and
γ-tubulin, as well as other regulatory proteins. Oocyte aging is known to cause dissociation of these
centrosomal proteins and disintegration of the meiotic spindle, resulting in aneuploidy and decreased
developmental potential. Several recent reviews on nuclear maturation and embryo development have
been published [20,21]. Cytoplasmic maturation involves the reorganization of organelles and the final
storage of mRNAs, proteins, lipids and transcription factors required during fertilization and early
embryogenesis [3,6,22–24]. This has also been termed oocyte capacitation; the ability of the oocyte
to successfully accomplish the cytoplasmic aspects of maturation [1]. It is well known that even if
oocytes are able to undergo successful nuclear, or meiotic, maturation to the metaphase II stage (MII)
of meiosis II, when the first polar body is extruded, the oocytes may not have accomplished adequate
cytoplasmic maturation to complete embryo development [3].

Markers of successful cytoplasmic maturation are not well defined or easily visualized making
it difficult to assess oocyte cytoplasmic quality [6]. Several oocyte controlled molecular and cellular
events that must occur to allow effective fertilization have been described by Swain and Pool [6],
and these include; zona pellucida formation, cumulus cell expansion, calcium storage and signaling,
cortical granule relocation and release, sperm processing and pro-nuclei formation. Oocyte cytoplasmic
organelles such as mitochondria, lipid droplets and cortical granules play a key role in determining
oocyte quality. The involvement of these organelles also provides information about metabolic
pathways important to the oocyte.

Increasing our knowledge of which organelles, metabolites and metabolic pathways are important
for determining oocyte competence will allow potential improvements to the success of both natural
fertility and ART. A recent review by Labrecque and Sirard [25] provides an overview of the current
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knowledge of transcriptomic differences between oocytes of different quality. These authors report
that a clear set of expressed genes that determine oocyte competence is yet to be identified. This may
be due to the poor correlation between mRNA and protein expression in oocytes, and high variability
between oocytes. Comparing the quantity and quality of organelles and metabolites between oocytes
of differing quality could provide a better understanding of factors regulating oocyte competence and
identify ways that oocyte quality can be manipulated. This requires the use of good models of high and
low oocyte developmental potential along with accurate methods for quantifying oocyte components.
This review will describe current models of oocyte competence and discuss the appropriateness of each
model for studying inherent oocyte quality. It will focus on quantitative studies of organelles involved
in cytoplasmic oocyte maturation. We will then explore current knowledge of the relationship between
organelle quantity and distribution, and oocyte developmental potential. Finally, we will discuss how
this knowledge could lead to improvements in both in vitro and in vivo oocyte quality.

2. Models of Oocyte Competence

Many different models of high or low oocyte developmental competence have been used to study
factors important for oocyte quality. To be effective these experimental models must compare high
and low quality oocytes under similar environmental conditions and be able to clearly distinguish
differences in features inherent to these oocytes. Some commonly used models for examining intrinsic
organelle differences in relation to oocyte quality will be described in this section.

2.1. Follicle and Oocyte Size

Oocytes from larger follicles are generally considered to have higher developmental potential
than those from smaller follicles as it is hypothesized that they have had more time to grow and
accumulate the necessary components for maturation [2,26–29]. In this view, the difference in
oocyte competence depends on whether follicle size accurately indicates oocytes that have completed
growth. Fair et al. [30] reported a small positive correlation (r = 0.32) between follicular size and oocyte
diameter but also found some fully-grown bovine oocytes in smaller follicles. Ptak et al. [10] also
found a positive correlation between follicle and oocyte diameter in adult ewes (r = 0.61) but this
correlation was absent in prepubertal lamb ovaries (r = 0.11). Thus, follicle size may not be a reliable
predictor of oocyte quality and the size of the oocyte itself may be a more useful indicator.

Pig oocytes with a larger volume have been shown to have higher fertilization rates than
smaller oocytes [31]. Accordingly, in humans, embryos from the pregnant and younger age groups
started with larger oocyte volumes when compared to unfertilized oocytes or uncleaved zygotes [32].
Human embryos undergoing earlier cleavage also had larger volumes than those developing more
slowly. Reader et al. [33] and Gandolfi et al. [34] reported oocytes from adult sheep and cows
respectively, presumably with higher developmental competence, were larger than oocytes from their
juvenile counterparts. In contrast, O’Brien et al. [35] and O’Brien et al. [36] found no difference in
the size of oocytes harvested from juvenile or adult pigs or sheep. Adult ewe and lamb oocytes
reach their maximum diameter in follicles that are between 0.4 and 0.6 mm in diameter [37,38].
Thus, lamb and adult ewe oocytes that were aspirated from follicles greater than 1 mm diameter [33]
or between 2 and 4 mm diameter [35] were expected to be fully grown.

Conflicting observations from some of these studies could be due to the methods used for
determining oocyte size and the number of oocytes measured. Oocyte diameter can be measured
non-destructively but, as oocytes are not perfectly spherical, more than one measurement should be
made. The square root of the maximum diameter multiplied by the diameter at right angles estimates
true diameter, better than a single measurement [39]. Most of the papers referenced above calculated
the oocyte volume (either total or cytoplasmic) from the diameter only. However, this does not account
for the irregular shape of the oocyte ooplasm and the size of the perivitilline space. The only methods
available for measuring volume accurately rely on stereological techniques or confocal microscopy and
thus are destructive. Cytoplasmic volume may better reflect the amount of organelles and accumulation
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of metabolites that influence oocyte quality rather than total oocyte diameter that includes the zona
pellucida, which can vary in thickness. Overall, it appears that larger oocytes are of better quality.

