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Abstract

Background: Accumulation of amyloid R-peptide (AR) is implicated in the pathogenesis and development of
Alzheimer's disease (AD). Neuron-enriched miRNA was aberrantly regulated and may be associated with the
pathogenesis of AD. However, regarding whether miRNA is involved in the accumulation of AR in AD, the
underlying molecule mechanism remains unclear. Therefore, we conduct a systematic identification of the
promising role of miRNAs in Ap deposition, and shed light on the molecular mechanism of target miRNAs
underlying SH-SY5Y cells treated with AB-induced cytotoxicity.

Results: Statistical analyses of microarray data revealed that 155 significantly upregulated and 50 significantly
downregulated miRNAs were found on the basis of log2 | Fold Change | = 0.585 and P < 0.05 filter condition
through 2588 kinds of mature miRNA probe examined. PCR results show that the expression change trend of the
selected six MiRNAs (miR-6845-3p, miR-4487, miR-4534, miR-3622-3p, miR-1233-3p, miR-6760-5p) was consistent
with the results of the gene chip. Notably, AB,s_3s downregulated hsa-miR-4487 and upregulated hsa-miR-6845-3p
in SH-SY5Y cell lines associated with AB-mediated pathophysiology. Increase of hsa-miR-4487 could inhibit cells
apoptosis, and diminution of hsa-miR-6845-3p could attenuate axon damage mediated by AB,s 35 in SH-SY5Y.

Conclusions: Together, these findings suggest that dysregulation of hsa-miR-4487 and hsa-miR-6845-3p
contributed to the pathogenesis of AD associated with AB25-35 mediated by triggering cell apoptosis and synaptic
dysfunction. It might be beneficial to understand the pathogenesis and development of clinical diagnosis and
treatment of AD. Further, our well-designed validation studies will test the miRNAs signature as a prognostication
tool associated with clinical outcomes in AD.
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Background

Alzheimer’s disease(AD), with main clinical features of
progressive disorder in cognitive and behavioral functions,
is the most common degenerative neurodegenerative
disease. It remains at a high mortality rate worldwide, with
patients suffering from this disease progressing to demen-
tia caused by advanced neuronal dysfunction, and trends
predict the disease rate to increase eighty-five times by
2050 [1]. AD is viewed as a late stage of the disease
because available interventions are most likely too late to
ameliorate the condition [2]. Thus, it is necessary to
explore detection biomarkers as soon as possible, and to
understand the development mechanism of AD.

Recently, microRNAs (miRNAs) as a class of small
non-coding RNAs have expanded the horizon for neuro-
logical disease prediction and provide an efficient
approach to the disease treatment of AD. Emerging evi-
dence has demonstrated that over 70% of significant
miRNAs are detected in central nervous system diseases
including AD [3], stroke, and Parkinson’s, contributing
to regulation of a more diverse set of cellular mecha-
nisms such as development, synaptic plasticity secretion
of neurotransmitter, and neuron survival [4—6]. Espe-
cially, functional studies have further underlined that
point that the important roles of these miRNAs might
be closely related to the changes of AP formation [7].

Interestingly, the predominant theory for AD is the
“amyloid-f hypothesis”, which states that abnormally
histopathological features of AP binds to, accumulates,
and aggregates in synapses resulting in the production of
a series of aggregates that are neurotoxic [8]. Studies
have shown that cognitive disorder in AD derives from
impaired synaptic plasticity by aberrant amyloid beta
peptide [9]. Although these studies screened out several
miRNAs associated with AD, the concreted pathogenesis
studies on AD such as for synaptic dysfunctions remain
poorly known.

Overall, two questions are resolved in this project:
whether miRNAs were involved in the accumulation of
AP in AD, and how to work the underlying molecule
mechanism on apoptosis and axon damage of promising
miRNAs mediated by AB,5_35 in SH-SY5Y.

