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Abstract
Background: The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in 
malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and 
angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-
Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma 
cell lines (T98G, U87MG, and ONS12) in vitro and in vivo.

Methods: The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive 
effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro 
growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an 
orthotropic implantation model using athymic mice was also evaluated.

Results: Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion 
of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on 
glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In 
vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an 
inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third 
generation MMP inhibitor on malignant glioma cells.

Conclusions: These results suggest that MMI-166 may have potentially suppressive effects on the invasion and 
angiogenesis of malignant gliomas.

Background
Malignant gliomas are characterized by high invasive
potential and strong angiogenic ability. The control of
tumour invasion and angiogenesis are the key problems
for the improvement of treatment results of malignant
gliomas. Tumour invasion and angiogenic processes are
involved in the degradation of the extracellular matrix
(ECM) that surrounds tumour cells. Matrix metallopro-
teinases (MMPs) that degrade various ECM components
are frequently expressed in malignant tumours, including
gliomas, at higher levels than their benign counterparts
[1,2]. MMPs are theoretically promising targets for new
drugs to treat cancers. Several MMP inhibitors have been
developed, and their clinical trials have begun in cancer
patients [3-5]. Nevertheless, many clinical failures have

made drug developers prudent, and the era of synthetic
MMP inhibitors was thought to be finished. However,
these failures of MMP inhibitor clinical trials in cancer
were partly due to the inadvertent inhibition of MMP
antitargets that are crucial for host protection. Achieving
the selectivity of MMP inhibitor may validate clinical
application of MMP inhibitors. It might be meaningful to
test novel selective MMP inhibitors. Then, we aimed to
examine the inhibitory effects of MMI-166 (Nα-[4-(2-
Phenyl-2H-tetrazole-5-yl) phenyl sulfonyl]-D-trypto-
phan; C24H20N6O4S) (Figure 1), a third generation MMP
inhibitor, on the invasive and angiogenic processes of
human malignant glioma cell lines in vitro and in vivo.
MMI-166 has a selective spectrum of MMP inhibition
(MMP-2, MMP-9, and MMP-14) in order to reduce side
effects. The molecular weight of this inhibitor is 488.5
Da, and it is expected to cross the blood-brain barrier.* Correspondence: blue_flare17@yahoo.co.jp
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This is the first report of the effect of a third generation
MMP inhibitor on human malignant glioma cells.

Methods
Glioma cell lines and cell culture
Two human glioma cell lines (T98G and U87MG) were
obtained from the American Type Culture Collection
(Rockville, MD, USA). The ONS12 cell line was estab-
lished from the resected tumour tissue of a 48-year-old
female with glioblastoma in our hospital. These cell lines
were maintained in Dulbecco's modified Eagle's medium
(DMEM; Nikken Biomedical Laboratory, Kyoto, Japan)
supplemented with 10% fetal bovine serum (FBS; Gibco
BRL, Gaithersburg, MD, USA), penicillin (100 unit/mL),
and streptomycin (100 mg/mL) at 37°C in tissue culture
dishes (Asahi Techno Glass Corporation, Chiba, Japan) in
a humidified incubator gassed with 5% CO2.

MMI-166
MMI-166 was kindly provided by Shionogi Research Lab-
oratory (Osaka, Japan). MMI-166 selectively inhibits the
activity of MMP-2, -9, and -14 (IC50s: 0.4, 90, and 100
nmol/L, respectively) but not the activity of MMP-1, -3,
or -7 (IC50s: >1,000 nmol/L) [6].

