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Abstract—A mathematical model (TriSeg model) of ventric-
ular mechanics incorporating mechanical interaction of the
left and right ventricular free walls and the interventricular
septum is presented. Global left and right ventricular pump
mechanics were related to representative myofiber mechanics
in the three ventricular walls, satisfying the principle of
conservation of energy. The walls were mechanically coupled
satisfying tensile force equilibrium in the junction. Wall sizes
and masses were rendered by adaptation to normalize
mechanical myofiber load to physiological standard levels.
The TriSeg model was implemented in the previously
published lumped closed-loop CircAdapt model of heart
and circulation. Simulation results of cardiac mechanics and
hemodynamics during normal ventricular loading, acute
pulmonary hypertension, and chronic pulmonary hyperten-
sion (including load adaptation) agreed with clinical data as
obtained in healthy volunteers and pulmonary hypertension
patients. In chronic pulmonary hypertension, the model
predicted right ventricular free wall hypertrophy, increased
systolic pulmonary flow acceleration, and increased right
ventricular isovolumic contraction and relaxation times.
Furthermore, septal curvature decreased linearly with its
transmural pressure difference. In conclusion, the TriSeg
model enables realistic simulation of ventricular mechanics
including interaction between left and right ventricular pump
mechanics, dynamics of septal geometry, and myofiber
mechanics in the three ventricular walls.

Keywords—Pulmonary hypertension, Septal motion, Adap-

tation, Stress, Strain, Myofiber, Cardiac mechanics.

NOMENCLATURE

General

LV Left ventricle/ventricular
RV Right ventricle/ventricular

LW Left ventricular free wall
SW Septal wall
RW Right ventricular free wall

Geometry-Related Parameters

VLV Left ventricular cavity volume (m3)
VRV Right ventricular cavity volume (m3)
Vw Wall volume of ventricular wall segment (m3)
Vm Volume of spherical cap, formed by

midwall surface of wall segment (m3)
Am Midwall surface area of curved wall

segment (m2)
Cm Curvature of midwall surface (reciprocal of

radius) (m�1)
xm Maximal axial distance from midwall sur-

face to origin (m)
ym Radius of midwall junction circle (m)
z Ratio of wall thickness to midwall radius of

curvature of curved wall segment
a Half the opening angle of spherical midwall

surface
ef Natural myofiber strain

Force-Related Parameters

pLV Left ventricular cavity pressure (Pa)
pRV Right ventricular cavity pressure (Pa)
pTrans Transmural pressure difference across

curved wall segment (Pa)
rf Cauchy myofiber stress (Pa)
Tm Representative midwall tension (N m�1)
Tx Axial midwall tension component (N m�1)
Ty Radial midwall tension component (N m�1)

INTRODUCTION

The left (LV) and right (RV) ventricular cavities of
the normal human heart are separated from the
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intrathoracic space by the left and right ventricular free
walls, respectively (Fig. 1a). The cavities are mutually
separated by the septal wall. In order to simulate LV
and RV mechanics and hemodynamics, the close
anatomic coupling between these two ventricles must
be considered. Experimental data demonstrate that a
change in loading condition of either ventricle directly
influences pump function of the other ventri-
cle.5,21,50,55,68 It is also well recognized that septal
geometry and motion depend on transseptal pressure
difference.36,37,51 This dependency is best illustrated by
flattening of the septum with increase of RV pressure
relative to LV pressure (Fig. 1b). Septal geometry and

motion appeared to be of diagnostic and predictive
significance in patients with pulmonary hyperten-
sion.32,35

Several mathematical models of ventricular
mechanics have been developed to quantify the effect
of ventricular interaction on cardiac function. In sev-
eral lumped models of ventricular hemodynam-
ics,7,13,41,43,48,53,56,60,61 ventricular interaction is
described by empirically determined coupling coeffi-
cients, quantifying interventricular cross-talk of pres-
sures and volumes. The model designed by Beyar et al.7

describes ventricular interaction in a more mechanistic
way. In this model, LV and RV cavities are enclosed by
three ventricular walls. For given ventricular pressures,
the mechanical equilibrium of tensile forces in the
junction of the walls is used as constraint to predict
ventricular geometry. The model is restricted to
description of passive mechanics of walls lacking
contractile myofiber properties. More recently, 3D
finite element models of the cardiac ventricles were
used to simulate ventricular pump function and local
tissue mechanics,34,47,66 inherently including ventricu-
lar interaction via the septum. In comparison with
lumped models of global ventricular mechanics, finite
element models allow description of regional wall
mechanics and geometry. Consequently, these models
are computationally demanding.

For study of beat-to-beat hemodynamics and
mechanics of heart and blood vessels, Arts et al. pre-
viously developed the closed-loop CircAdapt model of
heart and circulation.3 In this model, mechanical
interaction of the LV and RV has been simulated by a
common outer wall, having a transmural pressure
equal to RV pressure, encapsulating an inner wall,
which represents the left ventricle.1 The inner wall
encapsulates the LV cavity only and has a transmural
pressure equal to the difference between LV and RV
pressure. Under normal ventricular loading conditions,
this model enables realistic simulation of global LV
and RV pump mechanics.1,3 However, this model set-
up presumes RV pressure to be substantially lower
than LV pressure during the whole cardiac cycle. This
condition is not satisfied with pulmonary hypertension
or with left-to-right asynchrony of electrical activation.
Furthermore, septal geometry cannot be simulated.
Thus, this model cannot be used to interpret this
measurable signal that contains important information
about the difference between LV and RV pressure.35,51

Therefore, we designed the TriSeg model of ventricular
mechanics that realistically incorporates ventricular
interaction via the interventricular septum.

In the TriSeg model, three wall segments, i.e., the
LV free wall (LW), septal wall (SW), and RV free wall
(RW), meet in a junction margin, thus encapsulating
the LV and RV cavities (Fig. 2a). LW and RW

FIGURE 1. Two typical 2D echocardiographic images
showing end-diastolic parasternal short-axis views of the
hearts of a normal individual (a) and a pulmonary hyperten-
sion patient (b). Note that the septum is flattened with pul-
monary hypertension. Cross-sections of left (LV) and right
(RV) ventricular cavities, LV free wall (LW), septal wall (SW),
and RV free wall (RW) are indicated. The bright dots indicate
the cross-section of the junction margin of the walls. In the
right upper corner, image plane orientation (gray plane) is
indicated in a schematic representation of the cardiac ventri-
cles.
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geometries are calculated starting from an initial esti-
mate of SW geometry. For each wall segment, myofi-
ber strain is calculated from midwall surface area
relative to a reference area. From myofiber strain,
myofiber stress is determined using constitutive equa-
tions describing sarcomere mechanics. Substitution of
myofiber stress in the known geometry of the walls
results in representative midwall tension, acting on the
junction line. Next, septal geometry is adjusted so that
equilibrium of tension is achieved, i.e., summed tension
at the junction of the three walls is equal to zero. As a
result, geometries of the three wall segments and the
two cavities are known, together with stresses, ten-
sions, and pressures.

The TriSeg model of ventricular mechanics is
designed to be incorporated as a module in the existing
CircAdapt model simulating mechanics and hemody-
namics of the whole circulation.3 According to the
principles of CircAdapt, size and mass of the wall
segments are determined by adaptation so that
mechanical load of the myofibers is normalized to

physiological standard levels.3,4 The TriSeg model, as
integrated in the CircAdapt model, has been tested by
simulation of time-dependent LV and RV mechanics
and hemodynamics under normal ventricular loading
conditions as well as with acute and chronic pulmon-
ary hypertension (PH). PH has been simulated to test
whether the TriSeg model realistically relates septal
geometry to transseptal pressure. Simulation results
have been compared with previously published exper-
imental data on ventricular hemodynamics9,62 and on
the relation between septal geometry and transmural
pressure17,51 in healthy volunteers and in patients with
chronic PH.

METHODS

General Design of the TriSeg Model

The design of the new TriSeg model of ventricular
mechanics should enable incorporation as a module in
the existing CircAdapt model that simulates mechanics

α

(a) (b)

(c)

FIGURE 2. TriSeg model of ventricular mechanics. (a) The TriSeg model (gray shading) incorporated in the modular CircAdapt
model of the systemic (syst) and pulmonary (pulm) circulations.3 Three thick-walled spherical segments representing LV free wall
(LW), RV free wall (RW), and septal wall (SW) form a ventricular composite consisting of a left ventricular (LV) cavity, with volume
VLV and pressure pLV, and a right ventricular (RV) cavity, with volume VRV and pressure pRV. (b) Cross-section of the ventricular
composite through the axis of rotational symmetry (x). The ventricular walls are coupled mechanically at the common junction
circle where their midwall surfaces (thick lines) meet. This junction circle perpendicularly intersects the plane of drawing (open
dots). The midwall surface divides the wall with wall volume Vw in two shells of equal volume. The center of the junction circle is
the origin (0) of the cylindrical coordinate system applied. Note that x-direction is defined positive toward the RV free wall. (c)
Cross-section of a single wall segment through the axis of rotational symmetry. Note that only midwall geometry is shown. The
shaded area indicates midwall volume Vm enclosed between the midwall surface and the junction plane. Midwall volume Vm, area
Am, and curvature Cm (reciprocal of radius of curvature) depend on distance xm and radius ym of the boundary circle. Each wall is
loaded by transmural pressure difference resulting in a representative midwall tension Tm. With half opening angle a, Tm is
resolved in an axial (Tx) and a radial (Ty) component.
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and hemodynamics of the whole circulation.3 There-
fore, the TriSeg model calculates LV and RV pressures
(pLV and pRV, respectively) as functions of LV and RV
cavity volumes (VLV and VRV, respectively). Mechan-
ics of ventricular interaction is incorporated assuming
a simplified ventricular composite geometry (Fig. 2a).
The three ventricular walls LW, SW, and RW are
modeled to be thick-walled and spherical with a com-
mon junction circle with midwall radius ym (Fig. 2b).
Midwall is defined as the spherical surface that divides
wall volume Vw in an inner and an outer shell of equal
volume. Midwall volume Vm is the volume enclosed by
the midwall surface and the plane of the junction circle
(Fig. 2c). The center of the junction circle is the origin
of the applied cylindrical coordinate system (Fig. 2b).
The x-direction is perpendicular to the plane of the
junction circle and is defined positive toward the RV
free wall. The y-coordinate represents the radial dis-
tance to the x-axis. The spherical midwall surface of a
wall segment intersects the x-axis at value xm (Fig. 2c).

