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ABSTRACT
Background De novo mutations are emerging as an
important cause of neurocognitive impairment, and
whole exome sequencing of case-parent trios is a
powerful way of detecting them. Here, we report the
findings in four such trios.
Methods The Deciphering Developmental Disorders
study is using whole exome sequencing in family trios to
investigate children with severe, sporadic, undiagnosed
developmental delay. Three of our patients were
ascertained from the first 1133 children to have been
investigated through this large-scale study. Case 4 was a
phenotypically isolated case recruited into an
undiagnosed rare disorders sequencing study.
Results Protein-altering de novo mutations in PURA
were identified in four subjects. They include two
different frameshifts, one inframe deletion and one
missense mutation. PURA encodes Pur-α, a highly
conserved multifunctional protein that has an important
role in normal postnatal brain development in animal
models. The associated human phenotype of de novo
heterozygous mutations in this gene is variable, but
moderate to severe neurodevelopmental delay and
learning disability are common to all. Neonatal
hypotonia, early feeding difficulties and seizures, or
‘seizure-like’ movements, were also common.
Additionally, it is suspected that anterior pituitary

dysregulation may be within the spectrum of this
disorder. Psychomotor developmental outcomes appear
variable between patients, and we propose a possible
genotype–phenotype correlation, with disruption of Pur
repeat III resulting in a more severe phenotype.
Conclusions These findings provide definitive evidence
for the role of PURA in causing a variable syndrome of
neurodevelopmental delay, learning disability, neonatal
hypotonia, feeding difficulties, abnormal movements and
epilepsy in humans, and help clarify the role of PURA in
the previously described 5q31.3 microdeletion
phenotype.

INTRODUCTION
Neurodevelopmental disorders are common and
encompass a broad range of intellectual, behav-
ioural and motor disabilities. Learning disability
alone affects 1%–3% of the population and, for
the most part, has a complex genetic basis.1

Indeed, it is this complex genetic heterogeneity and
variability of expression that has previously posed a

significant barrier to the investigation and molecu-
lar diagnosis of neurodevelopmental disorders.
However, with the advent of next-generation

sequencing technology, extensive interrogation of
the exome has become possible. The use of whole
exome sequencing (WES) has enabled the identifi-
cation of pathogenic mutations in patients with
well-characterised neurodevelopmental phenotypes,
such as Kabuki syndrome2 and Schinzel–Giedion
syndrome.3

In many cases, however, there may be no consist-
ent physical characteristics to help group patients
with sporadic neurodevelopmental disorders for
molecular genetic investigation. For this reason,
such cases are inherently more challenging. One
paradigm that has proved to be extremely effective
is WES in family trios.4 5 This approach has helped
to successfully identify numerous pathogenic de
novo mutations as the cause of sporadic neurodeve-
lopmental delay,4 6 7 and forms the basis of the
Deciphering Developmental Disorders (DDD)
study, through which the mutations in three of our
four patients were identified.
The enrichment for de novo mutations as a cause

of sporadic neurodevelopmental disorders is not
surprising given the overall association with reduced
fecundity and the baseline rate of DNA replication
errors, which has been reported from detailed
genomic studies as ∼10−8 de novo germline base
substitutions per base pair per generation.8

We report four unrelated children with signifi-
cant neurodevelopmental delay who have been
investigated by WES in family trios and found to
have pathogenic de novo mutations in PURA (MIM
600473).

METHODS
Of our four patients, three were referred to
regional Clinical Genetics services across the UK,
where they were recruited to the DDD study
(http://www.ddduk.org). DDD has so far investi-
gated 1133 children with severe, undiagnosed
developmental delay, and their parents, using a
combination of genome-wide assays to detect all
major classes of genetic variation in the protein-
coding portion of the genome. They have recorded
clinical information and phenotypes using the
Human Phenotype Ontology9 via a secure web
portal within the DECIPHER database.10
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DNA samples from patients and their parents were analysed
by the Wellcome Trust Sanger Institute using high-resolution
microarray analysis (array-comparative genomic hybridisation
(CGH) and SNP-genotyping) to investigate CNVs in the child,
and exome sequencing to investigate SNPs and small insertions/
deletions (indels). Putative de novo sequence variants were vali-
dated using targeted Sanger sequencing. The population preva-
lence (minor allele frequency) of each variant in nearly 15 000
samples from diverse populations was recorded, and the effect
of each genomic variant was predicted using the Ensembl
Variant Effect Predictor.11 Likely diagnostic variants in known
developmental disorder genes were fed back to the referring
clinical geneticists for validation and discussion with the family
via the patient’s record in DECIPHER, where they can be
viewed in an interactive genome browser. Full genomic datasets
were also deposited in the European Genome–Phenome Archive
(http://www.ebi.ac.uk/ega).