Gelatine zymography
Gelatine substrate gel electrophoresis was performed to
measure the levels of metalloproteinase activity in culture
supernatants from the cell lines by using the gelatine
zymography kit (Yagai Corporation, Tokyo, Japan).
Glioma cell lines were seeded onto plates containing
DMEM with 10% FBS. When the cells had grown to
approximately 80% confluency, the medium was
removed, and the cells were washed 3 times with DMEM
to remove residual FBS. The cells were then cultured for
24 h in DMEM with 0.1% bovine serum albumin (BSA).
After 24 h, the culture medium was collected and centri-

fuged twice at 800 rpm for 5 min. The supernatant (20
μL) was electrophoresed on the gel supplied with the gel-
atine zymography kit. The gel was washed with two types
of washing buffer for 30 min each and then incubated for
30 h at 37°C in the reaction buffer. To assess the MMP
inhibitory activity of MMI-166, the gels were incubated
in a reaction buffer containing various concentration lev-
els of MMI-166 (0, 0.1, 1, 10, and 100 μM). The gels were
stained with Coomassie blue and then destained. The
gelatinolytic activity was visualized as clear white bands
against a blue background.

Invasion assay
The invasion assay was performed using Transwell inva-
sion chambers (BioCoat; BD Biosciences, San Jose, CA,
USA). Glioma cell lines were cultured in 24-well plates.
An insert was used to divide each well of the plate into
lower and upper chambers. The bottom of the insert was
an 8.0-μm pore size PET membrane coated with Matrigel
(BD Biosciences). The lower chamber was filled with 700
μL DMEM supplemented with 0.1% BSA culture medium
and human fibronectin (12.5 μg/dL, as a chemoattach-
ment). The subconfluent cells were harvested and sus-
pended in 500 μL DMEM supplemented with 0.1% BSA
culture medium containing one of various MMI-166 con-
centrations (0.1-100 μM). The cells were subsequently
cultured at a density of 5.0 × 104 cells/well in the upper
chamber. After incubation for 23 h, the cells present on
the upper surface of the filters were removed with cotton
swabs. The filters were fixed in 70% ethanol and stained
with Giemsa. Cells on the lower surface were counted
under × 200 magnifications in five randomized field
views. The number of invading cells was compared
between MMI-166 and control (non-MMI-166) condi-
tions. The invasion assay was conducted three times for
every cell line.

Angiogenesis assay
The effects of MMI-166 on glioma-induced angiogenesis
were determined by a newly devised research technique
based on the angiogenesis kit (Kurabo, Osaka, Japan)
(Figure 2). Human endothelial cells and fibroblasts were
incubated together according to the kit manufacturer's
instructions. We also placed an insert plate with a 1.0-μm
pore size PET membrane (Falcon HTS Multiwell Insert
Systems, BD Biosciences) on the 24-well plate of the
angiogenesis kit. Glioma cells were cultured in the insert
plate so that soluble angiogenic factors secreted by the
glioma cells could affect endothelial cells in the lower
chamber. Once the endothelial cells had reached the early
stage of lumen formation, MMI-166 was added to the
culture solution at varying concentration levels (0.1-100
μM) and incubated for 10 days. MMI-166 was not added
in the control condition. On day 11 of incubation, the

Figure 1 The chemical structure of MMI-166. MMI-166, a third gen-
eration MMP inhibitor, selectively inhibits the activity of MMP-2, -9, and 
-14.
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cells were fixed in 70% ethanol, and the anti-CD31 mono-
clonal antibody (Kurabo) was used as the primary anti-
body to immunohistochemically stain the vascular
lumens. The angiogenesis assay was conducted three
times for every cell line.

MTT assay
For the determination of in vitro growth inhibition of
glioma cells by MMI-166, the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay was
used. Glioma cells (1 × 104 cells/well) were plated in 96-
well plates in 100 mL of the culture medium. After 24 h,
MMI-166 (0, 0.1, 1, 10, and 100 μM) was added to each
well. After 24 and 48 h of incubation with or without
MMI-166, 50 μL MTT (2 mg/mL in PBS) was added to
each well at 37°C for 3 h, and MTT reduction by viable
cells was measured colorimetrically at 570 nm using a
Universal Microplate Reader (EL800; BioTek Instru-
ments, Inc., Winooski, VT, USA). The MTT assay was
conducted three times for every cell line.