In presenting the TriSeg model, the following levels
are distinguished: (1) ventricular hemodynamics, (2)
ventricular composite mechanics, (3) ventricular wall
segment mechanics, (4) curved wall patch mechanics,
and (5) myofiber mechanics. Starting from LV and RV
volumes, the sequence of calculations needed to obtain

LV and RV pressures has been illustrated in Fig. 3.
The ventricular hemodynamics section serves as
interface with the CircAdapt model of the whole cir-
culation.3 In the ventricular composite section, LV and
RV volumes are used to calculate LV and RV pres-
sures, applying a model of wall mechanics to each
ventricular wall segment. In the ventricular wall seg-
ment section, volume Vm and boundary radius ym of a
spherical wall segment are used to calculate the axial
and radial vector components Tx and Ty, respectively,
at the common junction circle from representative
midwall tension Tm, applying a model of the mechanics
of a curved wall patch. Such patch is defined as a
fraction of a spherical wall segment with an arbitrarily
shaped boundary and with midwall area Am and cur-
vature Cm. Curvature is defined as the reciprocal of
radius of curvature, having the advantage of being well
defined for a flat wall. In the section of curved wall
patch mechanics, Am and Cm are used to calculate
representative midwall tension Tm, applying a model of
myofiber mechanics. In the myofiber mechanics sec-
tion, natural myofiber strain ef is converted to Cauchy
myofiber stress rf, using a constitutive law of the
myofiber. This model of myofiber mechanics has been
heuristically obtained from reported physiological
experiments.

CircAdapt
Model

Ventricular
Hemodynamics

Ventricular
Composite

Ventricular
Wall Segment

Curved
Wall Patch

Myofiber

Sarcomere
Model

Appendix B

Tx,Tot
Ty,Tot

ym,est
Vm,SW,est

Equilibrium
of Forces

Vm,i
ym,i

Ty,i
Tx,i

pTrans,i

Tm,i

Am,i
Cm,i εf,i

σf,i

VLV
VRV

pLV
pRV

Eqs. 1-4 Eqs. 9-11

Eqs.
5-6

Eqs. 7-8 Eqs. 12-14

Eq. 15

Eq. 16

FIGURE 3. Flowchart of the TriSeg model of left (LV) and right (RV) ventricular mechanics. Applied equations are indicated by
their numbers. The ventricular hemodynamics section serves as interface with the CircAdapt model of the whole circulation. In the
ventricular composite section, for each wall i, midwall boundary radius (ym,i) and midwall volume (Vm,i) are calculated from LV and
RV volumes (VLV and VRV, respectively) and septal geometry. Septal geometry is initially defined by estimates of boundary radius
(ym,est) and midwall volume (Vm,SW,est). LV free wall, septum, and RV free wall are indicated by i 5 LW, SW, and RW, respectively.
The first dashed arrow indicates calculation of axial (Tx,i) and radial (Ty,i) wall tension components and transmural pressure
(pTrans,i). LV and RV pressure (pLV and pRV, respectively) and a new estimate of septal geometry is obtained from the summed axial
(Tx,Tot) and radial (Ty,Tot) tension components. If septal geometry is sufficiently accurate by iteration, the solution is accepted.
Because direct calculation along the dashed arrow is not possible, the sequence of calculations has to follow the solid lines. For
each wall segment, midwall area (Am,i) and curvature (Cm,i) are calculated. Wall tension (Tm,i) is calculated following the second
dashed arrow and renders wall tension components and transmural pressure. Again, direct calculation is not possible. Therefore,
in the myofiber section, midwall area and curvature are used to calculate myofiber strain (ef,i). Myofiber strain is converted to
myofiber stress (rf,i) using a model of sarcomere mechanics. Myofiber stress and wall segment geometry are used to calculate wall
tension. By cascading the different sections, calculations can be performed sequentially along the pathways marked by solid lines.
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Ventricular Composite Mechanics

In this section, it is shown how cavity volumes VLV

and VRV are used to calculate pressures pLV and pRV.
For that purpose, a model of ventricular wall segment
mechanics is applied that renders axial and radial
tension components (Tx and Ty, respectively) from
representative midwall tension as a function of the
midwall volume (Vm) and junction radius (ym) of the
spherical wall segment. This latter model will be
derived in the next section discussing mechanics of the
ventricular wall segment.

The geometry of the ventricular composite (Figs. 2b
and 2c) is defined by the common radius ym of the wall
junction and the enclosed midwall cap volumes Vm,LW,
Vm,SW, and Vm,RW of the wall segments LW, SW, and
RW, respectively. Septal midwall volume Vm,SW and
junction radius ym are initially estimated by the solu-
tions as obtained in the preceding time point, i.e.,
Vm,SW,est and ym,est, respectively:

ym ¼ ym;est ð1Þ

Vm;SW ¼ Vm;SW;est ð2Þ

The latter estimates, together with ventricular cavity
volumes VLV and VRV as given directly by the Circ-
Adapt model, render an estimate of ventricular com-
posite geometry. Using the fact that ventricular cavity
volume added to half of wall volume Vw of the
enclosing wall segments renders the sum of midwall
volumes, it is found:

Vm;LW ¼ �VLV �
1

2
Vw;LW �

1

2
Vw;SW þ Vm;SW ð3Þ

Vm;RW ¼ þVRV þ
1

2
Vw;RW þ

1

2
Vw;SW þ Vm;SW ð4Þ

Note that the sign of midwall volume Vm is positive if
wall curvature is convex to the positive x-direction
(Fig. 2b). Thus, for a normal heart, the sign is negative
for LW and positive for RW and SW.

For each wall segment i, Vm,i and ym,i are used to
calculate axial and radial tension components Tx,i and
Ty,i, as well as transmural pressure pTrans,i. This is done
by applying a model of ventricular wall segment
mechanics as discussed in the next section. The axial
tension components of the three wall segments Tx,LW,
Tx,SW, and Tx,RW are summed to calculate the net axial
tension Tx,Tot in the junction. Similarly, the net radial
tension Ty,Tot in the junction is obtained. The initial
estimates of ym and Vm,SW (Eqs. 1 and 2) are adjusted
numerically so that for the summed tension compo-
nents it holds:

Tx;Totðym;Vm;SWÞ ¼ 0 ð5Þ

Ty;Totðym;Vm;SWÞ ¼ 0 ð6Þ

Having solved Eqs. (5) and (6), and assuming the
pressure surrounding the ventricular composite to be
zero, for LV and RV pressures it holds:

pLV ¼ �pTrans;LW ð7Þ

pRV ¼ þpTrans;RW ð8Þ

Note that the minus sign for pLV is caused by the
definition of pTrans, which is positive for a negative
x-gradient of pressure in the wall segment.

Mechanics of the Ventricular Wall Segment

In this section, it is shown for a wall segment
(Fig. 2c) how Vm and ym are used to calculate axial
and radial midwall tension components Tx and Ty, and
transmural pressure pTrans. For that purpose, a model
of the mechanics of a curved wall patch is applied.
Such curved wall patch is defined as a fraction of a
spherical wall segment with midwall surface area Am

and curvature Cm. This latter model renders repre-
sentative midwall tension from midwall surface area
Am and curvature Cm and will be derived in the next
section discussing mechanics of the curved wall patch.

Wall segment geometry ismost conveniently described
by radius ym of the junction circle and distance xm
between plane of junction circle and center of midwall
surface (Fig. 2c).Vm,Am, andCmdependonxmandymby

Vm ¼
p
6
xmðx2m þ 3y2mÞ ð9Þ

Am ¼ pðx2m þ y2mÞ ð10Þ

Cm ¼
2xm

ðx2m þ y2mÞ
ð11Þ

First, xm is calculated from ym and Vm by solving Eq.
(9). Second, Am and Cm are determined with Eqs. (10)
and (11). Next, Am and Cm are used to calculate rep-
resentative midwall tension Tm, applying a model of
the mechanics of a curved wall patch as discussed in
the next section.

At the circular boundary of the midwall surface
(Fig. 2c), geometric parameters xm and ym, and mid-
wall tension Tm are used to calculate axial (Tx) and
radial (Ty) tension components:

Tx ¼ Tm � sin a with sin a ¼ 2xmym
x2m þ y2m

ð12Þ

Ty ¼ Tm � cos a with cos a ¼ �x
2
m þ y2m

x2m þ y2m
ð13Þ
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The symbol a represents half opening angle of the
circular wall segment (Fig. 2c).

Transmural pressure pTrans equals total axial force.
Consequently, pTrans is calculated by multiplying Tx by
the ratio of length of the junction contour (2pym) to
area of the junction circle (pym

2 ):

pTrans ¼
2Tx

ym
ð14Þ

Mechanics of the Curved Wall Patch

In this section, it is shown how midwall surface area
Am and curvature Cm are used to calculate represen-
tative midwall tension Tm. For that purpose, a consti-
tutive model of myofiber mechanics is applied. This
latter model renders Cauchy myofiber stress from nat-
ural myofiber strain and is presented in Appendix B.

In the ventricular module, originally implemented in
the CircAdapt model,3 the one-fiber model developed
by Arts et al.2 was used to relate ventricular pump
mechanics, as described by cavity pressure and volume,
to myofiber mechanics, as described by myofiber stress
and strain. When assembling three wall segments to a
ventricular composite with two cavities, contractile
function of a wall segment, as described by represen-
tative midwall tension and area change, should be put
between mechanics of cavity and myofiber. The fol-
lowing conditions should be satisfied. First, when
folding a wall segment to a completely closed spherical
surface, the relation between pump mechanics and
myofiber mechanics should be equivalent to the
equations of the one-fiber model. Second, like in the
one-fiber model, where contractile myofiber work
equals ventricular pump work, summed pump work of
both cavities should be equal to summed work as
generated by the three walls. Furthermore, within each
wall segment, work as delivered by the wall through
wall tension and changes of geometry, should be equal
to the work generated by the myofibers.

