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Frontotemporal involvement has been extensively investigated in amyotrophic lateral

sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease

(MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy

(PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post

poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review

focuses on insights from structural, metabolic, and functional neuroimaging studies that

have advanced our understanding of extra-motor disease burden in these phenotypes.

The imaging literature is limited in the majority of these conditions and frontotemporal

involvement has been primarily evaluated by neuropsychology and post mortem studies.

Existing imaging studies reveal that frontotemporal degeneration can be readily detected

in ALS and PLS, varying degree of frontotemporal pathology may be captured in

PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection,

and there is limited evidence for cerebral changes in PPS. Our review confirms the

heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the

role of neuroimaging in characterizing anatomical patterns of disease burden in vivo.

Despite the contribution of neuroimaging to MND research, sample size limitations,

inclusion bias, attrition rates in longitudinal studies, and methodological constraints

need to be carefully considered. Frontotemporal involvement is a quintessential clinical

facet of MND which has important implications for screening practices, individualized

management strategies, participation in clinical trials, caregiver burden, and resource

allocation. The academic relevance of imaging frontotemporal pathology in MND spans

from the identification of genetic variants, through the ascertainment of presymptomatic

changes to the design of future epidemiology studies.
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INTRODUCTION

This review explores the role of neuroimaging in characterizing frontotemporal
pathology in motor neuron diseases (MNDs). While frontotemporal involvement
has been extensively investigated in amyotrophic lateral sclerosis (ALS) (Table 1),
it is relatively under evaluated in other MND phenotypes, such as primary lateral
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sclerosis (PLS) (Table 2), progressive muscular atrophy
(PMA), spinal bulbar muscular atrophy (SBMA), spinal
muscular atrophy (SMA), hereditary spastic paraplegia (HSP),
poliomyelitis and post poliomyelitis syndrome (PPS) (Table 3).
Progressive muscular atrophy, SBMA, SMA, and poliomyelitis
were once regarded as pure anterior horn cell disorders, but
emerging data shows that the central nervous system is more
widely involved than previously thought (48, 50). Primary lateral
sclerosis was traditionally considered a pure UMN condition,
but extra-motor manifestations are now gradually recognized
(29) (Figure 1). The ALS-FTD continuum of neurodegenerative
disorders share common clinical, radiological, genetic, and
pathological features (80, 81). Similar cognitive and behavioral
manifestations, however, have also been described in the non-
ALSMND phenotypes (82, 83). The low incidence of these slowly
progressive UMN or LMN predominant disorders coupled with
heterogeneous frontotemporal manifestations are all factors
that may contribute to delayed or mistaken diagnoses (84–87).
Caregiver burden is not only heightened by diagnostic delay,
but may be exacerbated by considerable behavioral challenges
(88, 89). Frontotemporal involvement may impact on entry into
clinical trials and decision to participate in research studies,
potentially leading to participation bias. From an academic
viewpoint, there are synergistic efforts to evaluate frontotemporal
disease burden using computational imaging in combination
with clinical instruments. In parallel, these advances help to
advance our understanding of disease pathology, propagation
patterns, and the dynamics of anatomical spread. The objective
of this review is to collate evidence from robust neuroimaging
studies, distill emerging research trends, identify pertinent gaps
in the literature, highlight clinical implications, and postulate
research priorities in the evaluation of frontotemporal pathology
across the spectrum of MND phenotypes.

METHODS

This is a focused review of original neuroimaging studies that
investigated frontotemporal pathology in the following MND
phenotypes; PLS, PMA, SBMA, SMA, PPS, HSP, and ALS. The
search engines PubMed and Google Scholar were used to identify
key papers. Individual MND phenotypes were searched paired
with keywords “MRI,” “PET,” “brain imaging,” “neuroimaging,”
or “frontotemporal.” Only articles in English were reviewed.
Editorials, opinion pieces and review articles were not selected.
Additional papers were considered based on the reference
list of reviewed publications. One hundred and forty-two
original research neuroimaging studies were identified. Given
the paucity of prospective neuroimaging studies in non-ALS
MNDs, case series, neuropsychology, and post mortem studies
were also reviewed in these conditions. The selected articles
were systematically evaluated for cohort numbers, study design,
clinical assessment, imaging methods, and anatomical focus.

RESULTS

Primary Lateral Sclerosis
Primary Lateral Sclerosis is an upper motor neuron disorder
that typically presents with insidious spino-bulbar spasticity in

adulthood (27, 90). It is often associated with pseudobulbar
affect that may trigger self-imposed social isolation. Extra-motor
manifestations are increasingly recognized in PLS (83, 91),
occurring in a similar behavioral and cognitive profile to ALS
(83), and rarely fulfilling the diagnostic criteria for FTD (83,
91). Such deficits include impaired social cognition, executive
function, verbal fluency, language, or apathy (29, 82, 83, 91).
The reported cases of frank FTD evolved several years after
the insidious onset of UMN signs and were associated with
progressive radiological frontotemporal atrophy (91). This is in
line with the mounting body of neuroimaging evidence that
supports widespread frontotemporal involvement in PLS (22, 29,
33).

The radiological profile of PLS varies from limited extra-
motor involvement to widespread pathology (27). Structural
and diffusion data revealed degenerative changes in the fornix,
body of the corpus callosum, anterior cingulate, dorsolateral
prefrontal, insular, opercular, orbitofrontal, and temporal regions
(22, 27, 29, 33, 37, 42). Some studies have explored associations
with underlying structural abnormalities focusing on apathy,
impaired executive function, language, and verbal fluency deficits
(29, 33, 92). Longitudinal studies have yielded inconsistent
findings with regards to progressive pathology (25, 26, 30–
32, 35). A case report described progressive cortical atrophy
over an 8.5-year timeframe (93). These observations would
suggest that contrary to ALS, longer follow-up intervals may be
required in PLS to characterize radiological trajectories. Extra-
motor findings in PLS are also supported by metabolic and
functional imaging studies. PET imaging studies have detected
prefrontal and premotor areas of hypometabolism in PLS that
are almost indistinguishable from the patterns seen in ALS (39,
43, 94). Whilst primarily used in a research setting, novel PET
radioligand binding studies have also demonstrated alterations
beyond the motor system, in the bilateral anterior cingulate
gyri, and in left superior temporal lobe (2, 36, 39, 90, 95). MR
Spectroscopy in PLS has mostly focused on the evaluation of
the motor rather than extra-motor regions (24, 35). Similar
to ALS, it shows reduced N-acetyl aspartate/creatinine ratios
(23, 24, 35, 41, 44) and increased myo-inositol/creatinine ratios
(41) in the motor cortex suggestive of neuronal dysfunction
and gliosis, respectively. Resting-state fMRI studies report
increased functional connectivity in frontotemporal networks
(34, 92) which has been associated with executive dysfunction
(4, 92). Similar to ALS, increased functional connectivity is
typically considered a “compensatory response” to structural
degeneration (92).

The few post-mortem studies are concordant with the extra-
motor radiological profile of PLS (96–103). Frontotemporal
lobar degeneration has been detected with some cases revealing
ubiquitin- and TDP-43-immunoreactive neuronal cytoplasmic
inclusion bodies in frontotemporal and hippocampal areas.
Post-mortem studies seldom have accompanying comprehensive
clinical information, but when available, features of nfvPPA or
bvFTD have been described (96, 102).

Progressive Muscular Atrophy
Progressive Muscular Atrophy is a clinical diagnosis that is
defined by a gradually progressive isolated lower motor neuron
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TABLE 1 | Selection of original neuroimaging research articles in ALS since 2015 with more than 30 patients.

References Study design Sample size

Study participants

Raw imaging data/Imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Agosta et al. (1) Cross-sectional,

Prospective,

Multi-center, Case-

control

ALS n = 56

UMN phenotype n = 31

LMN phenotype n = 14

MRI

Cortical thickness

DTI

ALSFRS-R

MMSE

RCPM

CET

WCST

WCFST

RAVLT

BADA

HDRS

FBI

ALS-FTD questionnaire

Phonemic and semantic fluency

Digit span forwards

and backwards

N/A - Cortical thinning of the bilateral precentral gyrus, insular

and cingulate cortices, and frontotemporal regions was

detected in all groups.

- There was involvement of the extra-motor WM tracts in

the corpus callosum and frontotemporal regions.

- These findings were more marked in those with

cognitive or behavioral impairment.

Alshikho et al. (2) Longitudinal,

Prospective,

Single-center,

Case-control

ALS n = 53

PLS n = 11

MRI

Cortical thickness

DTI

ROI analysis

[11C]-PBR28 PET

ALSFRS-R

UMNB

6-months - In ALS, increased glia activation was detected in the

precentral and paracentral gryi that correlated with

areas of cortical thinning.

Alruwaili et al. (3) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 30 MRI

VBM

DTI

TBSS

ALSFRS-R

ACE-III

FAB

ALS-FTD questionnaire

N/A - GM and WM degeneration was detected in the motor

and extra motor regions in those with and without

cognitive impairment. The WM alterations were more

extensive in those with cognitive impairment.

Basaia et al. (4) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 173

PLS n = 38

PMA n = 28

MRI

DTI

Resting-state fMRI

Global brain network analysis

Functional connectivity analysis

MMSE

RAVLT

Digit span forward and backward

Stroop test

CET

WCFST

WCST

RCPM

Phonemic and semantic fluency

Italian battery for the assessment

of aphasic disorders.

HDRS

Beck depression inventory

FBI

ALS-FTD Questionnaire

N/A - In ALS, there was widespread motor and extra-motor

network degeneration.