2.2. Glucose-6-Phosphate Dehydrogenase Activity

A popular method for identifying competent oocytes relies on staining with brilliant cresyl blue
(BCB) to measure glucose-6-phosphate dehydrogenase (G6PD) activity. BCB is promoted as a non-toxic
method for identifying oocyte potential. The activity of G6PD decreases in oocytes that have completed
growth [31]. These oocytes are unable to reduce BCB to a colorless compound and therefore retain
the blue dye (BCB+). Oocytes that are still growing appear unstained (BCB−). A higher proportion
of BCB+ oocytes develop to blastocyst stage than BCB− oocytes [40–42]. Nonetheless, not all BCB+,
and some BCB−, oocytes are competent. This technique is based on a single metabolic pathway and
differences in competence are likely to be due to differences in the stage of oocyte growth rather than
reflecting intrinsic differences in oocyte quality [43].

2.3. In Vivo Versus In Vitro Maturation

Oocytes matured in vitro are less developmentally competent than those matured in vivo [3,44]
and both systems have been used to compare oocyte quality. For example, Rizos et al. [44] compared
blastocyst rates between immature bovine oocytes that were in vitro matured and fertilized, and in vivo
matured oocytes collected following synchronization and superovulation. In vivo matured oocytes
had higher blastocyst rates than those matured in vitro.

The differences observed between in vitro and in vivo matured oocytes are most likely induced
by the differences in the maturation environment rather than due to fundamental oocyte quality.
This makes it difficult to identify the factors responsible for altering oocyte competence [25].
Good quality oocytes may be able to tolerate less optimal conditions than poorer quality oocytes
but this is difficult to prove, as the quality of the oocyte is not usually known before the experiment.
This model is however useful for determining ways of improving in vitro embryo production methods.
It may also provide insights into which oocyte genes, organelles and metabolic pathways are affected
by a suboptimal maturation environment, and are therefore important for oocyte quality.

2.4. Maternal Age

There is clear evidence that in adult animals, including humans, oocyte competence reduces with
increasing age [45,46]. Much of the current literature also agrees that oocytes from prepubertal
mammals; including rodents, cattle, sheep and pigs; have limited potential to undergo normal
embryogenesis and produce viable offspring when compared to their adult counterparts, as reviewed
by Armstrong [11].

The blastocyst rate is decreased in embryos produced in vitro from prepubertal sheep, cow, pig
and mouse oocytes compared to those derived from adults [47–53]. In two similar studies, only
0.7% and 4% of harvested lamb oocytes produced offspring compared to 13% and 11% of oocytes
from adult ewes following in vitro embryo production (IVP) and transfer to adult recipients [10,48].
Similarly, in the cow, calving rates from IVP embryos transferred to adult recipients were 22% for
embryos produced from calf oocytes and 39% for cow embryos [54]. Therefore, both juvenile and aged
oocytes provide a good model for studying the mechanisms that underlie acquisition of developmental
competence [55,56].

Methods for improving oocyte quality in ART may be developed through understanding what
limits oocyte competence in these maternal age models. Consequently, women delaying reproduction
or undergoing early onset menopause may still be able to reproduce and JIVET may become a more
efficient method for increasing the rate of genetic gain in farmed species.

Models described in the section above have been used in studies to identify factors contributing to
developmental competence. The following sections of this review focus on research that has measured
organelle quantity differences between good and poor oocytes during maturation.
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3. Mitochondria and Oocyte Quality

Mitochondria are the most commonly studied organelle relative to developmental competence.
Their essential roles in the oocyte include ATP production and the control of Ca2+ and redox
homeostasis, as reviewed by Dumollard et al. [57]. Several mitochondrial parameters appear altered
in oocytes with high or low developmental competence, with improved oocyte quality attributed
to an increased number of mitochondria, altered cytoplasmic mitochondrial distribution and higher
mitochondrial membrane potential [31,33,58,59].

3.1. Mitochondrial Morphology

Prior to oocyte maturation the mitochondria are mainly spherical with few cristae and are assumed
to be relatively inactive. Oocytes from some species, including cow, sheep, and goat, have a proportion
of mitochondria with an arc-like structure or “hood” that have been described as hooded or cap-shaped
mitochondria [5,38,60]. In cow and sheep oocytes, the hooded form of mitochondria (Figure 1) becomes
more prevalent during the later stages of growth and maturation [5,33,38,61]. In human oocytes,
hooded, ring- or horseshoe-shaped mitochondria have been observed [62,63]. Mouse oocytes contain
numerous vacuolated or ring-like mitochondria that appear similar to hooded mitochondria except
that the space within the organelle is shown to be completely enclosed in all of the observed sectioned
mitochondria [64–66]. Hooded mitochondria are rarely seen in pig oocytes [67,68]. Diagrams of
the various forms of mitochondria observed in mature oocytes from human, cow, sheep, pig and
mouse are shown in Figure 2.
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(white arrow). Scale bar = 1 µm.
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Figure 2. Diagram of the profiles of mitochondria observed in TEM images of oocytes from the human,
cow, sheep, pig and mouse: (a) typical spherical with transverse cristae; (b) spherical with peripheral
cristae; (c) vacuolated; (d) hooded or cap-shaped; (e) ring-shaped; (f) cup- or horseshoe-shaped;
(g) elongated, irregular; and (h) shell-like. Profile (a) has been observed in oocytes from all these
species; (b) in all except sheep; (c) in cow, sheep and mouse oocytes; (d) in human, cow and sheep
oocytes; (e) in cow and mouse; (f) in human and sheep; (g) in pig; and (h) in sheep, pig and mouse.
See text for references.