In Appendix A, it is shown that such a model of wall
segment mechanics can be found, although the deri-
vation is quite complex. Because the shape of the
midwall area is not relevant for the balance of work,
the relations are extended to the more general case of a
spherical wall patch with arbitrary shape of the
boundary. Thus, for a wall patch it is found that nat-
ural myofiber strain ef depends on midwall surface area
Am and curvature Cm by the following approximation
(relative error <1%), as derived in Appendix A:

ef �
1

2
ln

Am

Am;ref

� �
� 1

12
z2� 0:019z4 with z¼ 3CmVw

2Am

ð15Þ

where Am,ref represents reference midwall surface area.
Note that the dimensionless curvature parameter z is
closely related to the dimensionless ratio of wall
thickness to radius of curvature. With a constitutive
model of the myofiber (Appendix B), natural myofiber
strain ef is used to calculate Cauchy myofiber stress rf.
In Appendix A, it is derived how myofiber stress and
wall segment geometry are used to calculate represen-
tative midwall tension Tm. It holds by approximation
(relative error <2%):

Tm �
Vwrf

2Am
1þ z2

3
þ z4

5

� �
with rf ¼ fðefÞ ð16Þ

Equations (15) and (16) represent the first few terms of
a Taylor series approximating the analytically derived
expressions. These approximations have the advantage
of being well defined for zero curvature. The analytical
derivations cannot be used in numerical calculations,
because zero by zero division occurs near zero curva-
ture, while the ratio is analytically well defined.

Implementation of TriSeg Model in CircAdapt Model

The TriSeg model of ventricular mechanics is
incorporated in the existing CircAdapt model of the
whole circulation.3 This latter model supplies the
required hemodynamic boundary conditions, i.e., LV
and RV cavity volumes. The CircAdapt model is
designed as a network of modules representing cardiac
chambers, valves, large blood vessels, and peripheral
resistances. Extended with the TriSeg model, the
CircAdapt model allows beat-to-beat simulation of
time-dependent ventricular mechanics and hemody-
namics, e.g., ventricular cavity volumes and pressures,
geometries and representative myofiber mechanics of
ventricular walls, and flows through valves. An
important feature of the existing CircAdapt model is
that the number of independent parameters is reduced
by incorporating adaptation of cavity size and wall
mass of cardiac chambers and blood vessels to
mechanical load so that stresses and strains in the walls
of heart and blood vessels are normalized to tissue-
specific physiological standard levels.

The model was initialized using realistic estimates of
wall volume Vw, reference midwall surface area Am,ref,
and reference sarcomere length Ls,ref (Table 1:
Parameter values for model initialization). After model
initialization, these parameters will be obtained for
each wall segment by load adaptation as described in
the ‘‘Simulations’’ section. The actual parameter val-
ues chosen for initialization (Table 1) are noncritical
due to load adaptation. However, for fast convergence
to steady-state adaptation, these estimates were chosen
in physiological range.
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The set of differential equations that describe the
CircAdapt model, including the TriSeg module, was
solved by numerical integration with time steps of 2 ms
using the ODE113 function in MATLAB 7.1.0
(MathWorks, Natick, MA). Simulation time of a sin-
gle cardiac cycle was less than 7 s on a Windows XPTM

platform (version 2002) with a 2.00 GHz Intel�

CoreTM2 Duo T7250 processor and 1 GB of RAM.

Simulations

The TriSeg model, as integrated in the CircAdapt
model, was tested by simulation of human ventricular
mechanics and hemodynamics with (1) normal ven-
tricular loading conditions (NORM), (2) acute pul-
monary hypertension (PHAc), and (3) chronic
pulmonary hypertension including adaptation
(PHCh). All simulations are presented with similar
values of mean systemic blood flow (cardiac output),
cardiac cycle time (heart rate), and mean systemic
arterial blood pressure, simulating hemodynamics at
rest (Table 1: Hemodynamics at rest).

NORM Simulation

The diameter of large blood vessels was assumed to
be determined by adaptation to mean chronic cir-
cumstances, which state is most closely described by

the condition of rest (Table 1: Hemodynamics at rest).
However, geometry of the heart and wall thickness of
large blood vessels were considered to be a result of
adaptation to a state of moderate exercise, thus simu-
lating the effect of relatively short periods of training
by exercise. The applied simulation protocol of
adaptation has been described earlier.3 Briefly reca-
pitulating, with resting hemodynamics (Table 1:
Hemodynamics at rest), diameters of the large blood
vessels were adapted until mean blood flow velocity
reached the set point value (Table 1: Set point values
for adaptation). Next, a moderate state of exercise was
simulated by tripling cardiac output and doubling
heart rate (Table 1: Interventions with exercise). Under
these circumstances, wall volume (Vw) and reference
midwall surface area (Am,ref) of all cardiac wall seg-
ments were adapted until maximum and minimum
sarcomere length as well as maximum passive myofiber
stress reached the set point values of adaptation with
exercise (Table 1). Also, wall thickness of the blood
vessels was adapted until maximum wall stress was
equal to the set point value (Table 1). Next, hemody-
namics were returned to rest conditions and the above-
mentioned adaptation protocol was repeated two or
three times until steady-state geometry was reached
(<1% deviation from set point values). In total,
finding the steady-state adapted NORM simulation
required simulation of about 100–200 cardiac cycles.

TABLE 1. Input parameter values for NORM and PH simulations.

Parameter Unit Value

Hemodynamics at rest

Mean systemic arterial blood pressure kPa 12.2

Mean systemic blood flow mL s�1 85

Cardiac cycle time s 0.850

Mean pulmonary arteriovenous pressure drop kPa 1.5 (NORM)

Interventions with exercise

Mean systemic blood flow mL s�1 255

Cardiac cycle time s 0.425

Set point values for adaptation

Mean flow velocity in large blood vessels (rest) m s�1 0.17

Maximum vascular wall stress (exercise) kPa 500

Maximum sarcomere length (exercise) lm 2.2

Minimum sarcomere length (exercise) lm 1.75

Maximum passive myofiber stress (exercise) kPa 10 (LW), 8 (SW), 20 (RW)

Interventions with PH simulations

Mean pulmonary arteriovenous pressure drop kPa 3.0 (PHAc1 and PHCh1),

4.5 (PHAc2 and PHCh2),

6.0 (PHAc3 and PHCh3)

Parameter values for model initialization

Wall volume (Vw) mL 75 (LW), 40 (SW), 30 (RW)

Reference midwall surface area (Am,ref) cm2 80 (LW), 45 (SW), 100 (RW)

Reference sarcomere length (Ls,ref) lm 2.0 (LW, SW, and RW)

Septal midwall volume (Vm,SW) mL 42

Radius of midwall junction circle (ym) cm 3.3

LW, left ventricular free wall; NORM, normal simulation; PHAc, acute pulmonary hypertension simulation;

PHCh, chronic pulmonary hypertension simulation; RW, right ventricular free wall; SW, septal wall.

LUMENS et al.2240



PHAc and PHCh Simulations

The NORM simulation was used as point of
departure for simulation of ventricular mechanics
and hemodynamics with increased pulmonary resis-
tance. Steady-state simulations (PHAc1, PHAc2, and
PHAc3), representing increasing degrees of acute pul-
monary hypertension, were obtained by acute increase
of mean pulmonary arteriovenous pressure drop in
three steps without adaptation (Table 1: Interventions
with PH simulations). Finally, adaptation was applied
to the three steady-state PHAc simulations following
the same protocol used for the NORM simulation.
This resulted in three steady-state simulations (PHCh1,
PHCh2, and PHCh3, respectively), representing grad-
ually increasing degrees of chronic pulmonary hyper-
tension at rest.

Simulation Data Analysis

Ventricular Pump Mechanics and Hemodynamics

Simulated time courses of normal (NORM) LV and
RV pressures, volumes, and flows were compared with
physiological data obtained in normal sub-
jects.26,29,54,62,63 Area of ventricular pressure–volume
relation was calculated to quantify ventricular pump
stroke work (Wstroke) for the LV and RV. Time courses
of blood flow velocities through the mitral, aortic, tri-
cuspid, and pulmonary valves were used to study the
effects of chronic pulmonary hypertension on ventric-
ular hemodynamics. For comparison with clinical data
obtained in healthy subjects and in patients with
chronic pulmonary hypertension,9,62 several timing
parameters of RV hemodynamics were quantified for
the NORM and PHCh simulations. RV ejection time
(ET) was quantified as the time from pulmonary valve
opening to closure, acceleration time of pulmonary
flow (AT) as the time from pulmonary valve opening to
moment of maximal pulmonary flow velocity, RV iso-
volumic contraction time (ICT) as the time from tri-
cuspid valve closure to pulmonary valve opening, and
RV isovolumic relaxation time (IRT) as the time from
pulmonary valve closure to tricuspid valve opening.

Tissue Mechanics

Area of myofiber stress–strain relation was calcu-
lated to quantify stroke work density (wstroke) for the
LW, SW, and RW. Stroke work density was defined as
contractile myofiber stroke work per unit of tissue
volume.

Ventricular Wall Geometry

End-diastolic wall thicknesses (Hed) were calculated
as wall volume divided by end-diastolic midwall

surface area. End-diastole was defined as the moment
of mitral valve closure. Furthermore, time courses of
LW, SW, and RW midwall curvatures were used to
assess acute and chronic effects of increase of pul-
monary resistance on wall curvatures. The relation
between septal geometry and the transseptal pressure
gradient in the TriSeg model was compared with the
relation found in patients with and without chronic
pulmonary hypertension.17 For that purpose, curva-
ture ratio (CR) was calculated as the SW/LW midwall
curvature ratio at the moment of aortic valve closure,
whereas transmural pressure ratio (PR) was defined as
the difference between maximum LV and RV pressures
divided by maximum LV pressure.

RESULTS

Simulation of Normal Physiology (NORM)

Figure 4 shows simulated time courses of ventricular
cavity pressures and volumes, aortic and pulmonary
artery pressures, and flows through arterial and atrio-
ventricular valves under normal ventricular loading
conditions (NORM). These time courses show agree-
ment with physiological data on the following aspects:
(1) LV and RV cavity pressures and volumes rise at the
end of diastole as a result of atrial contraction, (2) time
courses of mitral and tricuspid valve flows show an
early passive filling wave (E) followed by a clearly
separated late filling wave (A) resulting from atrial
contraction,26 (3) LV and RV end-diastolic volumes are
not significantly different,54 (4) RV ejection starts ear-
lier and ends later than LV ejection,29 and (5) durations
of LV isovolumic contraction and relaxation exceed the
corresponding RV time intervals (Fig. 4, bottom
panel).62,63 Steady-state adaptation rendered LW, SW,
and RW wall volumes of 76, 38, and 31 mL, respec-
tively. Wall thicknessesHed,LW andHed,SW were almost
equal and three times as large as Hed,RW (Table 2).