Materials and methods

Cell culture and treatment

The SH-SY5Y human neuroblastoma cell line was ob-
tained from American type culture collection (ATCC)
and maintained in high glucose modified Eagle’s medium
(DMEM) supplemented with 15% fetal bovine serum
and penicillin/streptomycin (100 pg/ml) at 37 °C with
5% CO,. The medium was refreshed once a day during
cell growth. When cells reached 80~90% confluence,
cell suspension was sub-cultured on flask according to
1:3 proportion. Cells were plated in a 96-well plate at a
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concentration of 1x 10* cells in per well and cultured
for 24 h. Then, the medium with the concentration of
AB25-35 (5 uM/L, 10 pM/L, 20 pM/L, 40 uM/L) was
added into the culture plate for 48 h. And the physio-
logical saline acted as the negative control.

Cell viability assay

After the above SH-SY5Y cell in 96-well plate with
different concentration of AP25-35 was cultured for
48 h, 20 pL MTT (5 mg/mL) was added to each well
and incubated for another 4 h followed by 150 pL
DMSO. After treatment, the plates were shocked for
10 min until the crystal was dissolved. The cell viability
was calculated by the formulas ([normal OD-control
OD/experimental OD-control OD] *100%).

miRNA microarray and quantitative real-time PCR for
miRNA verification

Total RNAs were extracted from the cells of AB25-35
group and control group using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Quality of RNA was
determined using an Agilent 2100 Bioanalyzer (Agilent
Technologies). The integrity number and quality of
RNAs are related positively. Only an RNA integrity
number >5 were used for further analyses. The coeffi-
cient variance(CV) of repeated probe were calculated.
The next microarray analysis was processed by invariant
set normalization method. The miRNAs which the
difference in its expression was more than 2.0-fold were
considered to be significant gene.

Each qRT-PCR assay was performed in triplicate assay
in accordance with the specifications of miRNA
qRT-PCR SYBR® Kit (Takara). Synthetic cDNA was amp-
lified specifically and quantitatively using a miRNA-spe-
cific primer and SYBR advantage qPCR chemistry. The
primers of quantitative PCR were synthesized by Ribo
Biotech Co (Shanghai). The reaction conditions were as
follows: 95 °C for 2 min followed by 40 cycles of 95 °C
for 10s, 60 °C for 15s and 70 °C for 10s. At the end of
the PCR cycling, 65 °C-95 °C melt curve analysis was
performed to validate the specific generation of the ex-
pected PCR product. U6 small nuclear non-coding RNA
served as an internal control.

miRNA function analysis, Cell transfection and
quantitative real-time PCR for miRNA verification
Targetscan, miRDB, miRWalk and miranda were used
for prediction target gene of Each miRNA. The pre-
dicted data were combined by these algorithms, and the
intersection elements were recognized as candidate
target genes. The Gene Ontology (GO) database and the
Kyoto Encyclopedia Genes and Genomes (KEGG) data-
base were devoted to functional analysis of the selected
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target genes, in which GO terms were significantly
enriched in the predicted target gene of the miRNA
compared with the corresponding gene background and
certain reference biological functions, and KEGG path-
ways were assigned to decipher the pathway and associ-
ated biological functions.

Cells were seeded in six-well across the day until cells
reached 60-70% confluence. The transfection agent
X-treme GENE HP DNA (Roche, Co)was deployed to
the mixture of mimic/inhibitor and DMEM free of
serum. Next, transfection was performed following the
manufacturer’s protocol with transfection agent X-treme
GENE HP DNA in room temperature. After 48 h, the
cells were treated with the TRIzol reagent and stored at
- 80 °C until RNA extraction according to previous
method and following experiments.

Flow cytometric detection of apoptosis

The cells from each group were collected following tryp-
sin free of EDTA treatment gently and were centrifuged
at 2000 rpm for 5 min and washed twice with PBS. The
cells were re-suspended with the binding buffer and
100 pl (a final concentration of 10° cells/ml) suspended
cells were added to negative control tube one, negative
control two and positive control tube one, positive con-
trol tube two. Then, when all of tubes were mixed to
5 pl Annexin V-FITC staining solution, the cells were
subsequently incubated at 2—-8 °C in the dark for 5 min
and the apoptotic rates were detected using a flow
cytometer (BD Biosciences, Franklin Lakes, USA). The
data were analyzed using CellQuest Pro 3.3 software
(BD Biosciences).