Changes in mitochondrial morphology are seen in several models of oocyte quality based on
maternal age. Simsek-Duran et al. [65] showed differences in the ultrastructure of mitochondria
between oocytes from young and old mice and hamsters. Older mice, which have reduced fertility, had
a higher percentage of vacuolated mitochondria in their oocytes than younger animals. Aged hamsters
had a higher proportion of mitochondria with electron dense matrices and less with clearly visible
cristae compared to the oocytes from young, more fertile, animals. Juvenile lamb oocytes had a higher
proportion of hooded mitochondria before maturation, and a lower proportion after maturation,
compared to the more competent adult ewe oocytes [33]. In the pig, oocytes from prepubertal animals
had mitochondria that were compartmentalized and contained granules, while the more competent,
post-pubertal oocytes were described as shell-like with no granules [68]. Thus, in general, poor
quality oocytes were characterized by altered mitochondrial morphology including denser matrices,
the presence of granules or vacuoles and an altered timing for the formation of hooded mitochondria.

The functional significance of these mitochondrial morphological differences is unclear but
the morphology may reflect changes to the energetic state of the mitochondria as reviewed by
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Galloway et al. [69]. Inhibitors of components of the electron transport chain, chemical uncoupling
with carbonyl cyanide phenylhydrazones (FCCP, CCCP), and hypoxic conditions all induce the
formation of donut-shaped mitochondria in various cell types [70–74]. However, there does not appear
to be similar published studies that relate changes in mitochondrial morphology to function in oocytes.
Such research could potentially provide insight into improving mitochondrial function in oocytes.

3.2. Mitochondrial Distribution

In most species mitochondria move from a peripheral location to a more even distribution
throughout the oocyte cytoplasm during maturation [33,38,67,75,76]. In the mouse GV stage oocyte,
however, mitochondria are evenly distributed and migrate to a perinuclear location during germinal
vesicle breakdown (GVBD) [64,77]. In mouse oocytes, abstriction of the polar body is accompanied
by movement of mitochondria with the nucleus to the periphery of the cell. Following abstriction,
the mitochondria become evenly distributed again. This suggests the mitochondria are providing
a local supply of ATP for GVBD and relocation of the chromosomes [64]. Mouse oocytes that remain
at GV stage or fail to mature show no mitochondrial translocation. Perinuclear distribution of
mitochondria associated with polar body abstriction may not feature in pig, cow and sheep oocytes
maturation because the nucleus in these species tends to be already located peripherally.

The distribution pattern of oocyte mitochondria has been linked to developmental competence in
several species including the mouse, cow, pig and sheep [33,35,78–80]. Mature oocytes from cows and
pigs with greater developmental potential were more likely to have mitochondria distributed evenly
throughout the cytoplasm than their poorer quality cohorts [79,80]. In sheep, O’Brien et al. [35] reported
a greater density of mitochondria in the cortex of adult animals after IVM, compared to the middle of
the oocyte; while in prepubertal lamb oocytes, the density was the same in both regions. In contrast,
Reader et al. [33] showed that prior to maturation, less competent prepubertal lamb oocytes have
a higher density of mitochondria in the center but mitochondria become evenly distributed in both
adult and lamb oocytes after maturation. Similarly, Machatkova et al. [81] reported that bovine oocytes
from small and medium follicles both had evenly distributed mitochondria after IVM. They also
reported a higher percentage of the immature oocytes from small follicles had peripherally located
mitochondria than those from the medium sized follicles.

In general, higher oocyte quality is associated with an even distribution of mitochondria
throughout the cytoplasm of the mature oocyte. Since mitochondria localize to areas where either high
levels of ATP or Ca2+ signaling are required [82], the relocation of mitochondria during the maturation
process may be crucial to oocyte function. In addition, an even distribution of mitochondria is believed
to be important prior to cleavage, to ensure that each blastomere receives sufficient mitochondria to
survive early embryogenesis [83].

3.3. Mitochondrial Quantity

Various methods have been developed to measure mitochondrial quantity. These include
morphometric analysis of organelle number, quantification of mtDNA copy number and measurements
of mitochondrial activity. While these methods all focus on measuring mitochondria, they each have
strengths and limitations when applied to oocyte quality research.

Morphometric, or stereological, analysis using electron microscopy can provide information
regarding density, morphology and size of the mitochondria, but while morphology may provide some
information on mitochondrial activity, this is not well understood. It is a time consuming, complex
procedure that requires specialist skills and equipment thus limiting the number of samples that can be
practically assessed. Stereological methods for quantifying organelles require robust random sampling
to prevent bias due to uneven organelle distribution. In contrast, measurement of mtDNA copy
number by quantitative PCR is relatively simple to undertake in a well-equipped molecular biology
laboratory. Thus, this method is amenable to obtaining data from a large number of samples. However,
the relationship between mtDNA copy number, the number of mitochondria and mitochondrial
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activity has not been clearly established in oocytes. The actual number of mtDNA copies per organelle
is difficult to confirm unequivocally [84,85]. It is assumed that there are between one and two copies of
the mitochondrial genome per mitochondria but this appears to vary, with one study suggesting greater
than two genome copies per mitochondria [59] while another indicated less than one genome copy [33].
In addition, there is greater variation in mtDNA copy number among oocytes when compared to
mitochondrial number measured by stereology [33,86].