Effect of MMI-166 on orthotropic implantation
Athymic female mice (BALB/c nu/nu) of age 6-8 weeks
were obtained from Charles River Japan (Atsugi, Japan).
Mice were anesthetized with pentobarbital sodium (60
mg/kg intraperitoneally) and injected intracerebrally with
T98G cells (1 × 105) through a small hole drilled 2 mm
anterior and 2 mm lateral to the bregma. Immediately
after cell implantation, MMI-166 (100 mg/kg), suspended
in a vehicle (0.9% NaCl solution containing 0.5% car-
boxymethylcellulose Na, 0.9% benzyl alcohol, and 0.4%
Tween 20) was orally administered to 10 mice five times a
week for up to 21 days. The control group (n = 10) were

orally administered with the vehicle alone. All mice were
sacrificed on day 22, and their brains were snap-frozen.
Tumour growth of the intracerebral tumours was con-
firmed by histological evaluation. Serial coronal sections
(30 μm) were cut from the rostal to caudal edge of the
brain tissues containing the tumours by using a cryo-
microtome. Tumour size was computed using an
Imagepro system (Media Cybernetics Inc., Silver Spring,
MD, USA).

For immunohistological examination of angiogenesis,
the same T98G xenograft model was used. Mice from
both the groups were sacrificed on day 22, and their
brains were harvested and fixed in buffered formalin
before embedding in paraffin. Tumour angiogenesis was
evaluated using Von Willebrand Factor (VWF) immunos-
taining. Immunohistochemistry was performed with pri-
mary antibodies specific for VWF (ab6994; Abcam Inc.,
Cambridge, MA, USA). Briefly, 4-μm-thick paraffin sec-
tions were deparaffinized and dehydrated. The sections
were first incubated with appropriate primary antibodies
and then with the EnVision+ System HRP (DAKO,
Glostrup, Denmark). Positive staining was detected using
diaminobenzidine. For negative controls, the primary
antibodies were replaced by a non-specific IgG. All pro-
cedures involving animals were approved by the animal
care committee of Kochi University and were in accor-
dance with institutional guidelines and Japanese govern-
ment regulations.

Statistical analysis
The invasion and angiogenesis assay results obtained
from the control and treated groups were statistically
analysed by one-way analysis of variance (ANOVA). The
statistical significance of tumour volume between the
control and treated groups in orthotropic implantation
model was analysed using unpaired/paired Student's t-
test. In all statistical analyses, p < 0.05 was regarded as
statistically significant. All values are presented as means
± standard error (SE).

Results
Zymography
The effects of MMI-166 on the gelatinolytic activities of
glioma cells were determined by gelatine zymography.
The culture supernatants of glioma cell lines were assayed
for MMP-2 and MMP-9 gelatinase activities. The glioma
cells showed MMP-2 and MMP-9 gelatinase activities.
Both the latent and active forms of MMP-2 and the latent
form of MMP-9 were detected in the culture supernatant
from glioma cells. We found that MMI-166 reduced the
gelatinolytic activities of MMP-2 and MMP-9 in a dose-
dependent fashion (Figure 3). Although MMP-9 activity
was completely controlled by 10 μM MMI-166, MMP-2

Figure 2 A new method for in vitro angiogenesis assay. The effects 
of MMI-166 on glioma-induced angiogenesis were determined by the 
newly devised research technique based on the angiogenesis kit 
(Kurabo, Osaka, Japan). Glioma cells were cultured in the insert plate so 
that soluble angiogenic factors secreted by the glioma cells could af-
fect human umbical vein endothelial cells (HUVECs) in the lower cham-
ber.



Nakabayashi et al. BMC Cancer 2010, 10:339
http://www.biomedcentral.com/1471-2407/10/339

Page 4 of 9
activity remained and was mostly controlled by 100 μM
MMI-166.