Bede et al. (5) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 36 MRI

DTI

TBSS

ROI analysis

ALSFRS-R

Neuropsychological assessment

N/A - In patients with ALS without cognitive impairment, WM

degeneration was detected in the cerebellum, brain

stem, occipital lobes, operculum, and insula.

(Continued)
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TABLE 1 | Continued

References Study design Sample size

Study participants

Raw imaging data/Imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Bede et al. (6) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 70 MRI

Cortical gray matter

morphometry

Basal ganglia morphometry

DTI

ALSFRS-R - There is GM degeneration of the anterior cingulate,

orbitofrontal cortex, and mesial temporal lobes. There

is also WM degeneration involving the fornix.

- There is subcortical involvement of the thalamus,

caudate, nucleus accumbens and hippocampus.

Bede et al. (7) Longitudinal,

Prospective,

Single-center,

Case-control

ALS n = 32 MRI

VBM

Cortical thickness

DTI

ROI analysis

ALSFRS-R 4-months

8-months

- WM degeneration was detected early with limited

interval progression; GM degeneration was limited at

baseline with continued progression.

Bede et al. (8) Longitudinal,

Prospective,

Single-center,

Case-control

ALS n = 100

PLS n = 33

FTD n = 30

MRI

Volumetry, vertex and

morphometry analyses

ALSFRS-R 4-months - In ALS, there was progressive brainstem atrophy

predominantly in medulla oblongata.

Bede et al. (9) Longitudinal,

Prospective,

Single-center,

Case-control

ALS n = 100

PLS n = 33

FTD n = 30

MRI

Volumetry analyses

ALSFRS-R 4-months - In ALS, there was progressive brainstem atrophy in the

medulla oblongata and the pons.

Chipika et al. (10) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 100

PLS n = 33

MRI

Volumetry analyses

ROI morphometry

ALSFRS-R

ECAS

N/A - In ALS, there was involvement of the motor and

sensory regions of the thalamus.

Christidi et al. (11) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 42 MRI

DTI

ALSFRS-R

RAVLT

BSRT

RCFT

N/A - The involvement of WM in the frontotemporal and

hippocampal regions was associated with verbal and

non-verbal episodic memory test results.

Christidi et al. (12) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 50 MRI

VBM

DTI

TBSS

ALSFRS-R

MMSE

TMT

WCST

RAVLT

BSRT

RCFT

WAIS

Stroop test

Phonemic fluency

Digit span forward and backwards

N/A - There were motor and extra-motor GM and WM

changes in non-demented cognitively-impaired ALS

patients. Some of these findings were also observed in

those with ALS without cognitive impairment.

Christidi et al. (13) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 50

AD n = 18

MRI

Hippocampal volumetry

DTI

ALSFRS-R

RAVLT

BSRT

RCFT

ALS Depression Inventory

N/A - Patients with ALS and Alzheimer’s disease have

divergent hippocampal imaging signatures.

- The cornu/ammonis 2/3 subfield and the

hippocampus-amygdala transition area are the most

affected regions in ALS.

(Continued)
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TABLE 1 | Continued

References Study design Sample size

Study participants

Raw imaging data/Imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Consonni et al. (14) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 48 MRI

Cortical thickness

ALSFRS-R

MMSE

RAVLT

BADA

FBI

Recognition memory test

Neuropsychological examination

of aphasia

Visual object and space

perception battery

Digit span forward and

backwards

Letter fluency test

Stroop test

Brixton spatial anticipation test

Ekman 60-faces test

Story-based empathy task

Dysexecutive questionnaire

N/A - There was cortical thinning in the frontoparietal region

independent of cognitive and behavioral status.

- Cortical thinning involving the following regions were

associated with the specific deficits:

◦ The Inferior frontal, temporal, cingular, and insular

regions were associated with cognitive or behavioral

impairments.

◦ The left temporal pole and insular regions were

associated with language deficits.

Illán-Gala et al. (15) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 31

bvFTD n = 20

MRI

Cortical thickness

Cortical mean diffusivity

ALSFRS-R

MMSE

ECAS

N/A - In ALS without cognitive impairment, cortical thinning

was restricted to the dorsal motor cortex. In ALS with

cognitive impairment, cortical thinning involved the

frontoinsular and temporal regions bilaterally.

Machts et al. (16) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 67 MRI

Subcortical volumetry, shape,

density analyses

ALSFRS-R

Letter and semantic fluency test

TMT

Stroop test Digit span backwards

FrSBe

N/A - In ALS with or without cognitive impairment there were

distinctive patterns of basal ganglia atrophy. There

were structure specific correlations between imaging

and neuropsychological measures.

Masuda et al. (17) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 51 MRI

VBM

DTI

TBSS

MMSE

FAB

RCPM

Alzheimer’s disease assessment

scale

Stroop test

Digit span forward and

backwards

Letter and semantic fluency

N/A - In ALS with and without cognitive impairment, there

were disrupted networks between the caudate and

medial prefrontal or lateral orbitofrontal cortex.

Rosskopf et al. (18) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 140

PLS n = 30

MRI

DTI

WBSS

ROI analysis

N/A N/A - WM degeneration involving the corticospinal tracts,

corpus callosum, frontal, and brainstem regions.

Srivastava et al. (19) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 65 MRS ALSFRS-R

Verbal fluency

Semantic fluency

Digit span forward and backwards

N/A - There was reduced tNAA/Cr and tNAA/Cho in the

prefrontal cortex.

Verbal fluency, semantic fluency, and digit span

forwards and backwards were associated with

prefrontal tNNA/Cr.

(Continued)
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o
n
d
e
p
re
s
s
io
n
ra
ti
n
g
s
c
a
le
;
L
M
N
,
lo
w
e
r
m
o
to
r
n
e
u
ro
n
;
M
M
S
E
,
m
in
i-
m
e
n
ta
l
s
ta
te
e
xa
m
in
a
ti
o
n
;
M
R
I,

m
a
g
n
e
ti
c
re
s
o
n
a
n
c
e
im
a
g
in
g
;
tN
A
A
/C
h
o
,
to
ta
l
N
-a
c
e
ty
la
s
p
a
rt
a
te
/c
h
o
lin
e
;
tN
A
A
/C
r,
to
ta
l
N
-a
c
e
ty
la
s
p
a
rt
a
te
/c
re
a
ti
n
e
;
P
E
T,
P
o
s
it
ro
n
e
m
is
s
io
n
to
m
o
g
ra
p
h
y;
P
L
S
,
P
ri
m
a
ry
la
te
ra
l
s
c
le
ro
s
is
;
R
A
V
LT
,
R
e
y
a
u
d
it
o
ry
ve
rb
a
l
le
a
rn
in
g
te
s
t;
R
C
F
T,

R
e
y’
s
c
o
m
p
le
x
fig
u
re

te
s
t;
R
O
I,
re
g
io
n
o
f
in
te
re
s
t;
R
C
P
M
,
R
a
ve
n
’s
c
o
lo
re
d
p
ro
g
re
s
s
iv
e
m
a
tr
ic
e
s
;
T
B
S
S
,
tr
a
c
t-
b
a
s
e
d
s
p
a
ti
a
l
s
ta
ti
s
ti
c
s
;
T
M
T,
Tr
a
il
m
a
ki
n
g
te
s
t;
U
M
N
,
u
p
p
e
r
m
o
to
r
n
e
u
ro
n
;
U
M
N
B
,
u
p
p
e
r
m
o
to
r
n
e
u
ro
n
b
u
rd
e
n
;
V
B
M
,

vo
xe
l-
b
a
s
e
d
m
o
rp
h
o
m
e
tr
y;
W
A
IS
,
W
e
c
h
s
le
r
a
d
u
lt
in
te
lli
g
e
n
c
e
s
c
a
le
;
W
B
S
S
,
w
h
o
le
b
ra
in
s
p
a
ti
a
ls
ta
ti
s
ti
c
s
;
W
C
F
S
T,
W
e
ig
lc
o
lo
r-
fo
rm

s
o
rt
in
g
te
s
t;
W
C
S
T,
W
is
c
o
n
s
in
c
a
rd

s
o
rt
in
g
te
s
t;
W
M
,
w
h
it
e
m
a
tt
e
r.

disorder, evolving over many years (104). Reports of extra-motor
involvement are inconsistent which is further complicated by
the debate on whether PMA is a distinct entity or embedded
within the spectrum of ALS (105–108). There are undeniably
shared clinical, radiological, and pathological features, albeit less
severe compared to ALS. While the initial exclusive LMN clinical
presentation distinguishes PMA from ALS, patients with PMA
often later develop UMN signs (107). The cognitive profile is
also strikingly similar to ALS, with varying levels of executive
function, language, fluency, and memory affected (83, 109). In
contrast, minimal behavioral impairment is observed, and very
few patients with PMA fulfill the diagnostic criteria for FTD
(83, 109).

Some imaging studies have identified radiological
abnormalities in a distribution that may explain these cognitive
deficits (1, 109). Structural analyses have reported loss of white
matter integrity in inferior frontal, dorsolateral pre-frontal, and
hippocampal regions (42). A task-based fMRI study utilizing a
letter fluency task as a test of executive function showed impaired
letter fluency and abnormal pre-frontal activation (47). As a
counter-argument, a recent study in PMA reported preserved
structural integrity with no functional connectivity alterations
(4). Neither MRI spectroscopy nor PET imaging studies have
identified radiological abnormalities in extra-motor regions
(45, 46). It is noteworthy that a dedicated neuropsychological
study failed to find a difference between patients with PMA
compared to controls (110). Potential shortcomings of the study
designs must be considered, including small numbers of patients
and the lack of sensitivity of either the chosen task or the imaging
modality (46).