Patient 4 was referred to paediatric neurology. She underwent
extensive neurological and metabolic investigations in Australia.
The exomes of Patient 4 and both parents were sequenced in an
n=1 family trio study used for diagnostic exploration by Ambry
Genetics using SureSelect Target Enrichment System (Agilent
Technologies) followed by 2×100 nt paired-end sequencing on
a Illumina HiSeq 2000. Raw sequence reads for Patient 4 and
her parents were aligned to the reference human genome
(GRCh37), and pedigree-informed variant calling was per-
formed using the Real Time Genomics integrated analysis tool
rtgFamily V.3.2.12 All variants were annotated using SnpEff
V.3.413 using data from dbNSFP2.414 and dbSNP138.15

Subsequent analysis and identification of candidate variants was
performed with an in-house workflow incorporating the anno-
tated variant data and pedigree information.

RESULTS
Clinical photographs of the patients are shown in figure 1.
Clinical features are shown in detail in table 1.

The mutations found by WES for each case are described below.
No other causative mutations were indentified in the exomes.

Patient 1
Patient 1 has a de novo frameshift mutation (p.Phe243Tyrfs*50)
in PURA.

She had neonatal hypotonia and was nasogastric (NG) tube-fed
for the first week of life. Her swallow has remained poor. A single
apnoeic/hyponoeic episode occurred while she was a neonate.
Abnormal ‘seizure-like’ movements were investigated at 7 months
of age by EEG, which was normal. Visual evoked potentials
revealed broadened wave forms consistent with neurological nys-
tagmus (with preserved optokinetic nystagmus).

At her last clinical assessment, aged 4 years 7 months, she was
not walking, and remained non-verbal. Patient 1 had hypotonic
facies with a prominent forehead, epicanthic folds and mild tele-
canthus. Lower limb posture was abnormal with feet held in
plantar flexion. There was restricted ankle movement, mild hypo-
tonia and generalised weakness. Coordination was poor, but not
grossly ataxic. Intermittent dysconjugate gaze was noted.

Prominent early breast bud development led to endocrine
investigations that revealed this to be gonadotropin-dependent.
She has been treated with intramuscular decapeptyl from age
3 years. MRI brain scans show delayed myelination.

Patient 2
Patient 2 has a de novo frameshift mutation (p.Glu283Argfs*45)
in PURA.

She did not have neonatal hypotonia, respiratory difficulties
or feeding problems. She achieved unsupported sitting at
12 months, independent walking at 24 months and first words
at 2 years 6 months. At 14 years 3 months, she was independ-
ently mobile, able to dress herself and feed herself. She commu-
nicates in sentences, although with limited vocabulary. Patient 2
has an anxious disposition and lacks awareness of danger.
Clinical examination revealed microcephaly, tall forehead, hypo-
tonic facies, mild facial asymmetry, upslanting palpebral fissures
and large central incisors. She has long thin fingers and toes,
with 5th finger clino/camptodactyly bilaterally, over-riding 2nd
toes and deep palmar creases.

Patient 3
Patient 3 has a non-synonymous missense mutation (p.
Ile206Phe). This amino acid substitution arises in Pur repeat II, a
very highly conserved region of sequence within Purα (figure 2).
Crystallography studies suggest that Pur repeat I and Pur repeat II
interact to form a functional Pur domain.16 In silico analysis with
SIFT and PolyPhen produced scores of 0.01 and 0.969, respect-
ively, supporting pathogenicity.

Respiratory distress at birth necessitated supplementary
oxygen. Neonatal hypotonia and hypoglycaemia were present,
and NG tube feeding was necessary. She sat unsupported at
12–14 months, walked at 22 months and said her first words at
∼3 years 6 months. At 12 years 10 months, she was able to run
unsteadily with a wide-based gait. She communicates at a basic
level with short phrases, repetitive speech and limited compre-
hension. Her behaviour can be obsessional and attention-seeking,
with limited awareness of others. Patient 3 has a long face, full
cheeks, high forehead and telecanthus. Neurological examination
revealed hypotonia, mild weakness and poor coordination. EEG
at 3 years for possible seizures showed: occasional paroxysmal
discharges in the form of spikes and sharp waves over the right
frontal and left mid-temporal region in sleep.