Simulations of Acute Pulmonary Hypertension (PHAc)

The upper panel row of Fig. 5 illustrates simulated
ventricular pressure–volume loops under normal
loading conditions (NORM) and with acutely
increased pulmonary resistance (PHAc1, PHAc2, and
PHAc3). With increasing pulmonary resistance, RV
cavity volume, systolic and diastolic RV pressures,
mean pulmonary artery pressure, and RV pump work
(Table 3) increased, while LV cavity volume and pump
work were relatively unaffected. The middle panel row
of Fig. 5 shows stress–strain loops of the myofibers in
the ventricular wall segments. Acute rise of pulmonary
resistance caused increase of RW myofiber stress,
myofiber strain, and stroke work density, while it
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caused decrease of LW and SW stroke work densities
(Table 3). The lower panel row of Fig. 5 illustrates
time courses of LW, SW, and RW midwall curvatures.
With increasing pulmonary resistance, SW midwall
curvature decreased predominantly during diastole. In
the PHAc3 simulation, the septum even flattened to
zero curvature and bulged shortly toward the LV free
wall (negative curvature) during early diastole. LW
and RW curvatures appeared relatively insensitive to
acute changes of pulmonary resistance. With increas-
ing pulmonary resistance (Table 2), Hed,RW decreased
maximally by 26% in PHAc3 relative to NORM,
Hed,LW decreased maximally by 8%, whereas Hed,SW

increased only 1%.

Simulations of Chronic Pulmonary
Hypertension (PHCh)

Figure 6 illustrates graphs of the same variables as
presented in Fig. 5, but now rendered after adaptation
to increased pulmonary resistance (PHCh1, PHCh2,
and PHCh3). Like in absence of adaptation, systolic
and diastolic RV pressures, mean pulmonary artery
pressure, and RV pump work were elevated with
chronic pulmonary hypertension (Table 3), while LV
pump function remained relatively unaffected. In
contrast to the PHAc simulations, RV cavity volume
decreased 8% in the PHCh3 simulation (Fig. 6). The
myofiber stress–strain loops in Fig. 6 show that
adaptation resulted in a more homogeneous distribu-
tion of stroke work density in the ventricular walls
(Table 3). In the PHCh3 simulation, RW stroke work
density was increased (20%), whereas LW and SW
stroke work densities were decreased (7 and 5%,
respectively) relative to the NORM simulation.
Increase of pulmonary resistance with load adaptation
resulted in the following changes of ventricular
geometry. Mean SW curvature (Fig. 6) decreased lin-
early with increasing pulmonary resistance, while the
shape of the time course was preserved. LW and RW
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TABLE 2. Simulation results: ventricular wall thickness.

Parameter Unit NORM

PHAc PHCh

1 2 3 1 2 3

End-diastolic wall thickness

Hed,LW mm 7.9 7.8 7.6 7.3 8.3 8.2 8.3

Hed,SW mm 6.8 6.9 7.0 6.9 6.7 6.9 6.5

Hed,RW mm 2.3 2.1 2.0 1.7 3.3 4.2 5.1

Hed, end-diastolic wall thickness; LV, left ventricular; LW, left ven-

tricular free wall; NORM, normal simulation; PHAc, acute pul-

monary hypertension simulation; PHCh, chronic pulmonary

hypertension simulation; RV, right ventricular; RW, right ventricular

free wall; SW, septal wall.
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TABLE 3. Simulation results: pulmonary artery pressures and ventricular work.

Parameter Unit NORM

PHAc PHCh

1 2 3 1 2 3

Ventricular pump stroke work

Wstroke,LV Pa m3 1.04 1.04 1.03 1.02 1.05 1.04 1.04

Wstroke,RV Pa m3 0.22 0.32 0.42 0.51 0.35 0.48 0.61

Stroke work density

wstroke,LW kPa 9.41 9.54 9.32 8.66 8.88 8.90 8.78

wstroke,SW kPa 8.94 8.28 7.54 6.15 9.19 8.66 8.49

wstroke,RW kPa 7.91 11.66 15.94 21.59 8.59 9.13 9.48

Mean pulmonary artery pressure

ppa kPa 2.04 3.56 5.11 6.77 3.53 5.00 6.47

LV, left ventricular; LW, left ventricular free wall; NORM, normal simulation; PHAc, acute pulmonary hypertension

simulation; PHCh, chronic pulmonary hypertension simulation; ppa, mean pulmonary artery pressure; RV, right

ventricular; RW, right ventricular free wall; SW, septal wall; wstroke, stroke work density; Wstroke, ventricular pump

stroke work.
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curvatures were practically unaffected. Relative to the
NORM simulation, Hed,RW increased up to 120% in
PHCh3, whereas changes of Hed,LW and Hed,SW were
small (<5%) (Table 2).

In Fig. 7, time courses of LV and RV inflow and
outflow velocities are shown for the NORM and PHCh
simulations. With increasing pulmonary resistance,
pulmonary and tricuspid valve flow velocities changed
significantly relative to the NORM simulation,
whereas aortic and mitral valve flow velocities re-
mained relatively unaffected. Furthermore, in Fig. 7,
RV ejection time (ET), acceleration time of pulmonary
flow (AT), RV isovolumic contraction time (ICT), and
RV isovolumic relaxation time (IRT) are indicated for
the NORM simulation. In Fig. 8, changes of these

timing parameters are compared with the changes as
observed in clinical studies among normal individuals
and patients with chronic pulmonary hypertension.9,62

In the simulations, chronic increase of pulmonary
resistance caused decrease of AT and AT/ET-ratio,
indicating increase of pulmonary flow curve skewness.
This is in accordance with measurements as obtained
in patients with chronic pulmonary hypertension.9

Furthermore, simulated ICT and IRT lengthened
(maximally 163% and 47% in the PHCh3 simulation,
respectively). The ratio of total RV isovolumic time
(ICT + IRT) to ET almost doubled. Again, the sim-
ulated changes were similar to the changes as observed
in patients with pulmonary hypertension.62 Further-
more, the tricuspid early filling wave narrowed and the
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tricuspid E/A-ratio of peak atrioventricular flow dur-
ing early filling (E) to that during atrial contraction (A)
decreased from 1.49 in the NORM simulation to unity
in the PHCh3 simulation.

Figure 9 shows simulated time courses of SW/LW
transmural pressure ratio and SW/LW midwall cur-
vature ratio. SW transmural pressure was quantified as
LV cavity pressure minus RV cavity pressure, while
LW transmural pressure was quantified as LV cavity
pressure. At each time point in the cardiac cycle, both

ratios decreased linearly with increase of pulmonary
resistance.

Both CR and PR decreased with increase of pul-
monary resistance (Table 4). Figure 10 shows the
relation between CR and PR, as derived from the
NORM and PHCh simulations, as well as the relation
found among patients with and without pulmonary
hypertension.17 In this latter patient population, pul-
monary hypertension was defined as an RV systolic
pressure >40 mmHg. Linear regression analysis of
data points as derived from the NORM and PHCh
simulations revealed a strong correlation (r2 = 1.00,
SEE = 0.008) between CR and PRwith similar slope as
the relation found in patients (r2 = 0.73, SEE = 0.044).
In the simulations, however, an offset was found,
shifting the relation to higher CR values (Fig. 10). It is
noted (not shown) that although acute change (±20%)
of mean systemic flow or mean arterial blood pressure
affected CR and PR, their interdependence followed the
linear relation as derived from the chronic simulations
within 2% deviation. The same holds for the data
points derived from the PHAc1 and PHAc2 simula-
tions, while for the PHAc3 simulation the deviation was
more than 10% (Table 4, not shown in Fig. 10).

DISCUSSION

The newly designed TriSeg model of ventricular
mechanics incorporates mechanical interaction of the
LV free wall, RV free wall, and septal wall resulting in
a strong coupling of LV and RV pump mechanics and
hemodynamics. The TriSeg model was successfully
implemented as a module in the available CircAdapt
model, simulating cardiac mechanics and hemody-
namics of the closed-loop circulation. Effects of ven-
tricular interaction on cardiac mechanics and
hemodynamics were assessed by simulation of pul-
monary hypertension in the acute phase as well as in
the chronic phase, the latter implying adaptation of
ventricular geometry to mechanical load. For chronic
pulmonary hypertension, simulated ventricular geom-
etry, hemodynamics, and septal mechanics agreed
surprisingly well with corresponding measurements in
patients.

Model Assumptions

In the TriSeg model, ventricular geometry was
approximated by three thick-walled spherical segments
encapsulating the LV and RV cavities (Fig. 2a). In
reality, the ventricular cavities are enclosed by trun-
cated ellipsoidal muscular walls and the noncontractile
basal sheet with valves.58 The simplification to spher-
ical segments without a noncontractile sheet resulted in
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a general underestimation of ventricular dimensions.
Although the fact that there are indications that
bending stiffness of the myocardium may be important
for simulation of septal geometry,7,21 we neglected this
effect for simplicity. Despite these inaccuracies, relative
changes of dimensions during the cardiac cycle as a
result of adaptation were simulated realistically.

In the TriSeg model, myofiber strain was estimated
from midwall curvature, area, and wall volume by
application of the one-fiber model2 to a spherical wall
segment (Eq. 15 and Appendix A). The one-fiber
model has been shown to be insensitive to actual wall
geometry by assuming conservation of energy and
homogeneity of fiber stress in the wall.2 So, we
expected that the present relation for transmural
pressure as a function of midwall surface area and

curvature was also applicable to the real, more irreg-
ular cardiac geometry, although this fact has not been
proven.

The analytically derived dependency of myofiber
strain on wall segment geometry (Eq. A7) appeared
continuous and differentiable around z = 0. To avoid
numerical inaccuracy near zero curvature, because of
zero-division, a fourth-order Taylor series approxi-
mation (Eq. 15) was used instead. For similar reasons,
Eq. (A4) for midwall tension was also approximated
by a fourth-order Taylor series (Eq. 16). Within the
physiological range of ventricular geometry, the errors
of the approximations as compared to the analytically
derived relations were smaller than 1% and 2% for
strain and tension, respectively. With respect to total
ventricular pump work, total myofiber stroke work
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was overestimated less than 2.6%, whereas total tensile
stroke work at the midwall surface was underestimated
less than 0.5%.