The shared neuropathological hallmarks also lend support to
the opinion that PMA is part of the ALS clinicopathological
continuum (105–107). The pathological substrates of TDP-
43 positive inclusions and occasional fused-in-sarcoma (FUS)-
positive basophilic inclusions are observed in both conditions,
but at a lesser burden and more limited distribution in PMA
(108, 111). Post-mortem studies in PMA typically describe
LMN degeneration, occasional pyramidal tract degeneration,
and additional TDP-43 positive inclusions in the primary
motor cortex and hippocampus even in the absence of UMN
degeneration (108, 111). These findings raise the question, if
in fact the results of PMA studies should be streamlined,
interpreted, and analyzed under the umbrella of ALS.

Spinal Muscular Atrophy
Spinal Muscular Atrophy is an autosomal recessive disorder
that is caused by either homozygous deletions or loss of
function mutations in the survival motor neuron 1 (SMN1)
gene resulting in a deficiency of survival motor neuron (SMN)
protein (112). It typically manifests as a proximal, predominantly
symmetrical motor weakness. The phenotype is stratified in levels
of decreasing severity from type 0 to type IV, depending on age
of symptom onset and achievement of developmental milestones
(112). There are preliminary signals of cerebral involvement in
the more severe phenotypes, but it is not yet clear if there is
preferential involvement of frontotemporal regions.
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TABLE 2 | Selection of original neuroimaging research articles in PLS.

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Agosta et al. (1) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 56

UMN phenotype n = 31

LMN phenotype n = 14

MRI

Cortical thickness

DTI

ALSFRS-R

MMSE

RCPM

CET

WCST

WCFST

RAVLT

BADA

HDRS

FBI

ALS-FTD questionnaire

Phonemic and semantic fluency

Digit span forward and backwards

N/A - In those with UMN phenotype, 36% had cognitive

impairment and 13% had behavioral impairment

- There was cortical thinning of the bilateral

precentral gyrus, insular and cingulate cortices,

and frontotemporal regions in all patient groups.

- There was involvement of the extra-motor WM tracts of

the corpus callosum and frontotemporal regions.

- These findings were more marked in those with

cognitive or behavioral impairment.

Alshikho et al. (2) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 11

ALS n = 53

MRI

Cortical thickness

ROI analysis

DTI

[11C]-PBR28 PET

ALSFRS-R

UMNB

6-months - In PLS, increased glia activation was detected in the

subcortical WM adjacent to the motor cortex that

correlated with areas of reduced FA.

Basaia et al. (4) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 173

PLS n = 38

PMA n = 28

MRI

DTI

Resting-state fMRI

Global brain network analysis

Functional connectivity analysis

MMSE

RAVLT

Digit span forward and backward

Stroop test

CET

WCFST

WCST

RCPM

Phonemic and semantic fluency

Italian battery for the assessment

of aphasic disorders.

HDRS

Beck depression inventory

FBI

ALS-FTD Questionnaire

N/A - In PLS, there was widespread motor and extra-motor

network degeneration.

Bede et al. (8) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 33

ALS n = 100

FTD n = 30

MRI

Volumetry, vertex and

morphometry analyses

ALSFRS-R 4-months - In PLS, there was progressive brainstem atrophy

predominantly involving the medulla oblongata.

Bede et al. (9) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 33

ALS n = 100

FTD n = 30

MRI

Volumetry analysis

ALSFRS-R 4-months - In PLS, loss of volume in medulla oblongata and pons

that was more pronounced compared to ALS.

(Continued)
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TABLE 2 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Canu et al. (22) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 21 MRI

DTI

TBSS

ALSFRS-R

MMSE

WCFST

WCST

CET

RCPM

RAVLT

BADA

HDRS

FBI

Phonemic and semantic fluency

Digit span forward and backwards

N/A - In those with PLS and cognitive impairment, there was

WM degeneration involving the corticospinal tract,

corpus callosum, cerebellum, brainstem, fornix,

thalamus, and parietal lobes. These DTI metrics

correlated with cognitive tests.

Chan et al. (23) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 18

ALS n = 15

MRS N/A N/A - In PLS, NAA/Cr ratio was reduced in motor cortex.

Charil et al. (24) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 9

ALS n = 38

MRI

MTI

DWI

MRS

ALSFRS-R

Ashworth spasticity scale

N/A - In PLS, NAA/Cr ratio was reduced in motor cortex and

the apparent diffusion coefficient of the corticospinal

tract was increased.

Chipika et al. (10) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 33

ALS n = 100

MRI

Volumetry analysis

ROI morphometry

N/A N/A - In PLS, there was a specific pattern of thalamic

involvement involving motor and sensory regions and

distinctive pulvinar and lateral geniculate atrophy.

Clark et al. (25) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 18

Pre-PLS n = 13

MRI

Volume analysis

Cortical thickness

DTI

Resting state fMRI

Task-based fMRI

Finger tapping

MMSE 1–2 years - In PLS, there was cortical thinning of the precentral

gyrus.

- In pre-PLS, there was progressive thinning of precentral

gyrus and initial reduced motor network connectivity

with some interval recovery.

- The reduced FA in corpus callosum and corticospinal

tracts were similar in both PLS and pre-PLS.

Fabes et al. (26) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 6

ALS n = 43

MRI

Quantitative FLAIR signal

intensity ROI analysis

ALSFRS-R

TMT

Not specified - In PLS, highest FLAIR intensity difference in both

ROIs—corticospinal tracts and corpus callosum—but

there was no significant correlation with UMN signs.

Finegan et al. (27) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 49

ALS n = 100

MRI

VBM

DTI

ROI analysis

ALSFRS-R

ECAS

Penn UMN score

Modified ashworth spasticity

scale

Tapping rate

N/A - The extra-motor profile included insular, inferior frontal

and left pars opercularis pathology.

(Continued)
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TABLE 2 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Finegan et al. (27) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 33

ALS n = 100

MRI

Volumetric, morphometric,

segmentation and

vertex-wise analyses

ALSFRS-R

Penn UMN score

N/A - PLS was associated with considerable subcortical gray

matter degeneration involving the thalamus, caudate,

and hippocampus in a pattern distinct from ALS.

Finegan et al. (28) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 33

ALS n = 100

MRI

Subcortical volume analysis

ALSFRS-R N/A - In PLS, there were specific patterns of subcortical

degeneration involving the thalamus, hippocampus,

and accumbens nucleus.

Finegan et al. (29) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 40 MRI

VBM

DTI

ROI analysis

Subcortical volume analysis

ALSFRS-R

Penn UMN score

Modified ashworth spasticity

scale

ECAS

HADS

FrSBe

Emotional lability questionnaire

N/A - There were GM changes involving anterior cingulate,

dorsolateral prefrontal cortex, insular, opercular,

orbitofrontal and bilateral mesial temporal regions.

- There were WM alterations involving fornix, brainstem,

temporal lobes, and cerebellum.

- The volume of the thalamus, caudate, hippocampus,

putamen, and accumbens nucleus were reduced.

- Extra-motor clinical deficits included verbal fluency,

language, apathy, and pseudobulbar affect.

Kolind et al. (30) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 7

ALS n = 23

MRI

mcDESPOT

ALSFRS-R

ACE-III

Verbal fluency

TMT

7 ± 1 month - In PLS, there were longitudinal changes in widespread

cerebral myelin water fraction reductions independent

of disease duration and UMN burden.

Kwan et al. (31) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 22

ALS n = 21

MRI

Cortical thickness

Regional brain volume

DTI

ALSFRS-R 2.08

±0.3 years

- In PLS, there was reduced FA of corticospinal tracts

and progressive cortical thinning that correlated with

clinical progression.

Menke et al. (32) Longitudinal,

Prospective,

Single-center

PLS n = 3

ALS n = 21

MRI

DTI

TBSS

ALSFRS-R 6-months - In ALS and PLS, there was reduced FA in the internal

capsule that correlated with rate of progression.

Meoded et al. (33) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 17

ALS n = 13

MRI

VBM

DTI

ALSFRS-R

Delis-kaplan executive function

system

Mattis dementia rating scale

Beck depression inventory

FrSBe

UCLA neuropsychiatric index

N/A - There was WM degeneration of corpus callosum and

long association tracts connecting frontotemporal

areas to occipital and parietal areas that was

associated with cognitive test results.

Meoded et al. (34) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 16 Resting state fMRI ALSFRS-R

MMSE

Finger and foot tapping speed

N/A - There was increased functional connectivity involving

the cerebro-cerebellar connections to the

frontotemporal and motor regions.

Mitsumoto et al. (35) Longitudinal,

Prospective,

Single-center,

Case-control

PLS n = 6

ALS n = 49

PMA n = 9

MRI

DTI

MRS

ALSFRS-R

Finger and foot tapping

Motor unit number estimation

Transcranial magnetic stimulation

Every

3-months

for 15-

months

- In PLS, there was reduced NAA/tCr ratio in the primary

motor cortex.

(Continued)
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TABLE 2 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Paganoni et al. (36) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 10 MRI

Cortical thickness

DTI

TBSS

ROI analysis

[11C]-PBR28 PET

ALSFRS-R

UMNB

Vital Capacity

N/A - There were increased glia activation in the areas of

cortical atrophy (pre-central gyri) and decreased FA

(corpus callosum, subcortical WM adjacent to motor

cortex, corticospinal tracts, superior

longitudinal fasciculus).

Tartaglia et al. (37) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 11 MRI

Volumetry analysis

ALSFRS-R N/A - There was reduced volume of whole brain, frontal lobe,

precentral cortex, and corpus callosum.