Invasion assay
The inhibitory effect of MMI-166 was evaluated by the in
vitro invasion assay. MMI-166 at various concentrations
was added to the medium. Figure 4A shows representa-
tive data of T98G. The number of invading glioma cells
was compared with the control. The number of invading
cells decreased as the concentration of MMI-166
increased. The average number of invading tumour cells
in the three glioma cell lines decreased to 55.3 ± 0.91%
and 45.6 ± 0.93%, after the addition of 10 and 100 μM
MMI-166, respectively, compared to the control (Figure
4B). Statistical analysis revealed that invasion of glioma
cells was significantly suppressed by MMI-166 (p <
0.0001).

Angiogenesis assay
The inhibitory effect of MMI-166 on glioma-induced
neovascularity was evaluated by an in vitro angiogenesis
assay. A blood vessel construction image of the entire cul-
ture plate was captured by an image scanner. Subse-
quently, this image was overlaid with a grid image of the
same size. The neovascularity was evaluated as the total
number of intersections of the vessel and grid in the
entire plate (Figure 5A). Figure 5B shows representative
data for T98G. The density of neovasculature decreased
with an increase in the concentration of MMI-166. The
average total number of intersections of the vessel and
grid in three glioma cell lines decreased to 37.2 ± 1.54%
and 6.56 ± 0.70% after the addition of 10 and 100 μM
MMI-166, respectively, when compared with the control
(Figure 5C). Statistical analysis revealed that glioma cell-

induced neovasularity was significantly suppressed by
MMI-166.

MTT assay
We assessed the inhibitory effect of MMI-166 on growing
cultures of the three glioma cell lines by the MTT assay.
During the 2-day incubation period, MMI-166 did not
show any inhibitory effect on the growth of glioma cells
(Figure 6).

Evaluation of implanted tumours
In the MMI-166 treatment group (n = 10), tumour
growth was suppressed compared to the control group (n
= 10). The average tumour volume was calculated from
sequential histological sections (Figure 7A), and was esti-
mated to be 40.8 ± 0.87 mm3 for the MMI-166 treatment
group and 68.4 ± 1.45 mm3 for the control group (p <
0.0001) (Figure 7B). Immunohistochemical analysis also
showed that the number of microvessels (VWF expres-
sion) was lower in the MMI-166 treatment group than in
the control group (Figure 7C). Histological studies of
T98G xenograft model showed that MMI-166 inhibited
tumour growth and angiogenesis in vivo.

Discussion
Tumour growth includes increased synthesis and secre-
tion of several proteases such as cysteine protease, serine
protease, and MMP to degrade the ECM. These proteases
participate in establishing and maintaining a microenvi-
ronment around the tumour so that the tumour cells can
survive. Proteolytic action on the ECM is a key step
required for the initiation of tumour invasion and angio-
genesis. Recent studies suggest that angiogenesis and
invasion cooperate in tumour development and involve

Figure 3 Gelatine zymography. The zymographic analysis revealed that the gelatinolytic activities of MMP-2 and MMP-9 decreased in a dose-de-
pendent manner after the addition of MMI-166. Although MMP-9 activity was completely controlled by 10 μM MMI-166, MMP-2 activity remained and 
was mostly controlled by 100 μM MMI-166.
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similar biological mechanisms [7]. Furthermore, MMP is
strongly related to tumour progression.

MMPs are a family of zinc endopeptidases comprising
at least 20 different members. They are classified into five
groups on the basis of their structure and substrate speci-
ficities [8]. MMPs are secreted as proenzymes that are
activated after a peptide of approximately 10 kDa is
cleaved. The activity of MMPs is primarily regulated at
the transcriptional and translational levels by the secre-
tion by hormones, growth factors, and cytokines [9].
Moreover, there is evidence regarding the modulation of
mRNA stability in response to growth factors and cytok-
ines [7,10]. Additionally, MMPs are inhibited by specific
tissue inhibitor matrix metalloproteinases (TIMPs) and
metal chelators [11].

