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ABSTRACT

BodyMap-Xs (http://bodymap.jp) is a database for
cross-species gene expression comparison. It was
created by the anatomical breakdown of 17 million
animal expressed sequence tag (EST) records in
DDBJ using a sorting program tailored for this pur-
pose. In BodyMap-Xs, users are allowed to compare
the expression patterns of orthologous and paralog-
ous genes in a coherent manner. This will provide
valuable insights for the evolutionary study of gene
expression and identification of aresponsive motif for
a particular expression pattern. In addition, starting
from a concise overview of the taxonomical and ana-
tomical breakdown of all animal ESTs, users can nhav-
igate to obtain gene expression ranking of a particular
tissue in a particular animal. This method may lead to
the understanding of the similarities and differences
between the homologous tissues across animal spe-
cies. BodyMap-Xs will be automatically updated in
synchronization with the major update in DDBJ,
which occurs periodically.

INTRODUCTION

Do homologous genes have similar expression patterns? On
the one hand evolutionary theories predict that paralogous
genes have complementary spatio-temporal expression pat-
terns that are based on a model of the consequences of a
gene duplication event (1,2). On the other hand, molecular
biologists sometimes assume almost similar expression

patterns among structurally similar genes because the cis-
regulatory element is a part of a gene located next to the coding
sequence on the genome (3). The fragmented picture emerging
from a limited number of recent genome-wide comparisons
(4,5) will become more coherent if a wider range of species are
more accurately compared. Expressed sequence tag (EST)
data are the best resources to carry out such a comparison
because they cover a sufficiently wide range of species (cur-
rently, 54 species with >40 million ESTs). Further, it has a
sufficient resolution in anatomy and nucleotide sequence.

For many years, EST databases have served to provide
expression information of individual species (6—12). However,
no attempt has been made to integrate expression information
across species in a coherent manner despite its potential
importance. There are two major obstacles in achieving this
goal: (i) In the INSD format—the universal format of EST data
available to the public—the RNA source is described in free
text in various fields and (ii) biologically sound integration of
anatomies across different species is difficult, if at all possible.
We have overcome these obstacles by developing a program
for identification and subsequent sorting of anatomical names
at the organ level across species. By applying this to the entire
set of animal EST data in DDBJ, we have developed a database
for the comparison of gene expressions across different animal
species. This database is automatically updated in synchron-
ization with major updates in DDBJ.

METHODOLOGY
Resources

The data unique to BodyMap-Xs are the anatomical break-
downs of 17 million ESTs across animal species generated by
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Figure 1. Outline of BodyMap-Xs construction with some relevant figures for
the data. Starting from three public resources, construction of database is
structured as a pipe-line.

a sorting program tailored for this purpose. Other data used
include the EST data in DDBJ, UniGene (13,14) for EST-gene
relationship and RefSeq (15) for the conversion of a UniGene
entry to representative amino acid sequences. In addition,
a gene cluster from the InParanoid database (16,17) was
used to connect genes based on orthologous relationships.
The BLASTP program was employed to collect similar
genes within this database. The scheme for EST breakdown
and database construction is outlined in Figure 1.

Grouping of EST by the source library

Because INSD formats do not have an official identifier for the
source library, EST records are first clustered based on the
identity present in the descriptions in the fields for authors,
citations and sources. Highly variable strings that are some-
times embedded in source field, such as clone ID, were sup-
pressed in advance. From each cluster, hereafter referred to as
the library, we arbitrarily selected one record to be processed
during anatomical sorting.

Grouping of libraries at the organ level

In INSD, the description logic and terminology of the RNA
used for library construction are not controlled. Therefore, it is
advised that the procedure for material preparation can be
written in free text as a ‘note’. However, in reality, the descrip-
tions are scattered across multiple fields of the records. For the
coherent categorization of libraries across species, we need to
classify those libraries in some manner based on those free and
scattered descriptions. Structured terminology or ontology for
anatomical concepts have been proposed for some species
(18,19); however, assignment of these concepts in ontologies,
having mutually different description logics to the tissue
descriptions of continuously growing EST records across spe-
cies is a daunting task. Further, regarding the source informa-
tion of gene expression studies, we valued the reproducibility
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and clarity of the assignment process more than the soundness
of the resulting classification in a purely anatomical sense.