Tu et al. (38) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 10

ALS n = 9

MRI

DTI

N/A N/A - In PLS, there were significant alterations proximal to

motor cortex in the dentato-rubro-thalamo-cortical

tracts and in the cerebellar region in the

dentato-rubro-thalamo-cortical and

spinocerebellar tracts.

Turner et al. (39) Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 4

ALS n = 34

[11C]-flumazenil PET ALSFRS-R N/A - In PLS, the pattern of decreased binding of

[11C]-flumazenil was similar to sporadic ALS with the

exception of the relative decrease in the anterior and

orbito-frontal region in sporadic ALS.

Unrath et al. (40) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 20

HSP n = 24

PLS n = 25

MRI

DTI

N/A N/A - In PLS, widespread WM degeneration involving the

corticospinal tracts, corpus callosum, brainstem, and

subcortical WM adjacent to motor cortices.

Van der Graaff et al.

(41)

Longitudinal,

Prospective,

Multi-center,

Case-control

PLS n = 12

ALS n = 24

PMA n = 12

MRS ALSFRS-R

Finger and foot tapping speed

6-months - In PLS, decreased N-acetylaspartate, N-acetyl

aspartylglutamate, and myo-inositol levels detected in

primary motor cortex.

Van der Graff et al. (42) Longitudinal

Prospective,

Multi-center,

Case-control

ALS n = 12

PLS n = 12

PMA n-12

MRI

Whole brain voxel-based

analysis

DTI

ALSFRS-R

Finger-tapping speed

Vital capacity

6-months - In PLS, reduced FA in the subcortical WM adjacent to

the primary sensory cortex, thalamus, fornix, internal

capsule, and corpus callosum.

Van Weehaeghe et al.

(43)

Cross-sectional,

Prospective,

Single-center,

Case-control

PLS n = 10

ALS n = 105

[18]F-FDG PET ALSFRS-R N/A - The pattern of regional hypometabolism was

indistinguishable between ALS and PLS.

Zhai et al. (44) Cross-sectional,

Prospective,

Single-center

PLS n = 10 MRS Finger tapping speed

Transcranial magnetic stimulation

Startle testing

N/A - NAA/Cr ratio was reduced in the motor cortex.

ACE-III, Addenbrooke’s cognitive examination III; ALS, amyotrophic lateral sclerosis; ALSFRS-R, amyotrophic lateral sclerosis functional rating scale revised; BADA, battery for the aphasic deficit analysis; CET, cognitive estimation task;

DTI, diffusion tensor imaging; DWI, diffusion weighted imaging; ECAS, Edinburgh cognitive and behavioral ALS screen; FA, fractional anisotropy; FBI, frontal behavioral inventory; [18 ]F-FDG PET, fluorodeoxyglucose positron emission

tomography; FLAIR, fluid-attenuated inversion recovery; fMRI, functional magnetic resonance imaging; FrSBe, frontal systems behavior scale; FTD, frontotemporal dementia; GM, gray matter; HADS, hospital anxiety and depression

scale; HDRS, Hamilton depression rating scale; LMN, lower motor neuron; mcDESPOT, multi-component driven equilibrium single pulse observation; MMSE, mini-mental state examination; MRI, magnetic resonance imaging; MRS,

magnetic resonance spectroscopy; MTI, magnetization transfer imaging; NAA/Cr, N-acetylaspartate/creatine; NAA/tCr, N-acetylaspartate/total creatine; PET, positron emission tomography; PLS, primary lateral sclerosis; RAVLT, Rey

auditory verbal learning test; ROI, region of interest; RCPM, Raven’s colored progressive matrices; TBSS, tract-based spatial statistics; TMT, trail making test; UMN, upper motor neuron; UMNB, upper motor neuron burden; VBM,

voxel-based morphometry; WCFST, Weigl color-form sorting test; WCST, Wisconsin card sorting test; WM, white matter.
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TABLE 3 | Selection of original neuroimaging research articles in PMA, SMA, SBMA, PPS, and HSP.

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

(months)

Key study findings

Progressive muscular atrophy

Agosta et al. (1) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 56

UMN phenotype n = 31

LMN phenotype n = 14

MRI

Cortical thickness

DTI

ALSFRS-R

MMSE

RCPM

CET

WCST

WCFST

RAVLT

BADA

HDRS

FBI

ALS-FTD questionnaire

Phonemic and semantic fluency

test

Digit span forwards

and backwards

N/A - 36% LMN phenotype had cognitive impairment

- Cortical thinning of bilateral precentral gyrus, insular and

cingulate cortices, and frontotemporal regions.

- WM degeneration detected in the corpus callosum and

frontotemporal tracts, including the uncinate, cingulum,

and superior longitudinal fasciculi.

- These findings were associated with cognitive or

behavioral symptoms, especially WM changes.

Basaia et al. (4) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 173

PLS n = 38

PMA n = 28

MRI

DTI

Resting-state fMRI

Global brain network analysis

Functional connectivity analysis

MMSE

RAVLT

Digit span forward and backward

Stroop test

CET

WCFST

WCST

RCPM

Phonemic and semantic fluency

Italian battery for the assessment

of aphasic disorders.

HDRS

Beck depression inventory

FBI

ALS-FTD Questionnaire

N/A - In PMA, structural and functional connectomes were

preserved.

Kew et al. (45) Cross-sectional,

Prospective,

Single-center,

Case-control

ALS n = 6

LMN phenotype n = 5

Resting-state PET

Task-based PET

- Motor task: moving joystick

with right hand

N/A N/A - There was no difference in regional cerebral blood flow

between LMN phenotype and controls at rest.

- During motor task, there was increased activation of

perisylvian areas in both ALS and LMN.

Mitsumoto et al. (35) Longitudinal,

Prospective,

Single-center,

Case-control

PMA n = 9

PLS n = 6

ALS n = 49

MRI

DTI

MRS

ALSFRS-R

Finger and foot tapping

Motor unit number estimation

Transcranial magnetic stimulation

Every

3-months for

15-months

- In PMA, there was modest reduction in NAA/tCr ratio

in the primary motor cortex.

Quinn et al. (46) Cross-sectional,

Prospective,

Single-center

ALS n = 20

PMA n = 5

MRS ALSFRS

MMSE

Letter-fluency index

N/A - In PMA, there was greater NAA/Cr in the dorsolateral

prefrontal cortex compared to ALS.

(Continued)
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TABLE 3 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Raaphorst et al. (47) Cross-sectional,

Prospective,

Multi-center,

Case-control

ALS n = 21

PMA n = 18

Task-based fMRI

- Letter fluency

- Category fluency

ALSFRS-R

UMN score

HADS

Dutch national adult reading test

MMSE

Digit span forwards and

backwards

WAIS-R letter-number

sequencing

Modified WCST

Category and letter fluency

Stroop test

RAVLT

Rivermead behavioral memory

test

Doors test

Boston naming test

Judgment of line orientation test

Differential aptitude test

Mental rotation task

N/A - There was impaired letter fluency in PMA and ALS.

- The letter fluency task showed lower activation in the

inferior frontal gyrus in PMA and ALS.

- No differences detected during category fluency.

Van der Graaff et al.

(41)

Longitudinal,

Prospective,

Multi-center,

Case-control

PMA n = 12

PLS n = 12

ALS n = 24

MRS ALSFRS-R

Finger and foot tapping speed

6-months - In PMA, there was no difference in N-acetylaspartate,

N-acetyl aspartylglutamate levels in the primary motor

cortex at baseline. There was a significant decrease in

these levels at follow-up.

Van der Graff et al. (42) Longitudinal

Prospective,

Multi-center,

Case-control

PMA n-12

ALS n = 12

PLS n = 12

MRI

Whole brain voxel-based

analysis

DTI

ALSFRS-R

Finger-tapping speed

Vital capacity

6-months - In PMA, there was FA reduction in extra-motor WM

inferior frontal gyrus, dorsolateral prefrontal cortex,

corpus callosum, hippocampus, and fornix.

- DTI abnormalities were modest compared to PLS.

Spinal muscular atrophy

De Borba et al. (48) Cross-sectional,

Prospective,

Single-center,

Case-control

SMA type III (n = 19)

SMA type IV (n = 6)

MRI

Cortical thickness

GM volumetry

MRC muscle strength evaluation

SMAFRS

N/A The volume of cerebellar lobules VIIIB, IX and X were

significantly smaller in patients with SMA.

Mendonça et al. (49) Longitudinal,

Prospective,

Single-center

SMA type 0 (n = 3) Qualitative MRI N/A 1-3 years Mild progressive global brain atrophy, predominantly WM

and supratentorial structures with relative preservation of

the cerebellum.

Querin et al. (50) Cross-sectional,

Prospective,

Single-center,

Case-control

SMA type III (n = 19)

SMA type IV (n = 6)

MRI

Cortical thickness

DTI

ROI analysis

MRC muscle strength evaluation N/A There was increased GM density in primary motor

cortex. No white matter pathology was identified.

Spinal and bulbar muscular atrophy (Kennedy’s disease)

Garaci et al. (51) Cross-sectional,

Prospective,

Single-center

SBMA n = 8 MRI

DTI

TBSS

ALSFRS N/A - Loss of WM integrity, including frontal region, that

correlated with disability and disease duration.
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TABLE 3 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Karitzky et al. (52) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 9 MRS N/A N/A - Reduced NA/Cho ratio in the brainstem and reduced

NA/Cho and NAA/Cr ration in the motor regions. This

did not correlate with number of CAG repeats.

Kassubek et al. (53) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 18 MRI

VBM

MRC muscle strength evaluation N/A - Subtle decreases in GM volume and extensive WM

atrophy, most pronounced in the frontal areas.

Lai et al. (54) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 10 [18]F-FDG PET N/A N/A - Frontal glucose hypometabolism was detected.