Immunofluorescence imaging

Mir-6845-3p inhibitor and inhibitor control were
transfected into SH-SY5Y cells and then treated with
AB25-35 for 48h. The cells were washed with PBS
twice and fixed with 4% paraformaldehyde for
10 min. After they were permeabilized with 0.5%
Triton-X100 for 15 min, and blocked by the goat
serum. Then, Neurofilament medium protein Monoclonal
antibodies, Goat Anti-rabbit IgG/FITC (Abcam, Co) of 1%
BSA and DAPI gradually were put according to manufac-
turer’s instruction. The cells were mounted in the 50% gly-
cerin shield, and the fluorescence images were taken using
a confocal laser scanning microscope (Olympus, Japan).

Statistical analysis

Data are presented as the mean + standard deviation and
were compared with Students t-tests between two
groups or one-way analysis of variance (ANOVA)
between three or more groups using SPSS software
(version 12). P <0.05 was considered to be a statistically
significant difference).
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Results

Effects of AB25-35 on the SH-SY5Y cell viability

To investigate the effect of AP25-35 on SH-SY5Y cell
viability, the MTT assay was conducted to observe the
cell survival as correlated with different concentrations
of AP25-35 treatment (5 uM/L, 10 pM/L, 20 puM/L,
40 pM/L) for 48 h. The MTT results indicated that the
cell viability treated with low dose AB25-35 (5 uM/L
and 10 pM/L) had no obvious influence. While high
dose AP25-35 (20 uM/L and 40 uM/L) had significantly
dose-dependent relationship on SH-SY5Y cell viability
(Fig. 1), the cell viability with AP25-35 treatment was
significantly decreased to 51.6% + 7% compared with the
negative control. As it is shown, cells presented the
characteristic tips of formazan crystals. (Fig. 1; P < 0.05)
and AP25-35 treatment (40 uM/L) group has excellent
photo transmittance. 40 uM/L concentrations Ap25-35
were selected for further studies based on the maximum
valid dose and for cell viability [10].

miRNA expression profile of SH-SY5Y cells treated with
the Ap25-35

To investigate whether miRNAs involved in APas_3s5
induced SH-SY5Y cell damage, differential expression of
miRNAs was tested by HmiOA7.1 miRNA gene chip.
Prior to the testing, purity and quality of samples need
to be detected by Nanodrop ND-1000. The standard
used is a ratio of A260/A280 equal or above 1.6, and
A260/A230 equal or above 1. Meanwhile, integrality of
samples should to be checked according to RIN equal o/
Cllr above 5 (RIN>=5 means perfect integrality)by
RNA6000 Nano RNA assay. The results indicated that
every group has reached eligible standard (Fig. 2). We
next identified differentially expressed genes in each
contrast using an P value of below 0.05 and log2|Fold
Change| equal or above 0.585 to capture the widest pos-
sible number of differentially expressed genes [11]. After
profiling the expression of total 2588 mature miRNAs.
155 miRNAs were positively detected in our sample. For
15 miRNAs, we did find detectable negative traces
(Fig. 3). Significant miRNAs (miR-210, miR-29, miR-197
and so on) have been reported as related to AD [12-14].