The increased expression of MMPs has been associated
with cancers of the head and neck, breast, lung, stomach,
and pancreas [12-16]. In particular, MMP-2 and MMP-9

were reported to correlate with tumour grade and metas-
tasis [17]. On the basis of the evidence that TIMPs can
interfere with experimental metastasis, the role of MMPs
in tumour progression has been determined [18]. How-
ever, the role of MMPs and TIMPs in cancer is much
more complicated than that suggested initially. For exam-
ple, increased TIMP-1 levels in human cancer tissues
have been associated with poor prognoses [19]. It is
uncertain whether this reflects growth-potentiating
properties or some other undetermined property of
TIMPs [20]. Other experimental studies involving cancer
cells transfected with TIMP-1 cDNA demonstrated that
MMPs act primarily to alter the extracellular environ-
ment to allow sustained cancer cell growth at an ectopic
site as opposed to having the specific role of allowing the
cells to extravasate from the blood stream [21]. Further-
more, in some experimental tumour systems, increased
MMP production did not correlate with increased metas-

Figure 4 Invasion assay. The shown photographs are representative data of invasion assay of T98G (A). The number of invading glioma cells was 
compared with the control (non-treated). The number of invading cells decreased as the concentration of MMI-166 increased. The number of invad-
ing cells decreased as the concentration of MMI-166 increased in all three glioma cell lines (B). Statistically significant differences were observed be-
tween the MMI-166-treated samples and the control (non-treated) (*p < 0.0001).
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Figure 5 Angiogenesis assay. A blood vessel construction image was overlaid with a grid image of the same size, and neovascularity was evaluated 
as the total number of intersections between the vessel and grid in the entire plate (A). The shown photographs are representative data of invasion 
assay of T98G. The density of neovasculature decreased as the concentration of MMI-166 increased (B). The neovasculature induced by glioma cells 
decreased as the concentration of MMI-166 increased in all three glioma cell lines (C). Statistically significant differences were observed between the 
MMI-166-treated samples and the control (non-treated) (*p < 0.0001).

Figure 6 MTT assay. MMI-166 showed no inhibitory effect on the three glioma cell lines in the 2-day incubation period, up to a maximum concen-
tration of 100 μM.
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tasis [22]. One possible explanation for this finding is that
excess proteolysis might degrade matrix signals and
receptors, thereby disrupting cell matrix interactions and
inhibiting migration [23].

One of the early events in the transition of a tumour
from the pre-neoplastic to the neoplastic state is the abil-
ity of the tumour to promote angiogenesis [24]. The
results of numerous experimental studies support the
concept that the growth of new blood vessels is required
for continued tumour growth [25]. Tumour angiogenesis
is a complex process that requires 1) the degradation of
the basement membrane and ECM surrounding the
blood vessels, 2) chemotaxis of endothelial cells towards
an angiogenic stimulus, 3) proliferation of the endothelial
cells, and 4) remodelling of the basement membrane as
new blood vessels form. This remodelling is considered
to result from MMP activity [26]. Endothelial cells pro-
duce MMP-1, MMP-2, MMP-3, and membrane-type
MMP (MT-MMP). Recent studies revealed that MMP-2
and MT-MMP have a crucial role in angiogenesis (2). The
treatment of human umbilical vein endothelial cells with

phorbol ester (namely, phorbol 12-myristate 13-acetate;
PMA) leads to MMP-2 activation and induction of MT-
MMP [27]. This is accompanied by the formation of mul-
ticellular tube structures when cells are cultured in a col-
lagen gel [28].

Malignant gliomas are highly aggressive tumours char-
acterized by extensive brain invasion and strong angio-
genesis. Recent proteinase profiling studies have
demonstrated the over-expression of the serine uroki-
nase-type plasminogen activator (uPA) and its receptor
(uPAR), cysteine protease cathepsin B, MMP-2, and
MMP-9 in high grade astrocytomas compared with low
grade astrocytomas or the normal brain. In particular,
MMP-2 and MMP-9 are the two most abundant MMPs
found in gliomas [29]. Therefore, it has been proposed
that MMP-2 and MMP-9 inhibitors can act as potential
drugs for the treatment of gliomas. Selective gene sup-
pression of MMP-2 or MMP-9 dramatically reduces the
invasive phenotype of gliomas [30,31].