Mader et al. (55) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 10 MRS N/A N/A - There was increased myo-inositol and macromolecular

detected in the motor area.

- The NAA/Cr ratio correlated with number of CAG

repeats.

Pieper et al. (56) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 8 MRI

VBM

DTI

N/A N/A - Subtle changes in central WM tract integrity.

- The GM and WM volume was unaffected.

Unrath et al. (40) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 20

HSP n = 24

PLS n = 25

MRI

DTI

N/A N/A - In SBMA, extra-motor WM alterations detected within

the limbic system or its network including precuneus,

temporal lobe, and left inferior frontal lobe.

Post-Polio syndrome

Bruno et al. (57) Cross-sectional,

Prospective,

Single-center

PPS n = 22 Self-reported severity of daily

fatigue and subjective problems

with attention, cognition

and memory

N/A - Small discrete hyperintense signal in reticular

formation, putamen, medial leminiscus or WM tracts

identified in 55% of those with high levels of fatigue

and in none of those with low levels of fatigue.

Demir et al. (58) Cross-sectional,

Retrospective,

Single-center

PPS n = 11 Qualitative MRI N/A N/A - Qualitative MRI were reported normal.

Shing et al. (59) Cross-sectional,

Prospective,

Single-center,

Case-control

PPS n = 36 MRI

Cortical thickness Subcortical

GM

DTI

ROI analysis

ECAS

FrSBe

Fatigue severity scale

Piper fatigue scale

HADS

N/A - Limited cortical atrophy (cingulate gyrus and temporal

pole), limited subcortical atrophy (left nucleus

accumbens) and no WM degeneration were detected

despite prevalent extra-motor symptoms.

Shing et al. (60) Cross-sectional,

Prospective,

Single-center,

Case-control

PPS n = 36

ALS n = 88

MRI

Morphometry

DTI

TBSS

ROI analysis.

MRC muscle strength evaluation

ALSFRS-R

N/A - No GM or WM degeneration detected.

- Increased GM volume in cerebellar, brainstem and

occipital lobe regions and increased WM integrity in

pyramidal, mesial temporal and cerebellar tracts.
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TABLE 3 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Trojan et al. (61) Cross-sectional,

Prospective,

Single-center,

Case-control

PPS n = 42

MS n = 49

MRI

Normalized brain volume

Fatigue severity scale

Centers for epidemiological

studies depression scale

N/A - In PPS, no significant whole brain atrophy detected.

- No association between brain volume and fatigue.

Hereditary spastic paraplegia

Aghakhanyan et al. (62) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 12 MRI

DTI

TBSS

N/A N/A - There was reduced FA with preferential involvement of

frontal regions in an anteroposterior pattern.

Agosta et al. (63) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 44 MRI

VBM

DTI

TBSS

SPRS

MMSE

Verbal and spatial span

Memory prose

RCFT

TMT

RCPM

Paced Auditory Serial Addition

Task

Phonemic and semantic fluency

Beck Depression Inventory

N/A - The distribution of extra-motor WM degeneration

involving cerebellar, limbic, corticocortical and

interhemispheric regions was similar in pHSP and

cHSP. It correlated with cognitive impairment.

Duning et al. (64) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 6 MRI

Volumetry

DTI

Digital symbol substitution

WMS-R

Digital span forward and

backward

TMT

CWIT

Letter fluency

RCFT

RALVT

N/A - Structural MRI and brain volumetry were normal.

- Loss of WM integrity in corticospinal tract and frontal

regions in those with longer disease duration.

Erichsen et al. (65)
Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 8 MRS

Volumetry

ROI analysis

WAIS-R

Digit symbol substitution

Digit span forward and

backwards

Stroop test

“2 and 7 selective attention test”

Paced Auditory Serial Addition

Test

CVLT-T score

Continuous Visual Memory Test

RCFT

Controlled Word Fluency Test

N/A - There was reduced Cho/Cr ratio in motor cortex that

was associated with some cognitive measures.

(Continued)
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TABLE 3 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Faber et al. (66) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 25 MRI

Cortical thickness

Deep GM volumes

DTI

ACE-III

Neuropsychiatric Inventory

SPRS

N/A - The loss of WM integrity at the fornix and corpus

callosum correlated with cognitive measures.

- Basal ganglia atrophy and limited cortical thinning

involving motor, limbic and parietal cortices.

França et al. (67) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 5 MRI

VBM

DTI

TBSS

N/A N/A - Significant gray matter atrophy involving the thalamus

and basal ganglia but not in the cerebral cortex.

- Reduced FA involving subcortical white matter of the

temporal and frontal lobes, cingulated gyrus, cuneus,

striatum, corpus callosum, and brainstem.

Kassubek et al. (68) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 33 MRI

Brain parenchymal fractions

Mini Mental Status Scale N/A - Global brain volume reduction involving GM and WM

that was more pronounced in cHSP than pHSP.

Koritnik et al. (69) Cross-sectional,

Prospective,

Single-center,

Case-control

- HSP n = 12 Task-based fMRI Finger tapping N/A N/A - There was altered cortical activation during the motor

tasks.

Liao et al. (70) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 12 Resting state fMRI SPRS N/A - The baseline neural activity and connectivity were

altered in frontal regions including insula, pre-central,

orbitofrontal, superior, and middle frontal gyrus.

Lindig et al. (71) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 15 MRI

VBM

DTI

TBSS

SPRS N/A - WidespreadGMandWMdegeneration involving corpus

callosum, thalamus, parieto-occipital, upper brainstem,

cerebellum, and corticospinal tracts.

- There was a correlation between DTI metrics and

disease duration and severity.

Montanaro et al. (72) Longitudinal,

Prospective,

Single-center,

Case-control

HSP n = 31 MRI

VBM

DTI

TBSS

MRS

SPRS 28.9 ± 8.4

months

- There was widespread WM degeneration and reduced

GM volume in right pre-frontal cortex and thalamus.

- Follow-up imaging did not detect significant changes.

Oguz et al. (73) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 4 MRI

DTI

TBSS

N/A N/A - There were widespread WM alterations involving both

the motor and extra-motor regions.

Pan et al. (74) Cross-sectional,

Prospective,

Single-center

HSP n = 5 MRI

DSI

TBSS

MMSE

WAIS-III

Modified Ashworth Scale

Tendon Reflex Grading Scale

N/A - There was global loss of WM integrity, most marked in

prefrontal and motor regions of corpus callosum.
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TABLE 3 | Continued

References Study design Sample size

Study participants

Raw imaging data/imaging

technique

Assessment tools Follow-up

interval

(months)

Key study findings

Rezende et al. (75) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 11 MRI

Volumetry

DTI

TBSS

SPRS N/A - No volumetry analyses abnormalities detected.

- Reduced FA in corticospinal tracts and corpus

callosum correlated with disease severity.

Scheuer et al. (76) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 18 MRI

[18]F-FDG PET

Modified Disability Scale

RH Basic Battery

Proverb Interpretation

Associate Learning and Retention

of 15 Word Pairs

Digit Span Forwards and

Backwards Sentence Repetition

Symbol Digit Modalities Test

TMT

Block Design Test

Visual Gestalt Test

Danish Adult Reading Test

WAIS

List Learning Test

Recognition memory tests

Street Completion Test

WCST

N/A - There was decreased regional cerebral blood flow in

the left fronto-temporal cortex. In the more disabled

patients, more extensive changes were noted.

- Neuropsychological tests showed impaired recognition

memory of faces. The PET imaging findings were not

associated with severe cognitive impairment.

Stromillo et al. (77) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 10 MRI

Normalized brain volumes

MRS

MMSE 4-grade severity scale of

patients’ autonomy

walking abilities

N/A - Widespread structural and metabolic brain alterations.

- Lower global brain volumes and diffusely decreased

values in cortical regions compared to controls.

- Reduced brain volume and altered NAA/Cr ratio in the

corona radiata correlated with disability scores.

Tomberg et al. (78) Cross-sectional,

Prospective,

Single-center,

Case-control

HSP n = 9 Task-based fMRI

Flexion and extension of the

right-hand fingers and right ankle

Modified Ashworth Scale N/A - There was altered cortical sensorimotor network

function that may reflect damage in the corticospinal

tract or compensatory mechanisms.

Unrath et al. (40) Cross-sectional,

Prospective,

Single-center,

Case-control

SBMA n = 20

HSP n = 24

PLS n = 25

MRI

DTI

N/A N/A - In HSP, extra-motor WM alterations were detected

within the frontal regions and limbic system and its

projectional fibers.

Warnecke et al. (79) Cross-sectional,

Prospective,

Single-center

HSP n = 6 Qualitative MRI

DTI

Neuropsychological testing N/A - Qualitative MRI showed cerebellar atrophy and mild

frontal cerebral atrophy. There was loss of WM integrity

in corticospinal tracts, frontal lobes, and midbrain. This

was thought to contribute to the impaired attention

and executive function.