Validation of the microarray data by quantitative

PCR analysis

To validate the miRNAs identified by microarray chip,
according to abundance of miRNAs expression and
functional significance, the previous-mentioned 6 candi-
date reference miRNAs (miR-6845-3p, miR-3622-3p,
miR-1233-3p, miR-4487, miR-4534, and miR-6760-5p)
and U6 were included in further confirmation phase by
quantitative RT-PCR. As a result, these expression of
dysregulation miRNAs were consistent with the micro-
array results (Fig. 4). Importantly, the level of miR-4487
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Fig. 1 Effect of AB25-35 on cell viability in SH-SY5Y cells in a dose-dependent manner detected by MTT assay. a The representative pictures of
formazan crystals treated by A325-35 at different concentration taken by optical microscope (x 10). b The summary data of MTT. **p <0.01 vs.
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25-35

was significantly down-regulated twice in the AB group
compared to the control group, while expression of
miR-6845-3p (P <0.01) obviously up-regulated before
miR-1233-3p (P<0.05) and miR-3622-3p (P<0.05).
Lastly, based on both microarray and PCR studies,
miR-6845-3p and miR-4487 appear as the most promis-
ing biomarkers involved in the process of AP cellular
damage.

Genes associated to the disease progression: Functional
and biological findings

Gene Ontology (GO) enrichment and KEGG pathway
analysis were adopted to discover the most remarkable
functional significance miRNAs on DAVID websites by
analyzing the target genes intersection of miRwalk. GO
annotation analysis showed that candidate target genes
of miR-4487 were distributed into apoptotic signaling

-
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Fig. 2 RIN value detected by Agilent 6000 Nano RNA assay
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Fig. 3 Volcano plot of miRNA expression differences between
AB25-35 and control group. Blue spots represent genes which
were differentially expressed

pathway, intracellular receptor signaling peptide pathway,
actin cytoskeleton and so on. The majority of the enriched
KEGG terms were involved in the metabolic process.
Emerging reports describe AB25-35 as possibly resulting
in cell apoptosis. The up-regulated mir-6845-3p was also
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analyzed in GO analysis. Gene enrichment including
development of central nervous, cell adhesion, guidance
molecular of axon was determined in GO analysis. Certain
KEGG pathways, for example the axon guidance mole-
cules pathway, cell adhesion and cell motility were directly
associated with mir-6845-3p, and they may affect the
expression of mir-6845-3p. in total, these results were kept
with the highest enriched GOs targeted and KEGG
pathways by mir-6845-3p and mir-4487 miRNAs. Thus,
our study will further verify that has-miR-4487 is involved
in apoptosis resulted from Ap25-35 and that has-
miR-6845-3p participated in axonal regeneration.

The miR-4487 reduced apoptosis in SH-SY5Y cell after
AB25-35 treatment

To verify the function of miR-4487 in cell apoptosis,
concentrations of 25 nM, 50 nM, 100 nM SH-SY5Y cells
were transfected with miR-4487 mimic as previously
described respectively. Three days later, all cells stably
overexpressed miR-4487, in which concentration of
50 nM, 100 nM SH-SY5Y cells were 4.62 and 10.45
times more than control (Fig. 5). The result showed that
has-miR-4487 mimic possessed stably transfection
efficiency. Following transfection, flow cytometry was
conducted to examine levels of cell apoptosis affected by
has-miR-4487. Analysis data indicated that the expression
of apoptosis rate has no statistical significance compared
has-miR-4487 mimics group with the mimics-control
group. While the present study transfected miR-4487
mimics into SH-SY5Y cells.The apoptosis levels in
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SH-SY5Y cells significantly decreased from 54.74 to
21.11% (P<0.05), as compared with no transfected
miR-4487 mimics in SH-SY5Y cell lines treated with
AB25-35 investigated (Fig. 6). These findings suggest that
miR-4487 may serve a critical role in reducing the level of
apoptosis levels in SH-SY5Y cells treated with AB25-35
who showed a strong cell impairment.