A number of MMP inhibitors, including Batimastat [3],
Marimastat [4], and AG3340 [32], have entered clinical

Figure 7 Evaluation of implanted tumours. The shown photographs are representative data of coronal sections of T98G xenografts (A). Quantita-
tive analysis of tumour volume showed that the size of the transplanted tumours in the mice from the MMI-166 treatment group was significantly 
smaller than the transplanted tumour of the mice from the control group (* p < 0.0001, n = 10) (B). The shown photographs are representative sections 
of immunohistochemical staining for VWF (C). The expression of VWF was lower in the implanted tumour of the MMI-166 treatment group than in 
the implanted tumour of the control group.
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development, but none have been licensed. Disappoint-
ing results were reported for phase III studies in patients
with non-small cell lung cancer stage IIIB/IV [33], meta-
static breast cancer [34], and advanced pancreatic adeno-
carcinoma [35]. However, it is still thought that MMP
inhibitors may have therapeutic potential for the earlier
stages of cancer or prevention of cancer metastasis.
Although MMP inhibitor has not cytotoxic anticancer
effect, MMP inhibitor has cytostatic and anti-angiogenic
effects. Furthermore, MMP inhibitor has few side effects
as compared with cytotoxic anticancer drug and also has
the merit of controlling a cancer more effectively when it
was used together with other cytotoxic drugs.

As for glioma, AG3340 and SI-27 [36] were preclinically
studied. In vivo study using SCID-NOD mouse, AG3340
decreased tumour size of transplanted U87 glioma by
78% compared with controls after 31 days [37]. Systemic
administration of SI-27 in U251MG xenograft mouse
showed a statistically significant increase in survival time
compared with the controls receiving carrier (median
survival, 47.3 versus 32.6 d). There was also a decrease in
MMP activity, tumour cell invasion, and neovasculariza-
tion [36]. Therefore, it is thought MMP inhibitors may
have therapeutic potential for gliomas.

MMI-166 is a third generation MMP inhibitor having
an N-arylsulfonyl-α- aminocarboxylate zinc binding
group. It is an MMP-2, -9 and -14 selective inhibitor that
spares MMP-1, -3 and -7. The key structural feature
exemplified by MMI-166 is the "deep" aryl substitution.
While it has shown anticancer activity in several animal
models of human cancer, there are no data as to its effect
on malignant gliomas. Therefore, we aimed to examine
the effect of MMI-166 on malignant glioma cells.

So for, there is no data about the clinical trial of MMI-
166. However, S-3304 (Shionogi & Co., Ltd; Osaka,
Japan), a relative compound of MMI-166, has shown a
good safety profile and good systemic exposure when
administered orally in doses up to 800 mg twice daily for
10 to 17 days in healthy volunteers [41]. A phase I phar-
macokinetic and pharmacodynamic study of S-3304 in
patients with advanced and refractory solid tumours
showed that S-3304 is safe, well tolerated, and achieves
plasma concentrations above those required to inhibit
MMP-2 and MMP-9 [42].

In the present study, we used a new in vitro angiogene-
sis assay. Tumour-induced angiogenesis is usually per-
formed by the dorsal air sac-chamber assay or the chick
choriallantoic membrane assay (CAM assay). However,
these two methods need animals and are slightly compli-
cated. An in vitro angiogenesis assay that does not
require an animal is usually carried out by adding the
tumour culture supernatant to an angiogenesis kit in
which the endothelial cells were set. However, there is no
direct traffic between the endothelial and tumour cells in
this technique. In contrast, our new method enables

direct trafficking between the endothelial and tumour
cells through secreting factors from each cell type.

Conclusion
The present study showed that MMI-166 reduced the
activities of MMP-2 and MMP-9 and significantly inhib-
ited the invasive and angiogenic activities of glioma cells
in vitro and in vivo. Furthermore, MMI-166 inhibited
tumour growth in vivo. It is possible that MMI-166
potentiates the suppression of glioma progression.
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