In the NORM and PHCh simulations, a load-con-
trolling adaptation mechanism was applied to render
size and mass of each wall segment. The applied
adaptation rules required prescribed values for maxi-
mum and minimum sarcomere lengths and for maxi-
mum passive myofiber stress in each wall segment
(Table 1). Maximum and minimum sarcomere lengths
were derived from experiments on isolated cardiac
muscle of the rat.15,31,64 Maximum passive myofiber
stress was chosen as adaptation stimulus because
experimental data obtained in dogs with chronic vol-
ume overload suggested that end-diastolic myofiber
stress and ejection strain were important mechanical

stimuli for hypertrophy, while peak systolic myofiber
stress appeared irrelevant.22 However, when assuming
similar values of maximum passive myofiber stress in
the three ventricular walls of the TriSeg model, ven-
tricular geometry did not develop anatomically accu-
rate. Therefore, in our model, we adjusted levels of
maximum diastolic stress per wall segment (Table 1) so
that after adaptation the weight ratios for the walls
agreed with findings in healthy volunteers.19,28

In this study, the external pressure surrounding the
LV and RV free walls was assumed to be zero. The real
heart is surrounded by the pericardium, which con-
strains increase of total heart volume during volume
overload. Under resting conditions, the pericardium is
believed to play a minor role, setting pericardial pres-
sure close to zero.42,46,67 However, with acute increase
of total heart volume, the pericardium affects cardiac
hemodynamics and interaction of the cardiac cham-
bers significantly.6,11,25 In our simulations of acute
pulmonary hypertension (PHAc), the effect of the
pericardium should be considered because of severe
RV dilatation (Fig. 5). In the PHAc3 simulation, RV
cavity volume even increased by 120% relative to the
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TABLE 4. Simulation results: curvature ratio and transmural
pressure ratio.

Parameter Unit NORM

PHAc PHCh

1 2 3 1 2 3

CR – 0.94 0.85 0.72 0.54 0.81 0.67 0.55

PR – 0.78 0.68 0.57 0.46 0.65 0.52 0.40

CR, septal-to-LV free wall midwall curvature ratio at the moment of

aortic valve closure; NORM, normal simulation; PHAc, acute pul-

monary hypertension simulation; PHCh, chronic pulmonary

hypertension simulation; PR, systolic septal-to-LV free wall trans-

mural pressure ratio.
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and without pulmonary hypertension (PH 5 RV systolic pres-
sure > 40 mmHg) [adapted from Dellegrottaglie et al.17]. Linear
regression analysis of data points as derived from the NORM
and PHCh simulations revealed a strong correlation (bold black
line, r2 5 1.00, SEE 5 0.008) between CR and PR with similar
slope as the relation found in patients (thick gray dashed line,
r2 5 0.73, SEE 5 0.044). The thin dashed lines indicate the 95%
confidence interval of linear regression fit to the patient data.
Linear regression formulas are shown for simulated as well as
measured data points. Symbols: r, regression residual and
SEE, standard error of the estimate.
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NORM simulation. Together with the changes of right
atrial and LV cavity volumes (45% increase and 10%
decrease, respectively), total heart volume increased by
25%. In the chronic PH simulations, the effect of the
pericardium on ventricular mechanics is likely to be of
minor importance, because measurements demon-
strated adaptive dilatation of the pericardium in
patients with chronic pulmonary hypertension.8,24

Comparison of Model Simulations with Measurements

The relation between curvature ratio CR and
transmural pressure ratio PR as extracted from the
NORM and PHCh simulations (Fig. 10) agreed quite
well with the relation as found in a patient group
consisting of patients with and without chronic pul-
monary hypertension.17 The relations were about lin-
ear with equal slope. In the simulations, however, an
offset was found, shifting the relation to higher CR
values, implying overestimation of septal curvature for
a given right-to-left pressure ratio.

The overestimation of septal curvature may have
many causes. In the model, wall geometry was consid-
ered spherical having a clear unique radius of curvature
by definition. The real ventricular walls are not spheri-
cal,58 implying that radii of curvature along the cir-
cumferential and base-to-apex direction are different.
Also, the junction of the real ventricular walls is
smoothed over the wall boundaries, thus further hin-
dering a clear definition of curvature. Besides an error in
the curvature ratio as derived from the simulations, the
offset might originate from a systematic error in the
pressure or curvature measurements obtained in
patients as discussed by Dellegrottaglie et al.17 None-
theless, the linear relationship between CR and PR
might be a useful tool for noninvasive estimation of
systolic RV cavity pressure in patients with RV pressure
overload.17,35,51 In the simulations, the linear relation
appeared also valid (<2% deviation) for the PHAc1
and PHAc2 simulations (Table 4) as well as after acute
changes (±20%) of mean arterial pressure and cardiac
output in the chronic pulmonary hypertension simula-
tions (not shown in Fig. 10). The latter findings sug-
gested that the linear relation between CR and PR is
insensitive to acute changes of hemodynamic status.

Experimental studies with acute manipulation of
transseptal pressure difference as well as clinical studies
among patients with chronic pulmonary hypertension
showed that septal curvature and position of the sep-
tum between the LV and RV free walls depend
instantaneously on transseptal pressure differ-
ence.10,20,21,35,36,52 This dependency was found during
systole as well as diastole. Similar dependencies were
found in our simulations of pulmonary hypertension.
Septal curvature decreased with increase of pulmonary

resistance (Figs. 5 and 6). Furthermore, leftward shift
of the septum, increase of RV volume, and decrease of
LV volume with acute increase of pulmonary resis-
tance (Fig. 5), as predicted by the TriSeg model, were
also predicted by Kerckhoffs et al.34 using a finite
element model of the ventricles coupled to a lumped
circulation model.

Simulations and clinical observations were in
agreement concerning changes in timing of cardiac flow
events due to pulmonary hypertension (Figs. 7 and 8).
For example, acceleration time of pulmonary flow
velocity was significantly decreased and varied linearly
with mean pulmonary artery pressure.9,14 Furthermore,
RV isovolumic contraction and relaxation times
increased while pulmonary ejection time decreased.62,70

Moreover, tricuspid E/A-ratio was decreased in
patients with chronic pulmonary hypertension indi-
cating deterioration of RV diastolic function.71

Ventricular wall volumes and end-diastolic wall
thicknesses (Table 2) in the NORM simulation were all
about 25% smaller than values measured in healthy
volunteers.19,28,57 This difference most likely resulted
from an overestimation of contractility used in the
sarcomere mechanics model (Appendix B, Eq. B7),
causing walls to be thinner after adaptation to
mechanical load. Furthermore, pulmonary accelera-
tion and ejection times as derived from the NORM
simulation (Fig. 8) were underestimated as compared
to data obtained in healthy individuals.9,27 A probable
cause is inaccuracy in the model description of sarco-
mere mechanics, which is primarily derived from
experiments on isolated cardiac muscle of the
rat.15,31,64 Human myocardium under in vivo condi-
tions is likely to behave differently.

In the PHCh simulations, LV pump function and
hemodynamics were relatively unaffected by increase
of pulmonary resistance (Figs. 6 and 7). Also in rats
with chronic pulmonary hypertension, resting LV
pump function remains unaffected as long as the
myocardium is able to compensate for increased tissue
load by structural adaptation.23 Furthermore, in the
PHCh simulations, the RV free wall hypertrophied and
RV cavity volume decreased (Table 2 and Fig. 6).
These geometric changes were in agreement with
experimental observations in rats with mild chronic
pulmonary hypertension.49 In the latter study, chronic
pulmonary artery banding resulted in an increase of
RV systolic pressure from 33 to 71 mmHg. This
increase of RV afterload resulted in 76% increase of
thickness of the RV free wall and 14% decrease of RV
free wall area, which suggests a small reduction in RV
cavity volume. In our simulations, RV systolic pressure
increased from 27 mmHg in the NORM simulation to
72 mmHg in the PHCh3 simulation (Fig. 6), end-dia-
stolic wall thickness increased 120% (Table 2), and RV
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cavity volume decreased 8%. In another animal study
in rats,44 it was shown that structural adaptation to
chronic increase of RV afterload was associated with
concentric hypertrophy up to a certain level. Beyond
this level, however, the myocardium could not fully
compensate for further load increase. Consequently,
the RV cavity dilated, mainly due to dilatation of the
RV free wall. In patients with severe chronic pul-
monary hypertension, RV free wall hypertrophy is
found to occur together with RV dilatation.12,30 Sec-
ondary to RV failure, systolic and diastolic LV func-
tion deteriorate by ventricular interaction.38,39 As a
result, cardiac performance deteriorates and exercise
capacity reduces.12,45 These phenomena indicating RV
failure were also found in our PHAc simulations.

In the PHAc simulations, the myocardial tissue was
unable to compensate for increasedRVafterloadby load
adaptation. As a result, mechanical myofiber load was
inhomogeneously distributed over the ventricular walls
(Table 3 and Fig. 5). RW stroke work density increased
with increase of RV afterload, whereas LW and SW
stroke work densities decreased. In the PHAc3 simula-
tion, RW stroke work density was increased by almost
200% with respect to the NORM simulation. When
assuming stroke work density to be correlated to oxygen
consumption,59 this implies an increase of oxygen
demand by the RV free wall. Since oxygen supply is not
included in our model, the potential effect of perfusion
imposed limitations on myocardial performance is
unknown in our simulations of pulmonaryhypertension.

In patients with pulmonary hypertension, tricuspid
regurgitation often occurs due to RV and tricuspid
annular dilatation.18,65 In our simulations, tricuspid
valve regurgitation was not included. In the PHAc3
simulation, RV end-diastolic volume was increased by
almost 100% with respect to the NORM simulation. It
is likely that the absence of tricuspid regurgitation
resulted in underestimation of RV volume overload in
the PHAc simulations.