Patient 4
Patient 4 has an inframe deletion (p.Phe233del), affecting a
very highly conserved phenylalanine residue within Pur repeat
III, a presumed functional domain of Purα which is necessary
for homodimerisation in crystallography studies16 (figure 1),
and is present even in very distantly related organisms such as
Caenorhabditis elegans. It is, therefore, highly likely to be of
functional significance.

She developed central apnoea, hypothermia and severe hypo-
tonia from day 2 of life. There was absent suck and gag reflex
requiring early NG feeding. At 6 years 9 months, unsupported
sitting had not been achieved. There is little language
development.

She has hypotonic facies, frontal bossing and thin upper lip.
Neurological examination revealed generalised hypotonia and
dystonic/dyskinetic facial and limb movements. There was gener-
alised weakness but no ataxia. Eye movements were
dysconjugate.

Seizures commenced at 14 months with infantile spasms, and
progressed to tonic seizures and focal dyscognitive seizures.
Seizures have proved difficult to control.

EEG recordings have been normal or mildly slow when sei-
zures are under control, but highly abnormal during seizures
with near-continuous multifocal and bisynchronous sharp/slow
activity maximal posteriorly. Video telemetry has revealed epi-
leptic spasms and/or tonic seizure activity. Inborn errors of
neurotransmitter biosynthesis and metabolism have been
excluded by both Sanger and WES.

Hunt D, et al. J Med Genet 2014;51:806–813. doi:10.1136/jmedgenet-2014-102798 807

New loci

http://www.ebi.ac.uk/ega
http://www.ebi.ac.uk/ega


Serial MRI brain scans have been performed since birth
(figure 3). These showed a right frontal horn cyst, which subse-
quently resolved. There was also patchy high attenuation
throughout the white matter. Myelination was delayed but com-
plete by 5 years, by which time there was evidence of excessive
extra-axial fluid spaces and possible parenchymal volume loss.
MR spectroscopy has demonstrated decreased N-acetyl aspartate
within the frontal lobes and basal ganglia.

DISCUSSION
PURA encodes a ubiquitously expressed protein, Purα, which
contains an N-terminal glycine-rich region, three Pur repeats (I–
III) and a C-terminal glutamine–glutamate rich domain16 (figure
1). The full-length protein is 322aa in humans and gives rise to
a 28 kDa product.17 18

Purα is very highly conserved across the phylogenetic tree
(figure 1), with regulatory roles in DNA replication, gene tran-
scription, RNA transport and mRNA translation. Originally, it
was identified in mouse due to its ability to bind to a sequence
within the myelin basic protein promoter.19 20 The human form
was identified through its binding to a purine-rich element
within an origin of DNA replication upstream of the human
c-MYC gene.17 A consensus sequence for the purine-rich single
strand of the so-called PUR element, to which Purα binds, was
subsequently derived. It has since become apparent that Purα’s
preferential recognition sequence comprises GGN repeats.

In order to initiate DNA replication and gene transcription,
Purα first destabilises the DNA helix so that it may then bind its
target sequence on a single DNA strand.21 It is able to bind
both linearised and supercoiled DNA. However, mutation
studies have revealed that the carboxy terminal segment of
Purα, which includes Pur repeat III, is necessary for destabilisa-
tion of linearised DNA.22

Purα has been shown to be important in controlling gene
transcription from an array of different genes. Interestingly, it
has gene-specific roles as either an activator or repressor of tran-
scription. Purα activates transcription for a large number of cel-
lular genes including those encoding myelin basic protein,19

tumour necrosis factor α,23 BC124 and the neuron-specific
TATA-less gene FE65.25 Furthermore, proteomics studies
suggest that both Purα and its paralog, Purβ, may have an
important regulatory role in control of the gene expression of
myelin proteolipid protein (Plp1), which is the most abundant
protein in central nervous system myelin and is developmentally
regulated. Expression of Plp1 peaks in oligodendrocytes during
active myelination.26 By contrast, Purα represses expression
from a wide range of genes including amyloid-β precursor
protein,27 α-actin28 and gata2.29 There is also evidence that
Purα is involved in controlling its own transcription through a
process of autoregulation.30

There are two independently generated Pura−/− mice which
have helped our understanding of Purα’s role in normal