Quantification of mitochondria has also been measured with MitoTracker dyes, which are
selectively concentrated in active mitochondria. MitoTracker Green is taken up by active mitochondria
but is relatively insensitive to mitochondrial membrane potential (MMP) [87] and therefore has been
used as a means to quantify active mitochondrial mass or number. Inactive mitochondria are not
stained by MitoTracker Green and, in the case of the oocyte which is thought to contain a high
proportion of mitochondria that are relatively inactive, MitoTracker Green fluorescence intensity
may not provide a very accurate estimation of overall mitochondrial mass. Other mitochondrial
specific fluorescent dyes, such as MitoTracker Red, MitoTracker Orange and JC-1 are affected by MMP.
This means that the intensity of fluorescence is dependent on the activity levels of the mitochondria.
Thus, these dyes measure mitochondrial activity but they are not a good method for measuring overall
mitochondrial mass. An important aspect of MitoTracker Orange is that under specific conditions it
inhibits respiratory complex I and induces mitochondrial permeability potentially making it unsuitable
for measuring changes in MMP [87].

Making quantitative comparisons using fluorescent dyes and microscopy requires careful
control for technical differences between individual samples such as stain uptake, oocyte thickness,
light scattering and absorbance by the specimen. The microscope settings must also be standardized
between individual samples. In confocal microscopy the power density of the illuminating spot
decreases as the depth of the specimen increases and hence the amount of light emitted from
the fluorophore will diminish with depth [88]. Thus, signal will vary across the diameter of a spherical
oocyte as a function of cell depth not mitochondrial number. This means mitochondrial-specific
dyes are useful for measuring mitochondrial activity only when used under well-defined conditions.
The limitations of the method used to quantify mitochondria need to be considered when interpreting
the results.

3.3.1. Mitochondrial Organelle Number and Oocyte Quality

Replication of mitochondria has been shown to occur during oocyte growth but not during
cleavage [85,89,90]. Consequently, the presence of an adequate number of evenly distributed
mitochondria in the mature oocyte is believed to be essential to supply the energy requirements
of each blastomere during early embryo development [57]. Studies in humans report the birth of
healthy babies from patients with recurring implantation failure following ooplasmic transfer from
younger donors. The successful pregnancies were believed to be due to transfer of functional and/or
additional mitochondria to the oocytes [91,92] but no controlled studies have been performed to prove
this and the practice has been discontinued in some countries due to concerns about biological safety
and the ethics of generating offspring with genetic material from three parents.

Mitochondrial density, volume and number were measured in oocytes from prepubertal lamb
and adult sheep using electron microscopy and stereological techniques [33]. The total volume and
number of mitochondria per oocyte increased in adult ewes during maturation but not in lamb
oocytes with the overall mitochondrial volume and number being greater in adult oocytes compared
to the lamb oocytes after IVM. Lamb oocyte mitochondria were larger than those in adult oocytes after
maturation. Two other quantitative ultrastructural studies also reported a greater volume fraction (VV),
or density, of mitochondria in adult cow and sheep oocytes compared to prepubertal oocytes following
maturation but the numerical density (NV) of mitochondria did not differ [35,93]. These results indicate
that the adult oocyte mitochondria were larger which differs from the results of Reader et al. [33] in
the sheep. Pedersen et al. [68] counted mitochondria in similar sized, immature oocytes from pre- and
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post-pubertal pigs that were four to six months old. This study found no difference in the number,
volume or density of mitochondria between these two groups of oocytes, however, smaller prepubertal
oocytes had fewer mitochondria but at a similar density. The small number of studies that have
compared mitochondrial organelle number between oocytes of differing quality generally support
the premise that better quality oocytes have more mitochondria.

3.3.2. Mitochondrial DNA Copy Number and Oocyte Quality

Numerous studies across different species found no difference in the number of copies of
mitochondrial DNA in fully-grown oocytes before and after maturation [94–98]. Conversely, studies
by Pawlak et al. [99] in pig and Iwata et al. [46] in cow showed a significant increase in mtDNA copy
number in oocytes after maturation. All studies reported high inter-oocyte variation in mtDNA copy
number. The Pawlak study examined a much larger sample size than the other reports, which may
have enabled statistical differences to be observed between the immature and mature oocytes.

The average mtDNA copy number in both human and pig oocytes was significantly lower in
cohorts that failed to fertilize compared to cohorts with normal fertilization [31,100]. Mitochondrial
DNA copy number was also reported to be lower in oocytes from older woman, and from aged
mice and hamsters compared with younger, more fertile, animals [32,65]. There appeared to be trend
toward a gradual decline in mtDNA copy number with age in cows from 50 months of age and
older [46]. However, there was no relationship between mtDNA copy number and maternal age in
oocytes from young (21 to 89 months) and old cows (≥90 months) despite the older cows having an
increased rate of abnormal fertilization. Similarly, there was no difference in the mtDNA copy number
between prepubertal and adult ooctyes in sheep and pigs [33,99,101].