The TriSeg model was successfully integrated as a
module in the CircAdapt model of the closed-loop
cardiovascular system. As shown previously, the
CircAdapt environment is flexible by its modular setup
and enables realistic simulation of cardiovascular
mechanics and hemodynamics under normal as well as
various pathological conditions.3,33,40 A set of physi-
ological adaptation rules, expressing structural adap-
tation of the system to mechanical load, makes the
model self-structuring and reduces the number of
independent model parameters. For each ventricular
wall segment in the TriSeg model, wall volume, mid-
wall area, and reference sarcomere length were varied
so that mechanical myofiber load was normalized to a
known physiological level, which was assumed to be
the same for all ventricular walls. The field of

application of the CircAdapt model was substantially
enlarged by implementation of the TriSeg model. In
the future, the combined model may be used to study
fundamental research questions concerning ventricular
interaction and its role in cardiac pathologies. For
example, specific material properties may be changed
per wall segment in order to study effects of hetero-
geneity of wall properties on cardiac mechanics and
hemodynamics, e.g., asynchronous mechanical activa-
tion (and pacing) or a localized myocardial infarct.33,40

Although the TriSeg model can be easily modified to
include a description of inhomogeneous myocardial
wall properties, a finite element model of cardiac
mechanics is more accurate and better suited to
describe local inhomogeneities in mechanical load. For
patient-specific modeling of the circulation, the model
should simulate many cycles in order to find a best
match with the available set of measurements. For that
purpose, the TriSeg model is to be preferred because
calculation effort was about 1,000 times less than that
of a finite element approach. The finite element model
is absolutely needed to estimate and evaluate possible
errors introduced by the applied simplifications of the
TriSeg model. Currently, the CircAdapt model with
the TriSeg module will be evaluated in its possibility to
simulate hemodynamics of pulmonary hypertension
patient specifically.

CONCLUSIONS

We presented the TriSeg model of ventricular
mechanics and hemodynamics incorporating mechan-
ical interaction of the LV free wall, RV free wall, and
septal wall, resulting in a strong coupling of LV and
RV hemodynamics. The model enables calculation of
LV and RV pressures given the respective cavity vol-
umes. LV and RV hemodynamics are related to myo-
fiber mechanics in the three ventricular walls, satisfying
the principle of conservation of energy. The three
ventricular walls are mechanically coupled satisfying
equilibrium of tensile forces in their junction. After
implementation as a module in the lumped closed-loop
CircAdapt model of heart and circulation, the TriSeg
model enables simulation of ventricular hemodynamics
and wall mechanics as functions of time.

Simulations of cardiac mechanics and hemody-
namics during normal ventricular loading, acute pul-
monary hypertension, and chronic pulmonary
hypertension after load adaptation agreed with clinical
data as obtained in normal subjects and in chronic
pulmonary hypertension patients. With increasing
levels of chronic pulmonary hypertension, the TriSeg
model predicted increase of systolic pulmonary flow
acceleration, increase of isovolumic contraction and
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relaxation times, and linear decrease of septal-to-LV
free wall curvature ratio. Summarizing, the TriSeg
model realistically describes ventricular mechanics
including the interaction between left and right ven-
tricular pump mechanics, dynamics of septal geometry,
and contractile myofiber function in the three ven-
tricular walls.

APPENDIX A: DERIVATIONS OF MECHANICS

OF THE CURVED WALL PATCH

This appendix contains the analytical derivations of
Eqs. (15) and (16) relating mechanics of the curved
wall patch to myofiber mechanics. For the derivation
of Eq. (16), calculating representative midwall tension
Tm from myofiber stress, the logarithmic one-fiber
model relating global ventricular pump mechanics to
myofiber mechanics is used.2 Applying the definition of
midwall surface as used in Eqs. (3) and (4), for the ratio
of transmural pressure pTrans to myofiber stress rf in a
closed thick-walled sphere with midwall volume Vm

and wall volume Vw, it holds:

pTrans
rf
¼ 1

3
ln

1þ z

1� z

� �����
sphere

with z ¼ Vw

2Vm

����
sphere

ðA1Þ

where the definition of z is equivalent to the more
general definition used in Eq. (15) for a curved wall
patch. For a closed sphere with midwall surface area
Am and curvature Cm, the relation between pTrans and
representative midwall tension Tm is determined by
conservation of energy, i.e.,

pTransdVm ¼ TmdAmjsphere ðA2Þ

where dVm and dAm represent small increments of mid-
wall volume and area, respectively. Substitution ofVm =

(4/3)pr3, Am = 4pr2, and r = 1/Cm in Eq. (A2) yields:

pTrans ¼ 2TmCm ðA3Þ

Note that Eq. (A3) represents Laplace’s law
expressed in such a way that the applied scalar definition
of Tm satisfies conservation of energy (Eq. A2).
Althoughwe have derived Eq. (A3) for a complete sphere,
it also holds for a fraction of the same sphere, since
both curvatureCm and tension Tm are local parameters.
Thus, Eq. (A3) may also be applied to a spherical wall
segment (Fig. 2c). Substituting Eq. (A3) in Eq. (A1)
and applying Cm = (2Amz)/(3Vw) renders for repre-
sentative midwall tension Tm in a curved wall patch:

Tm ¼
rfVw

2Am
� 1
2z

ln
1þ z

1� z

� �
ðA4Þ

Note that this latter function is continuous around
zero curvature. To avoid numerical inaccuracy near

z = 0, Eq. (A4) is replaced by its close fourth-order
polynomial approximation as specified in Eq. (16)
(relative error <2%).

For the derivation of Eq. (15), myofiber strain ef is
considered a function of two variables, i.e., Am and
Cm. Applying the principle of conservation of energy,
work of the wall by a small area change dAm with
tension Tm equals work of the myofibers by a change
of natural myofiber strain def with Cauchy myofiber
stress rf:

TmdAm ¼ Vwrfdef ðA5Þ

Rearranging Eq. (A5), substituting Tm with Eq. (A4),
and keeping Cm constant renders the following partial
derivative:

@ef
@Am

¼ 1

4Amz
ln

1þ z

1� z

� �
with z ¼ 3CmVw

2Am
ðA6Þ

A standard mathematical solution technique is used to
find the general solution of the first-order partial dif-
ferential equation in Eq. (A6).16 For that purpose, ef is
written as the sum of a strain term ef,AC and a strain
term ef,C:

ef ¼ ef;ACðAm;CmÞ þ ef;CðCmÞ ðA7Þ

First, integration of Eq. (A6) with respect to Am

renders strain term ef,AC under the condition that Cm

remains constant during integration:

ef;ACðAm;CmÞ ¼
1

2
ln

Am

Am;ref

� �
þ 1

4z
ln
ð1þ zÞ1þz

ð1� zÞ1�z

 !

ðA8Þ

where Am,ref represents a reference value of midwall
surface area Am. Below, the term ef,C will be derived for
a relatively simple special case of inflating a closed
sphere. The thus found expression is valid for all
combinations of Am and Cm. For a closed thick-walled
sphere myofiber strain ef is known as a function of Vm.
Using the principle that work as generated by the
myofibers equals pump work, it holds:

Vwrfdef ¼ pTransdVmjsphere ðA9Þ

Substitution of Eq. (A1) in Eq. (A9) renders for a
closed sphere:

def
dVm

¼ 1

3Vw
ln

1þ z

1� z

� �����
sphere

ðA10Þ

Then, midwall volume Vm and curvature ratio z are
expressed as functions of curvature Cm:

Vm ¼
4p
3C3

m

����
sphere

ðA11Þ
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z ¼ 3VwC
3
m

8p

����
sphere

ðA12Þ

Substitution of Eqs. (A11) and (A12) in Eq. (A10)
results in a differential equation in Cm only. Integra-
tion of this differential equation with respect to Cm

yields an expression of myofiber strain ef for a closed
sphere as function of Cm (full equation given in
Appendix C):

ef ¼ fðCmÞjsphere ðA13Þ

Applying Eq. (A8) to a closed sphere with curvature
Cm and substituting the resulting expression as well as
Eq. (A13) in Eq. (A7), results in the unknown strain
term ef,C (full equation given in Appendix C):

ef;CðCmÞ ¼ efjsphere�ef;ACðAm;CmÞ
��
sphere

ðA14Þ

Finally, substitution of Eqs. (A8) and (A14) in
Eq. (A7) yields a complicated analytical expression of
natural myofiber strain ef in a curved wall patch
(Appendix C). Mathematica 5.2 (Wolfram Research,
Inc) was used to obtain a simpler fourth-order poly-
nomial fit as specified in Eq. (15). This latter expression
closely approximates the analytical derivation (relative
error <1%).

APPENDIX B: MODEL OF MYOFIBER

MECHANICS

In this appendix, the applied heuristic relation is
presented that converts natural myofiber strain ef to
Cauchy myofiber stress rf. This empirical representa-
tion of sarcomere contraction simulates experiments
on isolated rat cardiac muscle.15,64 Parameter values
are given in Table B1.

Natural myofiber strain is converted to sarcomere
length Ls by

Ls ¼ Ls;refe
ef ðB1Þ

The sarcomere has been modeled as a passive ele-
ment in parallel with a series combination of a con-
tractile element and series elastic element. The time-
dependent behavior is described by two state variables,
i.e., contractile element length Lsc and mechanical
activation C. This latter activation parameter is phys-
iologically related to intracellular calcium concentra-
tion. The time derivative of Lsc depends linearly on
length of the series elastic element (Ls – Lsc) and equals
zero for isometric contraction:

dLsc

dt
¼ Ls � Lsc

Lse;iso
� 1

� �
vmax ðB2Þ

where vmax represents velocity of sarcomere shortening
with zero load and Lse,iso length of the isometrically
stressed series elastic element (Table B1). Dependence
on vmax represents the myofiber force–velocity relation
so that shortening velocity increases with applied
external force.

The time derivative of C is heuristically obtained,
having separate terms to describe rise and decay of
mechanical activation C:

dC

dt
¼ 1

sR
� CLðLscÞ � FriseðtÞ þ

1

sD
� Crest � C

1þ e TðLscÞ�tð Þ=sD

ðB3Þ

Parameters sR and sD are scaling rise and decay time,
respectively (Table B1). Symbols t and Crest represent
time and diastolic resting level of activation, respec-
tively. Functions CL, Frise, and T describe increase of
activation with sarcomere length, rise of mechanical
activation, and decrease of activation duration with
decrease of sarcomere length, respectively:

CLðLscÞ ¼ tanh 4:0ðLsc � Lsc0Þ2
� �

ðB4Þ

FriseðtÞ ¼ 0:02 � x3ð8� xÞ2e�x

with x ¼ min 8;maxð0; t=sRÞð Þ (B5)

TðLscÞ ¼ sscð0:29þ 0:3LscÞ ðB6Þ

where Lsc0 and ssc represent contractile element length
with zero load and a time factor scaling duration of
contraction, respectively (Table B1).