ACE-III, Addenbrooke’s cognitive examination III; ALS, amyotrophic lateral sclerosis; ALSFRS-R, amyotrophic lateral sclerosis functional rating scale revised; BADA, battery for the aphasic deficit analysis; CET, cognitive estimation

task; Cho/Cr, Choline/creatinine; CWIT, color word interference test; CVLT, California verbal learning test; DTI, diffusion tensor imaging; ECAS, Edinburgh cognitive and behavioral ALS screen; FA, fractional anisotropy; FBI, frontal

behavioral inventory; [18 ]F-FDG PET, fluorodeoxyglucose positron emission tomography; fMRI, functional magnetic resonance imaging; FrSBe, frontal systems behavior scale; GM, gray matter; HADS, hospital anxiety and depression

scale; HDRS, Hamilton depression rating scale; HSP, hereditary spastic paraparesis; pHSP, pure HSP; cHSP, complicated HSP; LMN, lower motor neuron; mI/Cr, myo-inositol/creatine; MMSE, mini-mental state examination; MRC,

medical research council; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAA/Cho, N-acetylaspartate/choline; NAA/Cr, N-acetylaspartate/creatine; NAA/tCr, N-acetylaspartate/total creatine; PET, positron

emission tomography; PLS, primary lateral sclerosis; RAVLT, Rey auditory verbal learning test; RCFT, Rey’s complex figure test; ROI, region of interest; RCPM, Raven’s colored progressive matrices; SMAFRS, spinal muscular atrophy

functional rating scale; SPRS, spastic paraplegia rating scale; TBSS, tract-based spatial statistics; TMT, trail making test; UMN, upper motor neuron; VBM, voxel-based morphometry; WAIS, Wechsler adult intelligence scale; WCFST,

Weigl color-form sorting test; WCST, Wisconsin card sorting test; WM, white matter; WMS-R, Weshcsler memory scale-revised.
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FIGURE 1 | Dimensions of disease heterogeneity in MND; the spectrum of relative upper/lower motor neuron involvement and the spectrum of extra-motor

manifestations.

The only two cross-sectional quantitative multimodal MRI
brain studies evaluated the same 25 treatment naïve adults with
type III or type IV SMA initially focusing on the cerebrum and
then the cerebellum (48, 50). No supratentorial cortical atrophy
was detected (50), but focal cerebellar changes were noted. In
the more severe clinical phenotypes, qualitative MRI brain scans
have captured more dramatic findings (49, 113–115). In type 0
SMA, widespread supratentorial, and sometimes infratentorial,
brain atrophy has been reported. A longitudinal case series
of patients with type 0 SMA showed interval radiological
abnormalities involving the thalamus and basal ganglia (49,
114). Similar radiological findings have been described in type
I SMA (115). For the most part, neuropsychological studies
demonstrate preserved cognition (116–119). This is with the
caveat that these studies are mostly limited to children and
omit the more severe clinical phenotypes (120). Some aspects

of childhood development are even deemed superior compared
to healthy controls (121–125). The only neuropsychological
study of adults with type II or type III SMA described normal
rather than superior cognitive abilities. This study reported a
possible adaptive mechanism of an inverse correlation between
executive function and physical ability, but the level of executive
function did not exceed healthy controls (116). In contrast, there
are indications of attention and executive function deficits in
children with type I SMA (120, 126).

The post mortem examination of the brain is often
confounded by coexistent anoxic changes (127, 128). The more
severe clinical phenotypes display more widespread features of
degeneration involving the cerebral cortex, thalamus, brainstem,
and some cranial nerve nuclei that are congruent with ante
mortem radiological abnormalities (49, 129). Most of these
regions seem spared in the milder phenotypes (127, 128,
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130). This has been interpreted as selective neuronal network
degeneration occurring below a threshold of SMN protein,
although the true clinical significance of this is unknown
(129). Overall, the radiological characterization of the more
severe clinical phenotypes has proven challenging because of
the rarity of the condition, significant disability, and limited
life expectancy. In the advent of gene therapy, there may be
opportunities for future research in this cohort.

Spinal and Bulbar Muscular Atrophy
(Kennedy’s Disease)
Spinal and Bulbar Muscular Atrophy, also known as Kennedy’s
disease, is an X-linked trinucleotide repeat disorder due to
expansion of cytosine-adenine-guanine (CAG) repeat in the
androgen receptor gene (131). It is a multisystem disorder that
typically presents in men in their fourth decade of life with slowly
progressive weakness, bulbar involvement, and muscle atrophy
due to insidious lower motor neuron degeneration (132, 133).
Relativelymild cognitive deficits have been consistently described
(134–136). While it is a multi-system disorder, the involvement
of the central nervous system has been relatively under-evaluated
from a radiological viewpoint (131).

The few brain imaging studies indicate various degree of
frontotemporal involvement (53, 54, 56). Quantitative MRI
analyses demonstrate a spectrum of frontal gray and white matter
abnormalities ranging from entirely unaffected to subtle gray
matter atrophy and extensive white matter degeneration (53, 56).
Widespread loss of white matter integrity has been reported in
the brainstem, corticospinal tracts, and limbic system (40, 51,
56). A single PET imaging study showed hypometabolism in
frontal areas (54). The results of conflicting MR spectroscopy
studies highlight that subclinical neuronal dysfunction may not
be detected by certain imaging protocols (52, 55). A long echo-
time MR spectroscopy study demonstrated altered metabolite
ratios in the brainstem and motor regions (52); however, a
short echo-time MR spectroscopy study failed to reproduce
these findings (55). The discrepancy in these results may be
explained by the potential pitfall of artificial metabolite elevation
because of either metabolite signal overlap or incorrect baseline
determination in short echo-time MR spectroscopy (137). These
radiological findings are complemented by consistent reports
of neuropsychological dysfunction in this cohort albeit mostly
at a subclinical level (134–136). Deficits may be so subtle that
performance on standard tests of executive function can be
normal (134, 135). Mild deficits in social cognition have also been
recorded (135). In contrast, single cases of more severe frontal
dysfunction have been repeatedly described (138, 139).

Most post-mortem studies in SBMA focus on cardinal spinal
cord, peripheral nerve, and proximal muscle changes (133, 139,
140). The pathological examination of cerebral hemispheres is
seldom reported. A post-mortem report of an SBMA patient with
significant cognitive impairment demonstrated marked diffuse
subcortical gliosis in the pre-frontal region, hippocampus, and
the degeneration of fronto-bulbar fibers in the midbrain without
accompanying cortical pathology (139). Immunohistochemical
studies have shown that the pathogenic nuclear mutant AR

protein is present in abundance in the central nervous system;
supporting the rationale to systematically evaluate cerebral
changes in future SBMA studies (141).

Poliomyelitis and Post-polio Syndrome
Post-polio syndrome is characterized by progressive muscular
weakness with or without pain, fatigue, and muscle atrophy in
patients who have recovered from a distant polio infection (61).
Patients often report diverse cognitive symptoms, mostly deficits
in attention or memory; however objective evidence is strongly
confounded by comorbid factors such as fatigue (57, 142–
144). The reportedly high prevalence of extra-motor symptoms
is contrasted by the relative lack of cerebral radiological
abnormalities in post-polio syndrome (59).

A quantitative MRI study detected minimal cortical and
subcortical atrophy, involving the cingulate gyrus, temporal
pole, and left nucleus accumbens (59). These subtle changes
were not appreciated in other studies (60, 61). Qualitative MRI
studies either identified no abnormalities or discrete subcortical
hyperintensities that were hypothesized to contribute to the
disabling comorbid fatigue (57, 58, 145). Patients with post-
polio syndrome frequently exhibit high levels of self-reported
fatigue, apathy, and verbal fluency deficits. In the absence of
widespread frontotemporal imaging abnormalities, these extra-
motor symptoms are postulated to be multifactorial in origin
with factors such as low mood, poor sleep, and polypharmacy all
playing an additive role (59).

These observations are corroborated by historical pathological
studies that demonstrate preferential involvement of the
brainstem rather than the cerebrum (57, 146, 147). This is
further complicated by reports of patients with a history of
polio, who later develop sporadic ALS and demonstrate mixed
neuropathological features including the hallmarks of both
diseases (148, 149).

Hereditary Spastic Paraplegia
Hereditary spastic paraplegias (HSPs) are a clinically and
genetically heterogenous group of neurodegenerative disorders
that present as progressive limb weakness and spasticity.
They were traditionally divided into “pure” or “complicated”
phenotypes based on the absence or presence of extra-motor
involvement, respectively (63). In recent times, there has been
a shift to stratify these cohorts in accordance with their genetic
diagnoses (150). Interestingly, there are radiological indicators of
frontotemporal dysfunction irrespective of the subgroup.

Brain imaging studies have shown a reduction in whole
brain volume in both clinical phenotypes (68). In pure HSP
the volume of gray matter volume is thought to be mostly
preserved, whereas in complicated HSP the volume of cortical
and deep gray matter may be reduced. The only longitudinal
study detected no change in cerebral volume over a 2-year follow-
up period (72). This is with the caveat that longer time intervals
may be required to detect a significant change. Loss of white
matter integrity has been identified in the corpus callosum, in
the frontotemporal and parietal regions in both groups (40, 62–
64, 72, 73). The severity of these findings correlate with the
degree of cognitive impairment (63). Given the relative cortical
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sparing, cognitive deficits in these cohorts were postulated to be
primarily subcortical in origin (64, 66, 67). This was supported
by MR spectroscopy reports of abnormal metabolic ratios in
the subcortical white matter (65, 72, 77, 151–155). PET imaging
studies detected cortical hypometabolism, sometimes implicating
the frontotemporal regions (76, 156–161). This was accompanied
by clinical measures of frontal dysfunction (76, 161). Resting-
state fMRI studies have shown altered functional connectivity
involving the primary motor cortex, insula, and superior frontal
gyrus (70). Task-based fMRI studies typically report abnormal
activation patterns in sensorimotor areas whilst performing
motor tasks (69, 78).