Figure 1 Depictions of the four
mutations identified within PURA.
(A) Schematic of Purα, depicting sites
of the different mutations identified in
our patients with respect to the Pur
repeat regions (I–III). (B) Sequence
alignment illustrating the high level of
conservation of amino acids affected
by the p.Ile206Phe and p.Phe233del
mutations. Asterisk denotes complete
conservation, colon denotes high
conservation and single dot denotes
moderate conservation. (C) and (D)
illustrate the respective locations of the
p.Ile206Phe and p.Phe233del
mutations within the tertiary structure
of the protein.
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Table 1 Clinical phenotype descriptions of the four index patients

PURA phenotype Patient 1 Patient 2 Patient 3 Patient 4

Background Mutation c.726_727delGT
(p.Phe243Tyrfs*50)

c.847delG
(p. Glu283Arg fs*45)

c.616A>T
(p.Ile206Phe)

c.697_699delTTC
(p.Phe233del)

Inheritance AD—de novo AD—de novo AD—de novo AD—de novo
Ethnicity Caucasian Caucasian Caucasian Caucasian
Sex F F F F
Family history of
note

None None None None

Pregnancy Natural, uneventful Natural, uneventful Natural, uneventful ICSI, uneventful
Delivery NVD NVD NVD Elective caesarian
Gestational age
(weeks)

41 41 42 38

Birth weight 3.74 kg (75th) 3.50 kg (50th) 3.73 kg (75th) 3.012 kg (50th)
OFC at birth – 34 cm (25th) - 35 cm (91st)
Neonatal
respiratory
difficulty?

Single apnoeic/hyponoeic episode
as a neonate

No Supplementary oxygen
required at birth

Central apnoea and
hypothermia from day 2 of
life

Neonatal
hypotonia?

Yes No Yes Yes (severe from day 2 of
life)

Neonatal feeding
difficulties?

Yes (required NG tube feeding) No Yes (required NG tube
feeding)

Yes (required NG tube
feeding)

Age at last
assessment

4 years 7 months 14 years 3 months 12 years 10months 6 years 9 months

Developmental
milestones

Sitting
unsupported
(age)

2 years 6 months 12 months 13 months Not reached

Walking
independently
(age)

Not reached 24 months 22 months Not reached

First words (age) Not reached 2 years 6 months 3 years 6 months 11 months
Current
developmental
level

Gross motor Unable to stand Fully mobile, broad-based
gait

Able to run; ataxic and
broad-based gait

Non-ambulatory with central
hypotonia, dystonia and
dyskinesia

Fine motor Pincer grip Manages buttons and can
use fork/spoon

Manages buttons Pincer grip

Language No expressive language, appears
to understand some words

Sentences; limited
vocabulary

Short phrases, repetitive,
difficult to understand,
limited comprehension

Essentially non-verbal

Behaviour Startles easily Anxiety, no sense of danger Relatively easy child, some
obsessional and
attention-seeking behaviours,
poor awareness of others

Startles easily, anxiety and
behaviour consistent with
global delay

Growth
parameters

Height 111 cm (91st) 145 cm (0.4th–2nd) 154 cm (50th) 123 cm (75%)
Weight 19 kg (75th) 33 kg (<0.4th) 46.5 kg (50th) 25 kg (75%)
Head
circumference

50.6 cm (9th–25th) 51 cm (<0.4th) 56.0 cm (75th–91st) 53 cm (75th)

Facial features Hypotonic facies, prominent
forehead, epicanthic folds, mild
telecanthus

Hypotonic facies,
microcephaly, tall forehead,
facial asymmetry (R<L),
upslanting palpebral fissures,
large central incisors

Slightly long face and full
cheeks, high forehead,
telecanthus

Hypotonic facies, mild
frontal bossing, thin upper
lip, some deciduous teeth
possibly malformed

Neurological Limb posture Feet held in plantar flexion,
restricted movement at ankles

Normal Normal Hypotonic/dystonic

Tone Hypotonic Normal Hypotonic Hypotonic/dystonic
Power Mild generalised weakness Normal Mild generalised weakness Mild generalised weakness
DTRs/plantar
responses

Diminished DTRs/normal plantar
response

Normal Difficult to elicit Normal DTRs/normal plantar
response

Coordination Poor Poor Poor Poor
Gait Non-ambulatory Broad-based Broad-based Non-ambulatory
Cranial nerve
anomalies?