Active myofiber stress rf,act depends on length of
series elastic element, Lsc, and C:

rf;act ¼ ract � C � ðLsc � Lsc0Þ �
Ls � Lsc

Lse;iso
ðB7Þ

TABLE B1. Parameter values of the sarcomere mechanics
model.

Symbol Unit Value Parameter description

Crest – 0.02 Diastolic resting level of activation

Lsc0 lm 1.51 Contractile element length

with zero active stress

Ls,ref lm 2.0 Reference sarcomere length

at zero strain

Lse,iso lm 0.04 Length of isometrically stressed

series elastic element

vmax lm s�1 7 Sarcomere shortening velocity

with zero load

sD ms 32 Factor scaling contraction decay time

sR ms 48 Factor scaling contraction rise time

ssc ms 425 Factor scaling duration of contraction

ract kPa 120 Factor scaling active myofiber stress

rpas kPa 7 Factor scaling passive myofiber

stress
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In order to simulate the contributions of titin as well
as collagen to passive myocardial stiffness,69 passive
stress rf,pas represents a soft behavior for low myofiber
strain and a stiff behavior for large positive strain:

rf;pas ¼ rpas

�
36 �maxð0; ef � 0:1Þ2 þ 0:1ðef � 0:1Þ

þ 0:0025e30ef
�

(B8)

The value of rpas has been adapted so that at
maximum sarcomere length with exercise, passive
myofiber stress assumes the maximum value (Table 1:
Set point values for adaptation). Total Cauchy myofiber
stress rf is the sum of active and passive stress:

rfðefÞ ¼ rf;pas þ rf;act ðB9Þ

The latter result has been substituted in Eq. (16).

APPENDIX C: POLYNOMIAL SERIES

APPROXIMATIONS

The polynomial series approximation given by
Eq. (15) is obtained from the analytical solution
expressing natural myofiber strain in terms of Am and
Cm (Eq. A7) by applying the following steps:

1. Expression of myofiber strain ef for a closed
sphere (use Am = 4p/Cm

2 ) as function of Cm

(Eq. A13) yields:

efjsphere¼ � lnðCmÞ þ
lnð8pÞ

3
þ GðxÞ

6
ðC1aÞ

GðxÞ ¼ 1

x
� ln ð1þ xÞ1þx

ð1� xÞ1�x

 !
ðC1bÞ

x ¼ zjsphere¼
3C3

mVw

8p
ðC1cÞ

2. Applying Eq. (A8) to a closed sphere (use
Am = 4p/Cm

2 ) yields:

ef;AC

��
sphere
¼ � lnðCmÞ þ

1

2
� ln 4p

Am;ref

� �
þ GðxÞ

4

ðC2Þ

Substitution of Eqs. (C1a) and (C2) in
Eq. (A14) yields for strain term ef,C:

ef;C ¼
lnð8pÞ

3
� 1

2
� ln 4p

Am;ref

� �
� GðxÞ

12
ðC3Þ

The thus found expression for ef,C, which holds
for the special case of inflating a sphere, is valid
for all combinations of Am and Cm.

3. Substitution of Eqs. (C3) and (A8) in Eq. (A7)
yields the general analytical solution of natural
myofiber strain ef in a curved wall patch:

ef ¼
lnð8pÞ

3
� 1

2
� ln 4p

Am;ref

� �
þ 1

2
� ln Am

Am;ref

� �

� GðxÞ
12
þ GðzÞ

4
(C4)

4. In order to facilitate series approximation, z =

K/A and x = K3 are substituted in Eq. (C4):

ef ¼
lnð8pÞ

3
� 1

2
� ln 4p

Am;ref

� �
þ 1

2
� ln Am

Am;ref

� �

� 1

12K3
� ln ð1þ K3Þ1þK

3

ð1� K3Þ1�K3

 !

þ A

4K
� ln

1þ K
A

� �1þK
A

1� K
A

� �1�K
A

0
@

1
A (C5a)

with A and K representing normalized area and
curvature, respectively:

A ¼ Amffiffiffiffiffiffiffiffiffiffiffiffi
9pV2

w
3
p ðC5bÞ

K ¼ Cm

2

ffiffiffiffiffiffiffiffiffi
3Vw

p
3

r
ðC5cÞ

5. Thefirst two termsofEq. (C5a) are constant strain
offsets and are therefore eliminated from the
strain relation,whichdescribes the transition from
a reference to a new state with state variables Am

and Cm. Taylor series approximation of this sim-
plified version of Eq. (C5a) yields:

ef¼
1

2
�ln Am

Am;ref

� �
� K2

12A2
� K4

40A4
þOðK6Þ ðC6Þ

where O(K6) represents the higher order terms.

6. It is used that z = K/A. Furthermore, the fourth-
order polynomial approximation of natural
myofiber strain in a curved wall patch (Eq. 15) is
obtained after slight adjustment of the fourth-
order term of Eq. (C6) for best accuracy within
the whole range of operation (|z|< 0.8).

The polynomial series approximation given by
Eq. (16) is obtained from the analytical solution
expressing representative midwall tension in terms of
Am,Cm, and rf (Eq. A4) by applying the following steps:

1. Substitution of z ¼ 3CmVw=2Am in Eq. (A4)
yields:

Tm

rf
¼ 1

6Cm
ln

2Am þ 3CmVw

2Am � 3CmVw

� �
ðC7Þ
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2. Similar to what has been done to obtain Eq.
(C5a), A and K are substituted in Eq. (C7) to
facilitate series approximation:

Tm

rf
¼ L

6K
ln

1þ K
A

1� K
A

 !
ðC8aÞ

with

L ¼ 1

2

ffiffiffiffiffiffiffiffiffi
3Vw

p
3

r
ðC8bÞ

3. Taylor series approximation of Eq. (C8a)
yields:

Tm

rf
¼ L

3A
þ LK2

9A3
þ LK4

15A5
þOðK6Þ ðC9Þ

where O(K6) represents the higher order terms,
which are neglected in the TriSeg model.

4. Finally, the fourth-order polynomial approxi-
mation of representative midwall tension
(Eq. 16), is obtained by rearranging Eq. (C9)
and using z = K/A.
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p. 737, 2005.

17Dellegrottaglie, S., J. Sanz, M. Poon, J. F. Viles-Gonzalez,
R. Sulica, M. Goyenechea, F. Macaluso, V. Fuster, and
S. Rajagopalan. Pulmonary hypertension: accuracy of
detection with left ventricular septal-to-free wall curvature
ratio measured at cardiac MR. Radiology 243:63–69, 2007.

18Dittrich, H. C., H. A. McCann, and D. G. Blanchard.
Cardiac structure and function in chronic thromboembolic
pulmonary hypertension. Am. J. Card. Imaging 8:18–27,
1994.

19Doherty, 3rd, N. E., N. Fujita, G. R. Caputo, and C. B.
Higgins. Measurement of right ventricular mass in normal
and dilated cardiomyopathic ventricles using cine magnetic
resonance imaging. Am. J. Cardiol. 69:1223–1228, 1992.

20Dong, S. J., A. P. Crawley, J. H. MacGregor, Y. F.
Petrank, D. W. Bergman, I. Belenkie, E. R. Smith, J. V.
Tyberg, and R. Beyar. Regional left ventricular systolic
function in relation to the cavity geometry in patients with

TriSeg Model of Ventricular Interaction 2253



chronic right ventricular pressure overload. A three-
dimensional tagged magnetic resonance imaging study.
Circulation 91:2359–2370, 1995.

21Dong, S. J., E. R. Smith, and J. V. Tyberg. Changes in the
radius of curvature of the ventricular septum at end dias-
tole during pulmonary arterial and aortic constrictions in
the dog. Circulation 86:1280–1290, 1992.

22Donker, D. W., P. G. Volders, T. Arts, B. C. Bekkers,
L. Hofstra, R. L. Spatjens, J. D. Beekman, M. Borgers,
H. J. Crijns, and M. A. Vos. End-diastolic myofiber stress
and ejection strain increase with ventricular volume over-
load—serial in vivo analyses in dogs with complete atrio-
ventricular block. Basic Res. Cardiol. 100:372–382, 2005.

23Faber,M. J.,M.Dalinghaus, I.M.Lankhuizen, P. Steendijk,
W.C.Hop,R.G. Schoemaker,D. J.Duncker, J.M. Lamers,
and W. A. Helbing. Right and left ventricular function after
chronic pulmonary artery banding in rats assessed with
biventricular pressure–volume loops. Am. J. Physiol. Heart
Circ. Physiol. 291:H1580–H1586, 2006.

24Freeman, G. L., and M. M. LeWinter. Pericardial adap-
tations during chronic cardiac dilation in dogs. Circ. Res.
54:294–300, 1984.

25Freeman, G. L., and M. M. LeWinter. Role of parietal
pericardium in acute, severe mitral regurgitation in dogs.
Am. J. Cardiol. 54:217–219, 1984.

26Fujii, J., Y. Yazaki, H. Sawada, T. Aizawa, H. Watanabe,
and K. Kato. Noninvasive assessment of left and right
ventricular filling in myocardial infarction with a two-
dimensional Doppler echocardiographic method. J. Am.
Coll. Cardiol. 5:1155–1160, 1985.

27Gardin, J. M., C. S. Burn, W. J. Childs, and W. L. Henry.
Evaluation of blood flow velocity in the ascending aorta
and main pulmonary artery of normal subjects by Doppler
echocardiography. Am. Heart J. 107:310–319, 1984.

28Hajduczok, Z. D., R. M. Weiss, W. Stanford, and M. L.
Marcus. Determination of right ventricular mass in
humans and dogs with ultrafast cardiac computed tomo-
graphy. Circulation 82:202–212, 1990.

29Hirschfeld, S., R. Meyer, D. C. Schwartz, J. Korfhagen,
and S. Kaplan. Measurement of right and left ventricular
systolic time intervals by echocardiography. Circulation
51:304–309, 1975.

30Horan, L. G., N. C. Flowers, and C. J. Havelda. Relation
between right ventricular mass and cavity size: an analysis
of 1500 human hearts. Circulation 64:135–138, 1981.

31Hunter, P. J., A. D. McCulloch, and H. E. ter Keurs.
Modelling the mechanical properties of cardiac muscle.
Prog. Biophys. Mol. Biol. 69:289–331, 1998.