In the advent of genotyping, there has been a focused
effort to define the radiological signatures of specific genotypes.
Spastic paraplegia 4 (SPG 4) is the most common autosomal
dominant HSP subtype that is characterized by widespread
white matter degeneration with relatively preserved gray matter
(64, 71, 75). Subclinical cognitive deficits have been described
that later follow a more rapid trajectory of decline escalating
in the eights decade of life (162–165). Spastic paraplegia 11
(SPG11) and spastic paraplegia 7 (SPG7) are rare autosomal
recessive HSP subtypes that reveal white matter degeneration
involving the frontotemporal regions amongst other features
(67, 74, 79, 150, 152, 166–168). Varying degrees of cognitive
deficits including attention, memory, and executive dysfunction
have been described in these genotypes and others (66, 79, 169).

The few post-mortem studies corroborate the radiological
descriptions of frontotemporal pathology. Autopsy reports of
those with a clinical rather than genetic diagnosis must be
interpreted with caution. In clinically defined cases, marked
cerebral atrophy and severe gliosis of the cerebral white
matter has been described sometimes preferentially involving
prefrontal and frontal areas (170–172). In SPG11, widespread
frontotemporal cortical degeneration has been described (85).
Similar pathological observations have been reported in SPG4,
in addition to widespread ubiquitin positivity (164).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis is the most common form of MND
that is characterized by progressive upper and lower motor
neuron degeneration in the motor cortex, brainstem nuclei, and
anterior horn of the spinal cord. It begins with progressive limb-
onset or bulbar-onsetmuscle weakness that clinicallymanifests as
cramps, fasciculations, muscle wasting, difficulty swallowing, or
speaking before ultimately advancing to respiratory failure (173).
Additional cognitive and/or behavioral impairment is universally
recognized and a minority of patients with ALS also fulfill the
diagnostic criteria for FTD (174).

Clinical observations are widely supported by extra-motor
neuroimaging findings. Structural imaging consistently reveals
frontotemporal gray and white matter degeneration (14, 15, 18,
175–188). Gray matter atrophy has been described in the anterior
cingulate, insula, operculum, inferior frontal gyrus, superior
temporal gyrus, cerebellum, parietal, and occipital cortex (1, 6,
7, 14, 15, 20, 179, 185, 187–191). White matter degeneration
has been detected in the body of the corpus callosum, inferior
longitudinal fasciculus, uncinate fasciculus, cerebellum, inferior

frontal, middle temporal, superior temporal, orbitofrontal,
occipital, and parietal regions (1, 5–7, 11, 14, 15, 18, 20, 175–191).
These anatomical findings are often linked to structure-specific
behavioral or cognitive deficits (1, 3, 11, 13–15, 186–188, 192–
195), but similar patterns have been described in the absence of
overt cognitive impairment (1, 17, 189, 191, 196). Extra-motor
changes were initially considered to be more prominent in those
with C9orf72 genotype compared to those with sporadic ALS
(187, 196), but widespread frontotemporal involvement is not
unique to C9orf72 (197). Subcortical gray matter involvement
can also be readily detected in the hippocampus, amygdala,
thalamus, caudate nucleus, putamen, nucleus accumbens, and
globus pallidus (6, 10, 11, 13, 16, 21, 185, 189, 196, 198,
199). Progressive brainstem pathology has also been reported
preferentially involving the pons and the medulla oblongata
(8, 9). Structural and diffusion studies are complemented
by robust metabolic and functional imaging studies. PET
imaging studies have shown frontotemporal hypometabolism
involving the dorsolateral prefrontal, orbitofrontal, anterior
frontal, and anterior temporal areas (94, 200–202) and regional
hypometabolism has been linked to cognitive deficits in ALS
(201, 203, 204). PET imaging abnormalities may precede the
detection of cortical atrophy (205). While in their infancy,
novel PET radioligand studies highlight microglial activation
in frontotemporal regions, suggestive of localized inflammatory
processes (2, 206–210). MR spectroscopy detects extra-motor
abnormalities, potentially before the emergence of clinical
symptoms (211). It shows reduced N-acetylaspartate indicative
of neuronal dysfunction in the mid-cingulate gyrus (212),
dorsolateral (46, 213), ventrolateral (214), and mesial prefrontal
cortices (211, 215). Sometimes these frontal lobe abnormalities
are subtle (19) and may be associated with measures of
executive dysfunction (19, 46, 213). Resting-state fMRI studies
captured both increased and decreased functional connectivity
within networks that mediate specific behavioral and cognitive
functions (216–222). Task-based fMRI studies have linked these
abnormal activation patterns with different facets of cognition,
specifically executive function (223–225), social cognition (224,
226–230), memory (227, 231, 232), and language (233). Executive
dysfunction is associated with increased activation of the right
superior and inferior frontal areas (224), left superior and mid
temporal gyrus and left anterior cingulate gyrus (223) and
decreased activation in the left precentral gyrus (223), and
dorsolateral pre-frontal cortex (223, 225, 233); impaired social
cognition is associated with increased activation in the prefrontal
cortex (224, 226, 228, 229), right supramarginal area (230),
right posterior temporal sulcus, and decreased activation in the
bilateral hippocampus (229); memory deficits are associated with
increased activation in the hippocampus (231) and superior
frontal gyrus (232), and decreased activation in the right pre-
frontal cortex (232); and finally impaired language is associated
with decreased activation patterns in the pre-frontal cortex,
right cingulate gyrus, and left temporal lobes (233). For the
most part there are increased (224, 226, 228–231) or co-existing
(223, 225, 227, 229, 230, 232) activation patterns which suggests
either loss of inhibitory dysfunction or partial compensation to
overcome early functional impairment (234–236). Overall there
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does not seem to be a consistent compensatory or inhibitory
effect which suggests that these patients may have been captured
at different stages of disease. Functional studies have also
been widely utilized to evaluate extra-pyramidal dysfunction
in ALS (237, 238). Emerging functional modalities, such as
magnetoencephalography or spectral EEG have also confirmed
widespread extra-motor dysfunction and as these technologies
develop they are likely to contribute important additional
insights (239–243). The majority of imaging studies in ALS
explored the underpinnings of the most commonly affected
neuropsychological domains (233, 244), such as the substrate
of verbal fluency deficits, executive dysfunction, and behavioral
impairment, but with the recognition of the relatively high
prevalence of impairments in social cognition, memory deficits,
and of apathy, the focus of imaging studies is likely to gradually
shift (12, 245–249). Imaging changes in ALS are typically solely
interpreted based on genetic and clinical profiles, and seldom
correlated with other markers such biofluid markers (250–252).
The radiological patterns identified by various imaging studies
are largely congruent with the distribution of pathological TDP-
43 (pTDP-43) aggregates in extra-motor brain regions (253–
257). Patients with ALS-FTD are thought to carry increased
extra-motor pTDP-43 burden compared to patients without
cognitive impairment (256). A study of patients with cognitive
impairment revealed correlations between regional pTDP-43
load and executive, language and fluency deficits (253).

DISCUSSION

This review collates evidence of radiological frontotemporal
involvement in common MND phenotypes. Existing
neuroimaging studies suggest that frontotemporal degeneration
may be readily detected in ALS and PLS; a varying degree of
frontotemporal pathology may be captured in PMA, SBMA,
and HSP. Cerebral involvement without regional predilection
may be exhibited in the more severe clinical phenotypes of
SMA; and there is limited evidence for cerebral changes in PPS
(Figure 2, Table 4). These radiological features may precede
clinical symptoms, and longitudinal studies often capture
gradual progression. Imaging studies in MND suffer from
considerable inclusion bias because of disease-specific factors.
Patients with significant apathy, motor disability, respiratory
compromise, or sialorrhoea are less likely to participate or return
for follow-up imaging.

In clinical practice, the wide spectrum of frontotemporal
manifestations in ALS are already incorporated in the clinical
diagnostic criteria (174). It is anticipated that these features
will be a fundamental part of future revisions, in conjunction
with supportive neuroimaging data (258). Despite implications
for survival (259), clinical staging systems of ALS have
omitted to include a cognitive facet thus far (260, 261).
These observations have also not yet translated into the
diagnostic criteria of other MND phenotypes. While such
deficits are increasingly recognized in PLS, they are deemed
too infrequent to be included in the core clinical features
(262). The link between FTD and other rare MND phenotypes

may have important implications for everyday clinical practice,
particularly given that many non-ALS MND phenotypes
are associated with longer survival than ALS (263). The
awareness of possible frontotemporal dysfunction may prompt
the use of neuropsychological screening tests in the routine
evaluation of these patients. Validated, disease-specific screening
tools are preferred to generic instruments, and these are available
in ALS (264, 265). Several of these are adapted to motor disability
and dysarthria, and interrogate domains commonly affected
in ALS. It is worth noting that patients with predominant
frontotemporal cognitive deficits should be screened for incipient
motor deficits (266). The early recognition of neuropsychological
deficits is crucial for individualized patient care including:
the appraisal of decision-making capacity, caregiver support,
resource allocation, and the anticipation of management
challenges (89). It may also allow clinicians to consider
pharmacological and non-pharmacological interventions such as
cognitive or behavioral rehabilitation. In the context of FTD,
this is primarily focused on developing compensatory skills for
adapting to functional impairments with the lowest level of
assistance required. For example, an electronic device calendar
is a daily planning tool that can be used to establish routines
and set reminders to initiate activities such as taking medications
(267). There is also an evolving interest in early language therapy
interventions (268, 269). The education of caregivers is crucial to
identify unmet needs of the patient that may trigger behavioral
problems. These measures have proven to be beneficial to both
the patient and their caregivers (267).