Dysconjugate gaze No No Dysconjugate gaze and
intermittent ocular
deviations

Movement
disorder?

No No No Dystonic and choreoathetoid
limb movements

Seizures or
‘seizure-like’
episodes

‘Seizure-like’ episodes (at
7 months)

No ‘Seizure-like’ episodes (at
3years)

Epilepsy (onset at
14 months) with epileptic
spasms

Other neurological
features/findings?

Normal CSF neurotransmitters Nil Nil Early cortical visual
impairment
Elevated CSF di-hydro

Continued
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development.31 32 Both knockout mice are reported to appear
normal at birth and develop neurological features at approxi-
mately 2 weeks of age, which include continuous and increas-
ingly severe tremor. Khalili et al31 reported that their mice
appeared to feed well but did not gain weight normally and
died at 1 month of age. They also noted that their heterozygous
mice were prone to seizures on routine handling. Hokkanen

et al32 reported that their null mutant mice lived up to
6 months. They reported that these animals did not gain weight
normally after onset of tremor. They also observed an ataxic
gait in these animals with an apparent hind limb weakness.

Both groups found that there was a marked reduction in the
expression of the dentritic protein MAP2. This is interesting
because Purα binds to mouse BC1 RNA in complex with other

Table 1 Continued

PURA phenotype Patient 1 Patient 2 Patient 3 Patient 4

biopterin levels
Sleep study—cyclical central
apnoea

Investigation
results

MRI brain Delayed myelination (at 3 years
5 months)

Normal (at 7 years
8 months)

Normal (at 10 years
3 months)

Multiple abnormalities (see
figure 3)

EEG Normal Not performed Abnormal Abnormal
Endocrine Gonadotropin-dependent

precocious puberty (early
thelarche), on treatment with IM
decapeptyl

Nil Nil Elevated prolactin level soon
after birth
Blunted cortisol response to
stress
Chronically low vitamin D
levels despite treatment

AD, autosomal dominant; CSF, cerebrospinal fluid; DTR, deep tendon reflex; ICSI, intracytoplasmic sperm injection; IM, intramuscular; NVD, normal vaginal delivery; OFC,
occipital-frontal circumference; NG, nasogastric.

Figure 2 Clinical photographs. Patient 1 is shown at age 1 year 7 months (A and B) and 4 years 7 months (C). Patient 2 is shown at 7 years
3 months (D and E) and 14 years 3 months (F). Patient 3 is shown at 9 years 7 months (G and H) and 12 years 10 months (I). Patient 4 is shown at
6 years 9 months ( J and K). While there is no obvious gestalt, all four patients were noted to have quite prominent foreheads with high anterior
hairlines. Patients 1, 2 and 4 have mildly hypotonic facies.
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proteins such as Fragile X Mental Retardation Protein and
Staufen, as well as various mRNA species.33 These form
so-called messenger ribonucleoprotein granules, which are crit-
ical to normal dendritic function.

Purα binds to the (CGG)n sequence in FMR1 that is patho-
logically expanded in Fragile X syndrome. Intriguingly, it has
been suggested that Fragile X-associated tremor/ataxia syndrome
(FXTAS), which may arise in premutation carriers, is due to the
sequestration of Purα and other rCGG repeat binding proteins,
thereby preventing them from fulfilling their normal cellular
function.34 The movement disorder observed in knockout mice
might therefore be functionally related to FXTAS.

Until now, there have been no specific reports of mutations
within PURA as a cause of human disease. It is, however, note-
worthy that a 5q31.3 microdeletion phenotype has recently
emerged35 and PURA, which lies within the shared deletion
interval of the seven patients described to date, and has been
proposed as a candidate gene for the associated phenotype.36 37

The shared phenotype of all patients reported thus far includes
hypotonia, feeding difficulty and developmental delay.
Additionally, respiratory problems, such as apnoea, and seizures
or ‘seizure-like’ movements are reported in the majority of these
patients.

While NRG2, a member of the neuregulin family, is highly
likely to be contributory to the 5q31.3 microdeletion pheno-
type,36 one of the two most recent patients to have been
described in the literature with a similar phenotype has a micro-
deletion that has narrowed down the shortest region of overlap
(SRO) to a 101 kb region encompassing only three genes:
PURA, C5orf53 and C5orf32. Given that the function of the
latter two genes is yet to be characterised, Brown et al37 have
proposed that this ‘lends further support for PURA as the likely
primary candidate gene for the core neurodevelopmental fea-
tures of this (5q31.3 microdeletion) syndrome’.