32Kaul, S. The interventricular septum in health and disease.
Am. Heart J. 112:568–581, 1986.

33Kerckhoffs, R. C., J. Lumens, K. Vernooy, J. H. Omens,
L. J. Mulligan, T. Delhaas, T. Arts, A. D. McCulloch, and
F. W. Prinzen. Cardiac resynchronization: insight from
experimental and computational models. Prog. Biophys.
Mol. Biol. 97:543–561, 2008.

34Kerckhoffs, R. C., M. L. Neal, Q. Gu, J. B.
Bassingthwaighte, J. H. Omens, and A. D. McCulloch.
Coupling of a 3D finite element model of cardiac ventric-
ular mechanics to lumped systems models of the systemic
and pulmonic circulation. Ann. Biomed. Eng. 35:1–18, 2007.

35King, M. E., H. Braun, A. Goldblatt, R. Liberthson, and
A. E. Weyman. Interventricular septal configuration as a
predictor of right ventricular systolic hypertension in chil-
dren: a cross-sectional echocardiographic study. Circulation
68:68–75, 1983.

36Kingma, I., J. V. Tyberg, and E. R. Smith. Effects of dia-
stolic transseptal pressure gradient on ventricular septal
position and motion. Circulation 68:1304–1314, 1983.

37Little, W. C., R. C. Reeves, J. Arciniegas, R. E. Katholi,
and E. W. Rogers. Mechanism of abnormal interventricu-
lar septal motion during delayed left ventricular activation.
Circulation 65:1486–1491, 1982.

38Louie, E. K., S. S. Lin, S. I. Reynertson, B. H. Brundage,
S. Levitsky, and S. Rich. Pressure and volume loading of
the right ventricle have opposite effects on left ventricular
ejection fraction. Circulation 92:819–824, 1995.

39Louie, E. K., S. Rich, S. Levitsky, and B. H. Brundage.
Doppler echocardiographic demonstration of the differen-
tial effects of right ventricular pressure and volume over-
load on left ventricular geometry and filling. J. Am. Coll.
Cardiol. 19:84–90, 1992.

40Lumens, J., T. Delhaas, B. Kirn, and T. Arts. Modeling
ventricular interaction: a multiscale approach from sarco-
mere mechanics to cardiovascular system hemodynamics.
Pac. Symp. Biocomput. 378–389, 2008.

41Luo, C., D. L. Ware, J. B. Zwischenberger, and J. W.
Clark, Jr. Using a human cardiopulmonary model to study
and predict normal and diseased ventricular mechanics,
septal interaction, and atrio-ventricular blood flow pat-
terns. Cardiovasc. Eng. 7:17–31, 2007.

42Mangano, D. T., D. C. Van Dyke, R. F. Hickey, and R. J.
Ellis. Significance of the pericardium in human subjects:
effects on left ventricular volume, pressure and ejection.
J. Am. Coll. Cardiol. 6:290–295, 1985.

43Maughan, W. L., K. Sunagawa, and K. Sagawa. Ventric-
ular systolic interdependence: volume elastance model in
isolated canine hearts. Am. J. Physiol. 253:H1381–H1390,
1987.

44Minami, S., T. Onodera, F. Okazaki, H. Miyazaki,
S. Ohsawa, and S. Mochizuki. Myocyte morphological
characteristics differ between the phases of pulmonary
hypertension-induced ventricular hypertrophy and failure.
Int. Heart J. 47:629–637, 2006.

45Miyamoto, S., N. Nagaya, T. Satoh, S. Kyotani,
F. Sakamaki, M. Fujita, N. Nakanishi, and K. Miyatake.
Clinical correlates and prognostic significance of six-minute
walk test in patients with primary pulmonary hypertension.
Comparison with cardiopulmonary exercise testing. Am. J.
Respir. Crit. Care Med. 161:487–492, 2000.

46Morris-Thurgood, J. A., and M. P. Frenneaux. Diastolic
ventricular interaction and ventricular diastolic filling.
Heart Fail. Rev. 5:307–323, 2000.

47Nash, M. P., and P. J. Hunter. Computational mechanics
of the heart: from tissue structure to ventricular function.
J. Elast. 61:113–141, 2000.

48Olansen, J. B., J. W. Clark, D. Khoury, F. Ghorbel, and
A. Bidani. A closed-loop model of the canine cardiovas-
cular system that includes ventricular interaction. Comput.
Biomed. Res. 33:260–295, 2000.

49Olivetti, G., R. Ricci, C. Lagrasta, E. Maniga, E. H.
Sonnenblick, and P. Anversa. Cellular basis of wall remod-
eling in long-term pressure overload-induced right ventric-
ular hypertrophy in rats. Circ. Res. 63:648–657, 1988.

50Olsen, C. O., G. S. Tyson, G. W. Maier, J. A. Spratt, J. W.
Davis, and J. S. Rankin. Dynamic ventricular interaction in
the conscious dog. Circ. Res. 52:85–104, 1983.

51Reisner, S. A., Z. Azzam, M. Halmann, D. Rinkevich,
S. Sideman, W. Markiewicz, and R. Beyar. Septal/free wall
curvature ratio: a noninvasive index of pulmonary arterial
pressure. J. Am. Soc. Echocardiogr. 7:27–35, 1994.

LUMENS et al.2254



52Roeleveld, R. J., J. T. Marcus, T. J. Faes, T. J. Gan,
A. Boonstra, P. E. Postmus, and A. Vonk-Noordegraaf.
Interventricular septal configuration at mr imaging and
pulmonary arterial pressure in pulmonary hypertension.
Radiology 234:710–717, 2005.

53Santamore, W. P., and D. Burkhoff. Hemodynamic con-
sequences of ventricular interaction as assessed by model
analysis. Am. J. Physiol. 260:H146–H157, 1991.

54Sechtem, U., P. W. Pflugfelder, R. G. Gould, M. M.
Cassidy, and C. B. Higgins. Measurement of right and left
ventricular volumes in healthy individuals with cine MR
imaging. Radiology 163:697–702, 1987.

55Slinker, B. K., and S. A. Glantz. End-systolic and end-
diastolic ventricular interaction. Am. J. Physiol. 251:
H1062–H1075, 1986.

56Smith, B. W., J. G. Chase, G. M. Shaw, and R. I. Nokes.
Simulating transient ventricular interaction using a mini-
mal cardiovascular system model. Physiol. Meas. 27:165–
179, 2006.

57Stolzmann, P., H. Scheffel, S. Leschka, T. Schertler,
T. Frauenfelder, P. A. Kaufmann, B. Marincek, and
H. Alkadhi. Reference values for quantitative left ventric-
ular and left atrial measurements in cardiac computed
tomography. Eur. Radiol. 18:1625–1634, 2008.

58Streeter Jr., D. D. Gross morphology and fiber geometry of
the heart. In: Handbook of Physiology, edited by R. M.
Berne, N. Sperelakis, and S. R. Geiger. Bethesda, MD:
American Physiological Society, 1979, pp. 61–112.

59Suga, H., T. Hayashi, and M. Shirahata. Ventricular sys-
tolic pressure–volume area as predictor of cardiac oxygen
consumption. Am. J. Physiol. 240:H39–H44, 1981.

60Sun, Y.,M. Beshara, R. J. Lucariello, and S. A. Chiaramida.
A comprehensivemodel for right-left heart interaction under
the influence of pericardium and baroreflex. Am. J. Physiol.
272:H1499–H1515, 1997.

61Taher, M. F., W. P. Santamore, and D. K. Bogen. Ven-
tricular interaction is described by three coupling coeffi-
cients. Am. J. Physiol. 266:H228–H234, 1994.

62Tei, C., K. S. Dujardin, D. O. Hodge, K. R. Bailey, M. D.
McGoon, A. J. Tajik, and S. B. Seward. Doppler echo-
cardiographic index for assessment of global right ven-
tricular function. J. Am. Soc. Echocardiogr. 9:838–847,
1996.

63Tei, C., K. S. Dujardin, D. O. Hodge, R. A. Kyle, A. J.
Tajik, and J. B. Seward. Doppler index combining systolic
and diastolic myocardial performance: clinical value in
cardiac amyloidosis. J. Am. Coll. Cardiol. 28:658–664,
1996.

64ter Keurs, H. E., W. H. Rijnsburger, R. van Heuningen,
and M. J. Nagelsmit. Tension development and sarcomere
length in rat cardiac trabeculae. Evidence of length-
dependent activation. Circ. Res. 46:703–714, 1980.

65Thistlethwaite, P.A., andS.W. Jamieson. Tricuspid valvular
disease in the patient with chronic pulmonary thromboem-
bolic disease. Curr. Opin. Cardiol. 18:111–116, 2003.

66Usyk, T. P., I. J. Le Grice, and A. D. McCulloch. Com-
putational model of three-dimensional cardiac electrome-
chanics. Comput. Vis. Sci. 4:249–257, 2002.

67Watkins, M. W., and M. M. LeWinter. Physiologic role of
the normal pericardium. Annu. Rev. Med. 44:171–180,
1993.

68Weber, K. T., J. S. Janicki, S. Shroff, and A. P. Fishman.
Contractile mechanics and interaction of the right and left
ventricles. Am. J. Cardiol. 47:686–695, 1981.

69Wu, Y., O. Cazorla, D. Labeit, S. Labeit, and H. Granzier.
Changes in titin and collagen underlie diastolic stiffness
diversity of cardiac muscle. J. Mol. Cell. Cardiol. 32:2151–
2162, 2000.

70Yeo, T. C., K. S. Dujardin, C. Tei, D. W. Mahoney, M. D.
McGoon, and J. B. Seward. Value of a Doppler-derived
index combining systolic and diastolic time intervals in
predicting outcome in primary pulmonary hypertension.
Am. J. Cardiol. 81:1157–1161, 1998.

71Yu, C. M., J. E. Sanderson, S. Chan, L. Yeung, Y. T.
Hung, and K. S. Woo. Right ventricular diastolic dys-
function in heart failure. Circulation 93:1509–1514, 1996.

TriSeg Model of Ventricular Interaction 2255


	Outline placeholder
	Abs1
	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec12
	Sec13
	Sec14


	Sec15
	Sec16
	Sec17
	Sec18

	Sec19
	Sec20
	Sec21

	Sec22
	Sec23
	Sec24
	Sec25
	Ack
	Bib1



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