Based on this concept, we developed a sorting program that
detects anatomical names in the EST records across species
and sorts them according to explicit rules. First, we selected
200 most populated libraries and manually grouped them in a
bottom-up manner by joining the less populated libraries to
their closest neighbors until we obtained 40 groups of almost
homogeneous libraries. These 40 groups, mostly representing
individual organs, were labeled with the most concise organ
name. Subsequently, the key patterns within the anatomical
terms responsible for the grouping process were extracted and
compiled into a pattern dictionary that maps each pattern to
1 of the 40 organ names. Patterns in this dictionary were
then expanded manually to cover variations and synonyms
to the key patterns and were applied back to the same
200 libraries. Based on the erroneous identification and con-
flicts found in this application, several rules that resolve
these problems were added to the program. Subsequently,
the sorting program was applied to rest of the human libraries.
From the libraries that lacked matching patterns, 100 most
populated libraries were selected, manually assigned to 1 of
the 40 groups and the pattern dictionaries were expanded
accordingly. By repeating this cycle several times, we
obtained a program that can sort 95% of the human EST
records including those that were positively identified as
pooled tissue or whole body. The resultant program was
then applied to the remaining animal ESTs and the same
application-modification cycles were repeated. Although
the rules based on human anatomy worked properly in
most vertebrates as expected, some names of body parts or
cells were unique to particular species. These names were
added to the dictionary at the most homologous human library
groups based on their function. For example, ‘head’ in insects
was sorted as ‘cerebrum’ and ‘hemocyte’ in Ciona intestinalis
was classified as ‘blood’. Using the present version of the
program, 76—100% of the ESTs of each vertebrate species
were anatomically classified. Even in C.infestinalis—the sim-
plest chordate in the EST division—five different organs were
identified (Supplementary Table 1).

In addition to the anatomical categorization, the libraries
were further categorized with respect to two independent
aspects—the condition of tissue and distortion in population
prior to sampling—by the same sorting program based on the
pattern dictionary. Based on the condition of the tissues,
the libraries are divided into normal and tumor/cell lines. The
distortion aspect discriminates normalization and other pro-
cesses that distort the population in conventional libraries,
which is sometimes employed to avoid redundant isolation
of clones for the same gene.

EST-gene relation and gene—gene relation

In this database, an individual UniGene cluster is tentatively
regarded as the smallest unit that is responsible for an expres-
sion pattern. According to the EST_ID:UniGenelD corres-
pondence in NCBI, the data were organized in the UniGene
ID X 40-organ matrix of EST frequency. In addition, ortho-
logous genes were interconnected using InParanoid data
(16,17) after translating an Ensembl ID (20) to an UniGene
ID via LocusLink.
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Figure 2. Browsing data in BodyMap-Xs. Starting from the index page, the expression ranking of relevant organs is shown (a). For genes with expression patterns of
interest, the expression of orthologous partners can be shown (b). Similarity search allows users to compare expression patterns of genes structurally similar to the
query (c). For validation of expression patterns, every figure in the table can be broken down to the library level. The library list shows why these libraries were

categorized in a particular manner with KWIC format (d).

DATA PRESENTATION

Similar to the old BodyMap DB (6), users can navigate to
observe the activity ranking of genes in a particular animal and
tissue with their anatomical expression patterns at a selectable
resolution in a concise tabular format (Figure 2). For each gene
in the ranking, users can compare the expression patterns of its
orthologous partners across species in the same format.

Genes can be retrieved in the same tabular representation of
expression patterns by using an ID or a keyword and by sim-
ilarity to the query sequence. Similarities are measured against
the RefSeq peptides corresponding to the representatives for
UniGene clusters using the BLASTP program. The results
show the expression patterns of homologous genes. List of
libraries can be retrieved either with exact matching of the
keyword or after generalization of user’s keyword as a tissue
category name by the library sorting program.

Last but not least, we would like to emphasize that the
automatic identification process is still error prone even

after rounds of careful inspection and correction. This is
mainly because the program does not consider the context
where the relevant patterns are embedded. Further, a grouping
scheme may not be obvious to some users or even inappro-
priate for some purposes. Therefore, we devised a method that
allows the users to backtrack the automatic sorting process.
Every number in the tables (either library count or EST count)
can be broken down to the library level where the reasons as to
why they were categorized in a particular manner are shown
by the ‘keyword in context (KWIC)’ representation showing
key patterns with short flanking strings in the original EST
record. Using such information, users can verify the data or
modify them according to their purpose.

FUTURE DEVELOPMENT

In light of the fact that as much as 40-60% of genes have
alternatively spliced transcripts in mammals (21) and that a



substantial portion of this splicing may be anatomically
controlled (22), the resolution of expression should be
enhanced to the transcript level from the gene level. Integra-
tion across different measurement platforms is planned
through the incorporation of H-ANGEL function (23) to
BodyMap-Xs. In the downstream of the expression compar-
ison table for homologous genes, a tree view format that shows
mutual evolutionary relations among the homologs is under
construction. The BodyMap-Xs data will be updated imme-
diately after major updates in the DDBJ are released; these
updates take place four times a year. Further, the pattern
dictionary will be updated after every update based on
novel patterns found in the new release.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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