In this report, we provide the first evidence, that mutations
limited to PURA are indeed sufficient to cause significant neuro-
developmental delay and learning disability in humans.

The four unrelated index patients have different de novo
mutations in PURA. Patients 1 and 2 have frameshift mutations
(p.Phe243Tyrfs*50 and p.Glu283Argfs*45, respectively). Given
that PURA is a single exon gene, these altered gene products
would not be subject to nonsense-mediated decay. As such,
there is potential for these translated proteins to have dominant
negative or gain-of-function effects or, alternatively, result in
functional haploinsufficiency. Patient 3 has a missense mutation
(p.Ile206Phe) and Patient 4 has an inframe deletion (p.
Phe233del). Both of these mutations occur within highly

conserved regions of sequence, giving rise to the Pur repeat II
and Pur repeat III regions, respectively. These repeat regions are
unique to Purine-rich element-binding proteins, and are of func-
tional significance.

In all four affected individuals (figure 1), there was a shared
core phenotype (table 1) of moderate to severe neurodevelop-
mental delay. Central hypotonia and early feeding difficulties
were also common, as were respiratory difficulties ranging from
distress at birth to single or recurrent central hyponoeic/apnoeic
episodes in the newborn period. Three of our patients have a
history of seizures or ‘seizure-like’ movements.

Additionally, some unusual features have been noted that may
be part of the phenotypical spectrum for PURA mutations. In
particular, there are some notable endocrine problems among
these patients. Patient 1 has a history of gonadotropin-
dependent precocious puberty with persistently elevated lutein-
izing hormone and follicle-stimulating hormone. She has early
breast bud development and is currently on treatment with dec-
apeptyl. None of the other patients are reported to have signs
of early puberty. However, Patient 4 does have a history of
other endocrine abnormalities including a persistently raised
prolactin in the neonatal period and a blunted cortisol response
to stress, despite normal baseline levels. She also has persistently
low vitamin D levels despite treatment. This suggests that there
may be a wider endocrine component, particularly with respect
to anterior pituitary function.

Intriguingly, there is some evidence that Purα may be involved
in the regulation of gondatropins. One study seeking to identify
novel DNA-binding proteins for gonadotropin-releasing
hormone 1 (GNRH1) promoter, identified both Purα and Purβ
as potential regulators of GNRH1 gene expression.38

Subsequent in vivo studies have confirmed binding of both Purα
and Purβ to the upstream region of the GNRH1 gene. While
overexpression of Purβ was shown to significantly downregulate
GNRH1 expression in transiently transfected mouse GT1-7
cells, this could not be demonstrated for Purα. However, it is
worth noting that there is evidence that Purα is able to form a
functional heterodimer with Purβ.39

Curiously, only Patient 1, the youngest, had a head circumfer-
ence that appeared to be growing at the expected rate. None of
the other 3 patients have maintained their projected rate of
head growth from early occipital-frontal circumference measure-
ments. This presumably reflects an inadequate growth in under-
lying brain volume, although no discrete brain structures were
noted to be hypoplastic on MRI. This apparent inability to
maintain growth velocity is consistent with the observations
made in Pura−/− mice by Khalili et al.31

Figure 3 Serial MRI brain scans from Patient 4. (A) At 1 week, there is patchy high attenuation within white matter and a right frontal horn cyst,
which is not evident on subsequent scans. (B) At 14 months, the white matter appears normal but thickening of tissue at the ependymal margin of
the right frontal horn is apparent. (C) At 2 years 2 months, subtle hypomyelination is apparent in that there is poor definition of the grey-white
matter boundary in the frontal lobes. (D) At 3 years 10 months, subtle hypomyelination persists. (E) At 5 years, myelination is complete. However,
there are excessive extra-axial fluid spaces and there is possible cerebral atrophy.
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MRI brain scans were performed on all four patients at
various ages. Patients 2 and 3 had normal MRI brain scans at
ages 7 and 10 years, respectively. Historical scans were not avail-
able to check for early evidence of delayed myelination in these
patients. In Patient 1, delayed myelination was detected at
3 years 5 months. In Patient 4, serial MRI brain scans were per-
formed from birth showing a number of abnormalities including
a transient right frontal horn cyst and patchy high attenuation
of the white matter at birth and delayed myelination, with mye-
lination complete by 5 years of age. There were, however,
enlarged extra-axial fluid spaces by this time raising the possibil-
ity of mild parenchymal volume loss. As such, it is reasonable to
say that evidence of delayed myelination was found only in
those patients whose scans were performed early enough to
detect it. On the whole, our patients’ brain imaging is not
entirely typical of the findings reported in the 5q31.3 pheno-
type, which includes frontotemporal volume loss, simplified
frontal gyral pattern with shallow sulcation and delayed or
incomplete myelination of the frontotemporal subcortical white
matter tracts and anterior limbs of the internal capsules and cyst
formation. However, Patient 4’s brain imaging bears the greatest
overlap with this phenotype.