The miR-6845-3p reduced cell axonal outgrowth involved
in AB25-35 damaging model

Biological analysis predicted effects of hsa-miR-6845-3p
focused on cell axon. Much of the research in cell
impairment has examined that AP25-35 broke down
cytoskeletons consisting of axon. Neurofilament, as the
core of the axon, plays an important role in the forma-
tion of cell cytoskeletons [15]. Thus, based on this
evidence, the expression of neurofilament protein and
cellular morphology need to be measured to detect
the role of hsa-miR-6845-3p in AP25-35 damaging
model by confocal laser scanning microscopy. When
hsa-miR-6845-3p inhibitor was transfected into
SH-SY5Ycell, the average neuronal neurite length was
found to extend in contrast with control group
(inhibitor- NC). As shown in Fig. 7, APys_35 can be
significantly induced, not only limited to the cell body,
but also present on the neuron extension. Moreover, in
order to precisely verify the function of hsa-miR-6845-3p
on these neurons, we transfected the hsa-miR-6845-3p
inhibitor into SH-SY5Y cell treated with APys_3s.
Interestingly, we observed longer and greater effect on cell
axon in hsa-miR-6845-3p inhibitor added to Afys_3s
group (Fig. 7). This result coincided with previous
primary consequence, which have confirmed increased
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expression of hsa-miR-6845-3p in SH-SY5Y cell
treated with AP,s5_35. Taken together, these findings
support the view that higher expression of
hsa-miR-6845-3p are likely to inhibit neurite extension
and vice versa if cells were in the situation of decreased
expression of hsa-miR-6845-3p, axon length might be
improved in SH-SY5Y cell. Thus, we hypothesize that
ABys_35 might damage cytoskeletons via function of
hsa-miR-6845-3p.

Discussion

As the principal cognitive disorder problem in humans,
the incidence rate of AD increased significantly with the
aging population [16]. Since there are neither effective
therapeutic strategies nor early diagnostic biomarkers
for the treatment of AD [17], finding novel strategies of
early diagnosis and treatment for AD has long been a
central goal. miRNAs allow novel insight into modifica-
tion mechanisms employed from expression ability of
miRNAs to function study in AD and can be easily
detected by microarray analysis or RT-PCR. Therefore,
miRNAs could potentially serve as noninvasive bio-
markers and therapeutic targets of AD [18—20]. Besides,
our research also reveals gaps in knowledge that require
further research.

Neurofibrillary tangles are one of the vital pathological
characteristics of AD [21], and the accumulation of
APys_35 can cause and exacerbate the production of
neurofibrillary tangles [22—24]. In our study, we focused
primary on whether promising miRNAs could act as
accurate biomarkers to discriminate AD from normal
cases by taking advantage of miRNA array data sets. We
proved that SH-SY5Y cell in combination with treated
with concentration 40um/L Afys5_35 was efficiency of
cell impaired models of AD, several of report has also
proved efficiency used to establish of this model [25].
Meanwhile, our studies analyzed gene chip and Qpcr ex-
periment rely on this model to identify two significant
miRNAs, down-regulation miR-4487 and up-regulation
miR-6845-3P, involved in the impairment of SH-SY5Y
cell treated with Ap; furthermore, Gene Ontology (GO)
enrichment and KEGG pathway analysis were adopted
to discover the most remarkable, functionally significant
miRNAs.Here, based on the results of these analysis, we
found that the functions of most differentially regulated
genes of miR-4487 and miR-6845-3p were related to the
regulation of cellular component organization, protein
import into nucleus, glucose metabolic process, and so
forth, in which apoptotic P-value of signaling pathway
involved in miR-4487 is higher significance, indicating
that miR-4487 might participate in the dysfunction of
apoptotic signaling pathway. In addition, emerging re-
search showed that up-regulated miR-4487 can promote
cell apoptosis and proliferation in salivary adenoid cystic
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result in a loss of microbial anabolism and catabolism, and
cell apoptosis response worsens with the progression of
the disease itself [30]. To investigate the influence of
miR-4487 in cell apoptosis, we transfected miR-4487
mimic into SH-SY5Y cell, which could strengthen

carcinoma and early-stage colorectal cancer [26, 27].
Dysregulation miR-4487 can modulating autophagy in
PD [28].