Embryos that cleaved at a faster rate, and are presumed to be of better quality, had a larger oocyte
volume with a positive correlation indicated between blastomere volume and mtDNA copy number
in human embryos [32]. Several other models of oocyte quality have also been reported to have
greater mtDNA copy numbers in oocytes with higher developmental potential including; rat oocytes
from larger follicles [102]; mouse oocytes following a natural cycle as opposed to controlled ovarian
hyperstimulation or IVM [103]; and BCB+ oocytes from pigs [31]. Ge et al. [104] have also shown that
reducing mtDNA copy number in mouse oocytes decreases blastocyst rate.

Overall current evidence supports the idea that highly competent oocytes have a greater mtDNA
copy number, than less competent oocytes.

3.3.3. Mitochondrial Activity and Oocyte Quality

The degree of mitochondrial activity and levels of ATP production in bovine oocytes have
been shown to increase during IVM [58,79,81,105]. However, contradictory results from studies
comparing the intensity of mitochondrial specific fluorescent dyes, such as MitoTracker Red
or MitoTracker Orange, between oocytes positive or negative for BCB staining are reported.
Torner et al. [41] reported lower mitochondrial fluorescence in immature bovine BCB+ oocytes
compared to BCB− oocytes, while Castaneda et al. [106] found no differences between BCB+ and BCB−
immature bovine oocytes. Catala et al. [42] also reported no difference in mitochondrial fluorescent
intensity before maturation between BCB+ and BCB− prepubertal sheep oocytes, but mitochondrial
activity decreased in BCB− oocytes after IVM. These contradictory observations may be due to different
culture media, oxygen tension or the mitochondrial stains used.

Bovine oocytes with dark cytoplasm had greater developmental potential than pale or brown
oocytes, and also had greater fluorescent intensity when stained with MitoTracker Green than the paler
oocytes [107]. Machatkova et al. [81] found that bovine oocytes from small (2 to 5 mm) follicles
exhibited an increase in the intensity of MitoTracker Orange during maturation while there was no
change to the intensity of oocytes from medium follicles (6 to 10 mm). ATP production increased
during maturation in the oocytes from both medium and small follicles. ATP content was also higher
in “category 1” oocytes, graded on their morphology and exhibiting higher blastocyst rates, than those
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from “category 3 and 4” [79]. Both mitochondrial activity, measured with JC-1 stain, and ATP levels
were higher in mouse oocytes collected following either a natural cycle or IVM when compared to
those from controlled ovarian hyperstimulation treatment [103]. While IVM oocytes had similar levels
of mitochondrial activity and ATP to oocytes from natural cycles, they exhibited higher levels of
potentially damaging reactive oxygen species (ROS).

Ge et al. [104] also reported inhibition of oxidative phosphorylation in mouse oocytes reduced
MMP, ATP, and re-distribution of mitochondria as well as maturation and blastocyst rates showing that,
as expected, mitochondrial activity is important for oocyte quality. However, too much mitochondrial
activity may produce increased levels of ROS and thus be detrimental to oocyte quality [108]. Reducing
mtDNA copy number with 2’,3’-dideoxycytidine in mouse oocytes had no effect on MMP, ATP levels,
mitochondrial distribution or oocyte maturation and fertilization [104]. It did however decrease
blastocyst rate. These authors concluded that mitochondrial activity and ATP production did not
correspond to mtDNA copy number.

It is difficult to conclude, from the studies described in this section, whether increased
mitochondrial activity corresponds to increased or decreased oocyte quality. Changes in ATP levels
occur in seconds and can be due to alterations in production and/or consumption which are perhaps
more likely to correspond to variations in the immediate environment rather than to the intrinsic
quality of the oocyte. It is therefore the ability of the oocyte to respond to environmental perturbations
that denotes its quality.

3.4. Summary of Mitochondria in Oocyte Quality

As a whole, studies examining differences in mitochondria in relation to developmental
competence provide evidence that a critical number, distribution pattern and morphology of
mitochondria are required for successful oocyte and embryo development. The relationship between
mtDNA copy number, mitochondrial number, ATP production and MMP are still unclear and need
further exploration.

4. Role of Lipid Droplets in Oocyte Quality

It is well known that mammalian oocytes contain large stores of lipid and that the relative
abundance of lipid is species specific. Ultrastructural studies have demonstrated high numbers of
lipid droplets in the cytoplasm of bovine, porcine and ovine oocytes [67,75,109]. However, mouse
oocytes have smaller and fewer electron-dense lipid droplets than domestic animal species while
human oocytes appear to have none. The essential role played by fatty acids in oocyte developmental
competence has been recently reviewed by Dunning et al. [110]. Very few studies have examined
the composition and function of the oocyte lipid reserve [111,112]. McEvoy et al. [111] showed the fatty
acid content of pig oocytes was around two-fold that of cattle and sheep oocytes. The three most
prevalent fatty acids in these three species were palmitic, oleic and stearic acid which together make
up approximately two thirds of the total fatty acid mass. Saturated fatty acids are more abundant
than mono- or poly-unsaturated fats. Oocyte fatty acids are believed to be a source of metabolite
for energy production, demonstrated by the inhibition of β-oxidation during oocyte maturation
which led to decreased embryo viability in the pig, cow and mouse [113–115]. Oocytes also contain
phospholipids and cholesterol that are important for the formation of membranes required for repeated
cell division to form an embryo. Many cell signaling molecules are also formed from fatty acid
precursors [111,116,117].