We are confident that all four patients’ phenotypes are sec-
ondary to their de novo mutations in PURA. WES has excluded
other significant gene mutations. Furthermore, array CGH has
excluded chromosomal microdeletions or duplications that may
not necessarily have been detected by WES alone. Additionally,
all patients have been thoroughly investigated by multiple physi-
cians of various specialities en route to their definitive molecular
genetic diagnosis. While there is a core phenotype, there is vari-
ability among our patients. Further cases will be useful to assess
any distinctive genotype–phenotype correlations, or whether
features, such as endocrine disturbance, metabolic abnormal-
ities, epilepsy and a movement disorder might represent rare
manifestations within a broad phenotypical spectrum.
Regardless, our assumption has been that a functional haploin-
sufficiency has resulted from all four mutations. Functional
studies may be necessary to confirm this hypothesis and exclude
other possibilities, such as dominant negative or
gain-of-function effects. However, the modular architecture of
Purα and functional studies that have been completed to date
tell us that truncating frameshift mutations similar to those
found in Patient 1 will almost certainly have abolished the func-
tional Pur repeat III sequence that is necessary for dimerisation
and binding to linearised DNA. Patient 4’s inframe deletion
affects a very highly conserved residue within the same Pur
repeat and would be expected to cause similar functional pro-
blems. Both these children are severely affected, being non-
ambulatory and non-verbal. They are, however, the youngest
two patients—but they have already exceeded the ages at which
Patients 2 and 3 achieved independent ambulation (22–
24 months).

Patient 2’s frameshift mutation is downstream of the Pur
repeats. The functional effect is not clear at a molecular level,
but it seems to be associated with a less severe neurodevelop-
mental phenotype. Patient 3’s missense mutation falls with Pur
repeat II and affects a highly conserved residue. Again, the func-
tional effect at a molecular level is not yet clear, but it presum-
ably has potential to interfere with the formation of the ssDNA/
ssRNA binding domain. Regardless, it too appears to be asso-
ciated with a less severe neurodevelopmental phenotype.

We believe that our four patients help to resolve the 5q31.3
microdeletion phenotype. In the Brown et al37 study, Patient 2,
whose deletion significantly narrowed the SRO, was more

mildly affected than the other six patients whose 5q31.3 micro-
deletions also included NRG2 (MIM 603818). Additionally, this
patient is reported as non-dysmorphic, whereas the other six
patients have quite strikingly dysmorphic features. It has, there-
fore, been suggested that the combined deletion of PURA and
NRG2 (and/or other genes within the SRO for these six
patients), may account for a more severe phenotype.37 It has
also been suggested that the more dysmorphic appearance of
these patients is, in part, due to their more profound state of
hypotonia. Our findings support the hypothesis that the dele-
tion of PURA contributes to, but is not the sole cause of, the
5q31.3 microdeletion phenotype.

With the exception of mildly hypotonic facies, which are appar-
ent in three of our patients, there are no obvious consistent dys-
morphic facial features in this first cohort. We note, however, that
all four patients have fairly prominent foreheads with relatively
high anterior hairlines. As such, this is not a genetic syndrome that
currently lends itself readily to clinical diagnosis based on history
and clinical examination findings alone. However, if in time there
should prove to be clear associations with discrete clinical
problems, such as gondatropin-dependent precocious puberty or
consistent brain imaging findings, it may be that the diagnosis can
be strongly suspected on clinical grounds. However, based on the
patients described herein, we suspect that this will ultimately prove
to be a diagnosis that is usually made following investigation by
WES or gene panel testing for neurodevelopmental delay. Indeed,
as such technology becomes more readily accessible to clinicians,
this diagnosis will undoubtedly become recognisable as a rare but
important cause of sporadic neurodevelopmental delay.
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