In tandem, technological innovations have enriched the
supportive radiological data. High-field MRI generates better
quality images and acceleration techniques enable shorter data
acquisition that may be better tolerated by patients. Quantitative
MRI analyses using validated computational pipelines and
reliance on robust comparative, correlative, and classifier models
enhance the clinical interpretation of vast imaging datasets
(270). The advent of structural and functional connectivity
studies have ignited interest in the concept of disease-specific
selective network degeneration rather than the emphasis on
focal pathology (271). These methods have proven particularly
useful to differentiate clinical phenotypes and map longitudinal
changes in neurodegenerative disorders (7, 271). Novel MRI
pulse sequences, non-Gaussian diffusion models such as DKI
or NODDI, quantitative susceptibility mapping, and multi-voxel
spectroscopy are just some of the promising new tools enriching
our armamentarium of imaging tools (272–274). While these
methods continue to be tested in the research community
they have not been implemented in routine clinical radiology
protocols (275).

Frontotemporal involvement across the spectrum of MND
phenotypes has important implications for clinical trials. It
invites the opportunity for the development of radiological
biomarkers that quantify and track frontotemporal involvement
(276). Pioneering gene therapy trials have primarily focused on
clinical outcome measures such as motor milestones, requiring
artificial ventilation, and survival (277–279). This is also
relevant because there has been interest in developing adjunctive
interventions such as transcranial or neuromuscular magnetic
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FIGURE 2 | Anatomical vulnerability and clinical domains affected across the spectrum of motor neuron diseases.

stimulation (280, 281). These methods are not only applicable to
symptomatic patients but also to those in the pre-symptomatic
stages of their disease. In ALS, genotype-specific radiological
alterations have been detected in pre-symptomatic carriers
of pathogenic mutations decades before the onset of clinical
symptoms (282–284). Awareness of associated behavioral and
cognitive impairment allows for due preparation and adaption
of study designs if required (285).

As we begin to incorporate these developments into clinical
practice and clinical trial designs, there are pressing academic
questions to be elucidated. First and foremost, it is uncertain
if the motor or extra-motor changes evolve in sequence or in
parallel across all phenotypes. This topic is probably best explored
in ALS where there is a unique opportunity to study the pre-
symptomatic phase in carriers of pathogenic C9orf72 repeat
expansions. In this cohort, radiological co-existence of motor and
extra-motor involvement has been consistently described (282–
286). Overall, the topography of radiological alterations is largely
similar but less marked than what is described in symptomatic
cases. It is unclear if the initial pattern dictates the ultimate
clinical phenotype given that both FTD and ALS may have
co-existent subclinical motor and extra-motor manifestations
(284, 287, 288). It is also unclear whether these findings solely
represent early neurodegenerative changes; some postulate that
they capture a developmental abnormality (284). From a clinical
perspective, early cognitive deficits have been described in pre-
symptomatic carriers of C9orf72 expansion before the phenotype
is defined (282–284, 286). The notion of cognitive reserve has
been increasingly evaluated in ALS which may impact on the
sequence of symptom manifestation. It suggests that those with
a high level of cognitive reserve, often proxied with educational
attainment, require a greater degree of brain pathology to
meet the threshold for clinical symptoms (289). This concept
has been investigated in greater detail in FTD, but similar
themes are also emerging in ALS. The level of cognitive reserve
appears to predict cognitive performance and the degree of brain

imaging abnormalities (290–292). These observations suggest
that patient-specific factors influence the chronology of clinically
evident symptoms. Some argue that the debate of whether extra-
motor or motor symptoms emerge first in ALS is antiquated and
that cognition and motor function are inseparably intertwined
(293). It is hypothesized that the selective deficit in action words
and verb processing detected in patients with ALS is in fact a
cognitive manifestation of motor dysfunction (293). Although
some disagree and consider it to be a feature of executive
dysfunction (294). Task-based fMRI studies in healthy controls
have consistently shown that reading action words activates areas
along the motor strip that were responsible for conducting these
movements (295). In ALS, action observation andmotor imagery
are routinely utilized in fMRI studies to compensate for motor
disability (296).

Cognitive deficits in specific domains have been linked to
the degeneration of single structures in MND (1, 14, 16,
33, 186, 188, 244). Often there is frank dissociation between
cognitive and radiological findings (59, 63), but a reporting
bias for confirmed associations prevents the gauging of this
occurrence. Correlation analyses in ALS linked apathy to
anterior cingulate and accumbens nucleus degeneration (193–
195), and memory impairment to hippocampal degeneration
(13). Linking cognitive deficits to single structures however may
be a reductionist approach, which overlooks the role of complex
cortico-subcortical networks in mediating cognitive functions
(297). Accordingly, the underpinnings of neuropsychological
deficits are probably best evaluated at a circuitry-integrity level
instead of seeking associations with focal structures (271).
Traditional structural measures are increasingly complemented
by connectivity metrics to appraise the integrity of functional
circuits (240, 242). The selective vulnerability of functional
networks is thought to drive cardinal manifestations of
neurodegenerative conditions (271). It may or may not be
associated with focal atrophy of crucial nodes within these
networks (298).
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TABLE 4 | An overview of preferential anatomical involvement in MND

phenotypes.

PLS Gray matter Primary motor cortex and precentral gyrus

Prefrontal cortex and inferior frontal gyrus—insular,

opercular, and orbitofrontal regions

Mesial temporal lobe

Anterior cingulate cortex

Cerebellum

White matter Corticospinal tracts

Corpus callosum

Fornix

Superior longitudinal fasciculus

Brainstem—pons, medulla

Cerebellum

Subcortical Nucleus accumbens

Thalamus

Hippocampus

PMA Gray matter Primary motor cortex and precentral gyrus

Prefrontal cortex and inferior frontal

gyrus—insular regions

White matter Corticospinal tracts

Corpus callosum

Fornix

Superior longitudinal fasciculus

Uncinate fasciculus

Subcortical Hippocampus

SMA Gray matter Global without regional predilection in severe cases

Cerebellum

White matter –

Subcortical –

SBMA Gray matter Frontal lobes (subtle)

White matter Corticospinal tracts

Inferior frontal

Brainstem—midbrain

Cerebellum

Subcortical –

PPS Gray matter Cingulate gyrus (subtle)

Temporal pole (subtle)

White matter –

Subcortical Nucleus accumbens

HSP Gray matter Primary motor cortex

Limbic

Parietal

Cerebellum

White matter Corticospinal tracts

Corpus callosum

Frontal

Parietal-occipital

Brainstem

Cerebellum

Subcortical Thalamus

Basal ganglia

ALS Gray matter Primary motor cortex and precentral gyrus

Prefrontal cortex and inferior frontal gyrus—insular,

opercular, and orbitofrontal regions

Mesial temporal lobe

Anterior cingulate cortex

Parietal

Occipital

Cerebellum

White matter Corticospinal tracts

(Continued)

TABLE 4 | Continued

Corpus callosum

Arcuate fasciculus

Inferior longitudinal fasciculus

Uncinate fasciculus

Fornix

Brainstem

Cerebellum

Subcortical Thalamus

Hippocampus

Amygdala

Caudate nucleus

Putamen

Nucleus accumbens

Globus pallidus

There are stereotyped shortcomings in the current literature
that remain to be addressed. First, the low incidence of these
conditions leads to small sample size despite multi-center
collaborations. Second, while case-control study designs are
often used to evaluate these rare disorders, this cross-sectional
approach is suboptimal to characterize dynamically evolving
processes. Furthermore, the indolent progression of the non-ALS
MND phenotypes may require relatively long follow-up intervals
to detect progressive radiological changes (72). Third, co-existing
neurodegenerative disorders are potential confounders, such as
behavioral variant Alzheimer’s dementia. To account for this,
the use of serum or cerebrospinal fluid biomarkers should
be considered in future study methods to enhance diagnostic
certainty. Fourth, there is a scarcity of pre-symptomatic studies
and often these cohorts are not followed longitudinally until
phenoconversion. Fifth, the diagnostic criteria are not well-
defined in some MNDs (104). The diagnosis of “definite PLS”
requires a symptom duration of at least 4 years which may
further limit the number of patients available for recruitment
(28). Sixth, imaging studies often concentrate on supratentorial
cortical regions, overlooking the contribution of subcortical and
cerebellar pathology to cognitive and behavioral manifestations.
The sensitivity limitations of single imaging modalities are
seldom acknowledged. Subtle abnormalities may not be detected,
considerable neuronal loss may ensue before it becomes
radiologically evident. Seventh, the practical implications of
cognitive deficits need to be specifically investigated. The
presence of cognitive impairment in ALS is considered a
negative prognostic indicator that is associated with increased
caregiver burden, reduced quality of life, and reduced survival;
whereas the implications of cognitive impairment in other MND
phenotypes is woefully under-evaluated despite their markedly
longer survival (259). Finally, there is a disappointing lack of
post-mortem validation of radiological findings. This is further
complicated by the inherent bias of the pathological literature
to favor atypical cases that are unlikely to represent the true
hallmarks of these conditions.

This paper offers an overview of imaging efforts across
the spectrum of MNDs to investigate frontotemporal disease
expansion. It highlights the disproportionate emphasis on ALS,
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which offers valuable lessons to conduct similar studies in
other MND phenotypes. Radiological observations highlight the
rationale for routine screening for frontotemporal dysfunction
to inform individualized patient care. The quality of the data
may be enhanced by using multiparametric imaging protocols,
longitudinal study designs, and the inclusion of pre-symptomatic
cohorts where possible. The opportunity for international
collaborations through carefully harmonized protocols should be
explored to maximize the number of study participants in low
incidence phenotypes.

CONCLUSIONS

In contrast to ALS, the quantitative characterization of
frontotemporal disease burden in non-ALS MND phenotypes
remains under investigated. The nuanced evaluation of
frontotemporal dysfunction across the entire spectrum of MNDs
has important pragmatic implications for individualized clinical
care, caregiver support, clinical trial designs, and more broadly,
for our understanding of disease biology.
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