4.1. Lipid Droplet Quantity

Crocomo et al. [75] described an apparent reduction in the number of lipid droplets in sheep
oocytes after IVM while Reader et al. [33] reported no difference in the volume of lipid droplets before
and after IVM. Results from lipid measurements in cow oocytes are also contradictory. When stained
with Nile red the intensity of fluorescence in cow oocytes decreased after IVM and there appeared to
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be less lipid droplets in ultrathin sections, indicating a decrease in total lipid content [118]. However,
using Bodipy stain and confocal microscopy Warzych et al. [119] reported an increase in lipid droplet
number in oocytes from adult cows after IVM. Quantitative ultrastructural studies of pig oocytes
showed the number of lipid droplets per area, or numerical density (NV), increased towards the end of
maturation, although the volume density (VV) did not change [67]. Quantitative ultrastructural studies
comparing oocytes from juvenile and adult cows and sheep found no difference in the volume density,
numerical density or total volume of lipid droplets between the age groups [33,93]. Warzych et al. [119],
however, reported an increase in lipid droplet number in adult cow oocytes during IVM but no change
in prepubertal heifer oocytes.

Removal of cumulus cells prior to IVM reduces oocyte developmental competence (see
Tanghe et al. [120] for review) and Auclair et al. [118] have reported a reduction in total lipids as
revealed by Nile red staining in denuded oocytes as compared to cumulus enclosed oocytes. This did
not correspond to significant differences in the area fraction of lipid droplets between immature oocytes,
mature denuded oocytes and cumulus enclosed oocytes. This agrees with studies in the cow and
sheep [33,93]. The electron microscopy studies from de Paz et al. [93] and Reader et al. [33] quantified
lipid droplets stained with osmium tetroxide which binds mainly to unsaturated lipids [121]. Nile red
stains both saturated and unsaturated fats and may be more appropriate for quantifying total lipid [122].
Differences between studies may also be due to differing concentrations of lipids present in the media.
This would influence whether the oocyte utilized its own lipid stores or could incorporate fatty acids
from the environment.

Oocytes with darker cytoplasm are believed to contain more lipid droplets and have better
developmental outcomes than paler oocytes [107]. Darker oocytes contain more saturated stearic
acid than lighter colored oocytes that have higher amounts of oleic and linoleic fatty acids although
the amounts of saturated palmitic acid are similar in both [123]. Therefore, oocyte quality may actually
depend on the amount of a particular type of lipid rather than total lipid quantity. Aardema et al. [124]
showed that both palmitic and stearic acid reduced bovine oocyte competence when added during
IVM, while oleic acid improved development and could counteract the negative effects of palmitic
and stearic acid. Oocytes that stain positively for BCB, indicating reduced G6PD activity, have high
competence compared to BCB negative oocytes. Castaneda et al. [106] reported that BCB positive
bovine oocytes had greater amounts of lipid stained with a Bodipy neutral lipid fluorescent probe than
BCB negative oocytes.

4.2. Lipid Droplet Distribution

As with mitochondria, lipid droplet distribution changes during oocyte maturation and differs
between species. Lipid droplets were located peripherally in pig oocytes, centrally in mouse oocytes
and evenly in sheep and cow after in vitro or in vivo maturation [119,125–127]. Warzych et al. [119]
demonstrated that lipid droplets were located peripherally in cow oocytes before IVM and became
evenly distributed after IVM. While prepubertal and adult cow oocytes were examined in this study,
differences in lipid distribution between the two age groups were not described. Comparison between
adult ewe oocytes and prepubertal lamb oocytes after IVM showed lipid droplets were evenly
distributed in a higher proportion of adults oocytes, with a predominantly peripheral distribution in
oocytes from lambs [127]. Scanning electron microscopy images of peripherally and evenly distributed
lipid droplets in sheep oocytes are shown in Figure 3. In pigs, however, the lipid droplets were evenly
distributed in prepubertal oocytes and centrally located in postpubertal oocytes both before and after
IVM [68]. Therefore, lipid droplet distribution may be important for oocyte quality but varies between
species. Since fatty acids have been shown to be an essential source of energy in oocytes [110], it may
be important for the mitochondria and lipid droplets to be co-located to facilitate the transport of fatty
acids into the mitochondria for beta-oxidation. Further research is needed to understand how lipid
droplet number, size and location influence oocyte quality.
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Figure 3. SEM images of lipid distribution in mature sheep oocytes (oo) surrounded by zona pellucida
(zp) and expanded cumulus cells (cc). Lipid droplets (arrows) are either distributed: throughout
the cytoplasm (a); or in a peripheral location (b). A higher proportion of oocytes from adult sheep
had evenly distributed lipid droplets than those from prepubertal sheep that had predominantly
peripherally located droplets. Scale bar = 20 µm.

5. Vesicles and Oocyte Quality

Oocyte vesicles have been described in a large number of species including human, sheep,
cattle, pigs, mice and possums [38,62,67,76,128–130]. When oocytes are prepared by conventional
TEM preparation methods, the vesicles appear as large, translucent organelles, approximately
1–3 µm in diameter, sometimes with a distorted or interrupted membrane. Some vesicles contain
amorphous and membranous material and are often closely associated with endoplasmic reticulum.
Figure 4 shows a transmission electron microscope image of vesicles in a sheep oocyte. Despite
the fact that they occupy between 15% and 36% of the oocyte cytoplasm [33,35,67] the contents
and functions of these organelles have not been identified [75]. There is some evidence that oocyte
vesicles may contain N-acetylgalactosamine and Ca2+ [93,131] while others have hypothesized that
they contain lipid [33,132]. The density and size of these vesicles are reported to reduce and to
become more centrally located during maturation of pig, cow and sheep oocytes [33,38,67,118,133].
This suggests that the contents of these vesicles may be important for oocyte maturation and subsequent
embryo development.

Biology 2017, 6, 35  12 of 22 

 

 

Figure 3. SEM images of lipid distribution in mature sheep oocytes (oo) surrounded by zona pellucida 
(zp) and expanded cumulus cells (cc). Lipid droplets (arrows) are either distributed: throughout the 
cytoplasm (a); or in a peripheral location (b). A higher proportion of oocytes from adult sheep had 
evenly distributed lipid droplets than those from prepubertal sheep that had predominantly 
peripherally located droplets. Scale bar = 20 μm. 

5. Vesicles and Oocyte Quality 

Oocyte vesicles have been described in a large number of species including human, sheep, cattle, 
pigs, mice and possums [38,62,67,76,128–130]. When oocytes are prepared by conventional TEM 
preparation methods, the vesicles appear as large, translucent organelles, approximately 1–3 μm in 
diameter, sometimes with a distorted or interrupted membrane. Some vesicles contain amorphous 
and membranous material and are often closely associated with endoplasmic reticulum. Figure 4 
shows a transmission electron microscope image of vesicles in a sheep oocyte. Despite the fact that 
they occupy between 15% and 36% of the oocyte cytoplasm [33,35,67] the contents and functions of 
these organelles have not been identified [75]. There is some evidence that oocyte vesicles may 
contain N-acetylgalactosamine and Ca2+ [93,131] while others have hypothesized that they contain lipid 
[33,132]. The density and size of these vesicles are reported to reduce and to become more centrally 
located during maturation of pig, cow and sheep oocytes [33,38,67,118,133]. This suggests that the 
contents of these vesicles may be important for oocyte maturation and subsequent embryo development. 

 
Figure 4. TEM image of the cytoplasm of a sheep oocyte with vesicles (v) containing granular material 
or membranous structures (arrowheads), and appearing to bud or coalesce with other vesicles (black 
arrows). Scale bar = 2 μm. 

Figure 4. TEM image of the cytoplasm of a sheep oocyte with vesicles (v) containing granular material or
membranous structures (arrowheads), and appearing to bud or coalesce with other vesicles (black arrows).
Scale bar = 2 µm.



Biology 2017, 6, 35 13 of 22

5.1. Vesicle Quantity

Vesicle volume was greater in adult ewe oocytes compared to lamb oocytes prior to maturation.
During maturation, vesicle volume decreased in both groups to reach a similar volume [33].
This decrease in volume was due to a decrease in the size of these organelles and suggests the more
competent adult oocytes utilized more vesicle content than the less competent lamb oocytes. Following
IVM, vesicle density was greater in denuded oocytes, which have a reduced developmental competence
than cumulus enclosed oocytes, and both were lower than the even less competent immature
oocytes [118]. These two studies indicate that either the quantity of vesicles prior to maturation,
or the ability of the oocyte to metabolize the contents of these vesicles during maturation, contributes
to oocyte competence.

It is interesting to note that vesicle density in an electron microscope study of sheep oocytes
decreased but lipid droplet density did not [33]. Given the decrease in Nile red staining observed
during maturation [118], this dye may be staining lipid other than that located in the electron-dense
lipid droplets, particularly given that this dye can stain both saturated and unsaturated lipid [122].
This supports the notion that the vesicles observed by electron microscopy also contain lipid [33].

5.2. Vesicle Distribution

Vesicles were predominantly located in the center of both adult ewe and lamb oocytes, but
due to their high volume density, occupied all but the periphery of the oocyte [33]. In pig oocytes,
the distribution of the vesicles was described as even or central in prepubertal oocytes and central in
postpubertal oocytes before IVM. After IVM, vesicles re-distribute to cortical or central (prepubertal)
and cortical (postpubertal) locations [68].

Until the contents of these vesicles are confirmed it will be difficult to determine their role
in developmental competence. The evidence so far is that these organelles contain a mixture of
metabolites necessary for oocyte maturation and early embryo development and increased utilization
of vesicles during maturation may be associated with improved oocyte quality.

6. Role of Cortical Granules in Oocyte Quality

Successful fertilization requires that mammalian oocytes have a defense mechanism to prevent
polyspermy; that is, the penetration of the oocyte by more than one sperm [134]. One method for
preventing polyspermy involves the biochemical modification of the zona pellucida (ZP) following
the exocytosis of cortical granules. Cortical granules are secretory organelles produced from
Golgi complexes during oocyte growth that become located close to the oocyte membrane as it
matures [38,75,134,135]. When the sperm plasma membrane fuses with the oolemma, a series of
intracellular signaling pathways are activated that stimulate exocytosis of the cortical granules releasing
their contents [136]. The calcium chelator, BAPTA, has been shown to inhibit this process while calcium
ionophore induces the release of cortical granules. Therefore, cytoplasmic calcium elevation appears
to be required for this reaction [137,138]. The exact composition of cortical granules is difficult to
determine due to the small amount of cortical granule material in mammalian oocytes but they
have been shown to be rich in carbohydrates and contain a trypsin-like proteinase, ovoperoxidase,
N-acetylglucosaminidase and several other proteins [134].

Cortical Granule Quantity and Distribution

Cortical granules are located in clusters throughout the immature oocyte cytoplasm in cattle
and sheep. However, in pig, mouse and human oocytes the cortical granules are never clustered and
are located in the periphery of the oocyte. In all species, the cortical granules relocate to individual
positions immediately below the oolemma during maturation [38,76,99]. O’Brien et al. [35] reported
a lower volume fraction and size of cortical granules in prepubertal lamb oocytes compared to adult
oocytes following IVM which may be related to the increased rate of polyspermy reported in oocytes
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from juvenile animals. However, there was no difference reported in the numerical volume density of
cortical granules between juvenile and adult cow oocytes [93]. The redistribution of cortical granules
to the oolemma in prepubertal calf and pig oocytes was delayed [51,68], but appeared to be normal in
prepubertal lamb oocytes [33]. Prepubertal goat oocytes were described as having more electron dense
and compact cortical granules than their adult counterparts but there appeared to be no difference in
the distribution and migration of cortical granules between the age groups [139]. There appears to
be some evidence that the size of the cortical granules and the time taken to relocate to the oolemma
during maturation influences oocyte competence. However, further research is needed to better
understand what regulates the size, composition and distribution of cortical granules in oocytes.

7. Manipulating Oocyte Organelles to Improve Quality

It is clear that the quantity of oocyte organelles affects oocyte quality, but very little research has
been published on the manipulation of organelle quantity to improve oocyte competence. Cytoplasmic
transfer, where a portion of cytoplasm from donor oocytes is microinjected into the recipient oocyte, has
resulted in live-births in women with repeated implantation failure after assisted reproduction [140].
Whether or how the physiology of the resulting embryo is actually altered is not known. It has been
presumed that the “cytoplasmic rescue” occurs as a result of additional mitochondria transferred
to the recipient oocyte but few studies have confirmed this and other cytoplasmic factors may be
responsible. El Shourbagy et al. [31] transferred purified preparations of mitochondria from BCB+
pig oocytes to maternally related BCB− oocytes and demonstrated an increase in fertilization rate,
but later embryo development was not reported. Mice with an age-related decline in fertility have been
shown to have mitochondrial dysfunction. Supplementation of old mice with coenzyme Q10 resulted
in an increased ovarian reserve, restored mitochondrial respiration, membrane potential and ATP
production to levels equivalent to young mice, and reduced chromosomal misalignment and spindle
defects [141]. This demonstrates that manipulation of mitochondrial function can improve oocyte
quality. However, whether coenzyme Q10 treatment altered mitochondrial numbers is not known.
Recent research has identified other natural compounds, such as resveratrol, L-carnitine and lipoic
acid, that can alter the mitochondrial and lipid content of in vivo and in vitro treated cells. Resveratrol
can increase the expression of genes involved in mitochondrial biogenesis in some cell types [142,143]
and has been shown to improve cleavage and blastocyst rates in pig and cow oocytes [144,145].
However, it is not known whether resveratrol altered mitochondrial number or function in those
oocyte studies. L-carnitine is involved in the transportation of fatty acids into mitochondria and has
been shown to improve mouse, pig, cow and sheep oocyte competence and to alter the distribution of
oocyte mitochondria and lipid droplets [86,146–149]. These and other compounds that can increase
mitochondria and lipid volume in cells should be explored further to determine if their use improves
in vitro and/or in vivo oocyte quality. If successful, new supplements could be developed that can
enhance both natural fertility and assisted reproduction across species.

8. Conclusions and Future Research

In summary, the research highlighted in this review article indicates that, by the end of maturation,
oocytes with a greater volume or number of evenly distributed mitochondria, lipid droplets and
vesicles, and cortical granules located immediately below the oolemma, have greater developmental
competence (Table 1). However, there is a lack of good quantitative data using appropriate models
of oocyte competence to understand the contribution lipids and other stored metabolites provide to
improve oocyte quality.
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Table 1. Summary of organelle features in good and poor quality mature oocytes.

Organelle Good Quality Poor Quality

mito morphology lighter matrix; hooded denser matrix; vacuoles and granules;
altered timing of hooded form

mito distribution Even Peripheral
mito number Higher Lower
mito activity ? ?
lipid volume Greater Smaller

lipid distribution Even Peripheral
vesicle volume Greater Smaller
CG distribution Peripheral clustered, even

mito, mitochondria; CG, cortical granules; ?, unknown.

Mitochondrial number is obviously critical to oocyte quality but the relationship between number,
activity and mtDNA copy number needs to be further explored. Research into the association between
morphological changes occurring in oocyte mitochondria during maturation and changes in their
metabolic function is also needed. This, along with a more detailed knowledge of the composition
of the lipid droplets and vesicles may lead to better understanding of the metabolic requirements of
a good quality oocyte. Improved methods for the quantitative analysis of organelles and metabolites,
such as MALDI-TOF mass spectrometry, desorption electrospray ionization (DESI) mass spectrometry,
spinning disk confocal microscopy and serial block-face scanning electron microscopy, are available
and in some cases, have been applied to single oocytes [150–153]. These methods will hopefully lead to
a better understanding of the factors essential for oocyte quality, ways to identify good quality oocytes
and improvements to oocyte developmental competence in vitro and in vivo.
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