Neuronal apoptosis is a key pathological feature of AD
[29]. In the early stage of AD, accumulated A protein will
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regulation of miRNA. We found that miR-4487
increased expression relieves the level of apoptosis in
AP25-35 treated SH-SY5Y neuronal cells. in addition,
our study provides the first evidence that miR-4487
may be an effective strategy to modulate cell
apoptosis levels attributed to AP reduction. Similarly,
bioinformatic analysis revealed the regulation of
miR-6845-3p associated with neuronal maintenance
and synaptic plasticity. However, no reports have been
published that linked miR-6845-3p to AD, only that
miR-6845-3p was located in chromosome 8q24.3.
meaningAp (Amyloid-B) can hold back nerve recon-
struction and neuron extension in brains of Alzhei-
mer’s patients [31]. Given prior evidence supporting
the idea that the miR-6845-3p gene could influence
axonal outgrowth, we speculate that miR-6845-3p
might participate in axon elongation disorder arising
from AP25-35. In view of this, a further experiment,
constructing of miR-6845-3p inhibitor into SH-SY5Y
cell to observe axonal variations, is conducted to

detect expression of neurofilament, down-expression
of proteins maintaining cell cytoskeleton stability, and
response to axonal conditions; our results took the
lead in suggesting that decreased miR-6845-3p expres-
sion promotes significant axonal outgrowth and vice
versa. These effects might be associated, in part, to a
direct regulation of AP25-35 at the miR-6845-3p
level.

Overall, the two selected miRNAs as potential diag-
nostic panel for AD are among the top ones of 6 investi-
gated miRNAs which were functionally mapped to
proteins involved in AD pathology by our two different
bioinformatics searches in the databases of miRwalk and
DAVID. Our study serves as a proof-of-concept that
findings significant miR-4487 and miR-6845-3p may par-
ticipate in AD occurrence and development by effective
strategy to modulate cell apoptosis levels and axon
elongation. in addition, our study provides the first
evidence that miR-6845-3p may be an effective strategy
to modulate cell axon elongation attributed to A
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reduction. Furthermore, we used online software
containing predictive (TargetScan) and experimentally
validated (MiRTarBase) miRNA targets to find that
ULK1 may be a potential common target gene of
miR-4487 and miR-6845-3p, which could negatively
or positively regulate ULK1l. A putative miR-4487
binding site exists in the 3’-UTR of ULK1 mRNA and
seven point mutations were generated in the binding
site. Recently, in reported study, we found that ULK1
activation could inhibit the expression of p-p70°°* or
p-eEF2K. We also found that si-p70°* had no effect
on ULKI but si-ULKlcould decrease p-p70°®" expres-
sion [32, 33], suggesting that ULK1 may negatively
regulate p70°® in SH-SY5Y cell autophagy. Autoph-
agy plays an important role in nervous system disease
[34], and other emerging studies have reported that
autophagy, as a conserved homeostatic process for
degrading long-lived proteins and damage organelles,
may contribute to neurodegeneration in PD [28]. In
addition, silencing of eEF2K has been reported to
promote autophagic survival via indirect activation of
the AMPK-ULK1 pathway in colon cancer cells [35].
However, our results may uncover the novel ULK1
autophagic pathway, as well as a correlation of the
levels of the miR-4487 and miR-6845-3p, analyzing
both with the new ULK1 target mRNA. This necessi-
tates further studies to gain insight in the detail
mechanism of the effects of the two miRNAs target
genes in SH-SY5Y cells and into the function of these
two miRNAs in AD rats. Although, we tried to avoid
bias in our study, other certain limitations still need
to be considered while interpreting the result of our
study. First, a microarray data set of miRNAs in the
included cell studies was selected. More useful miR-
NAs should be obtained to verify accuracy of previous
study by downloading a set of raw microarray data.
Second, to confirm the variation in two miRNAs
expression at different stage of AD, different stages
(1-month-old, 3-month-old, 6-month-old, and 9-
month-old) of AD rats should be used for experimen-
tal validation. This tissue-based study will lay the
foundation of further development of blood-based
diagnostics/therapeutic novel biomarker candidates of
AD. Moreover, as mentioned above, an analysis of the
putative functional targets of miRNAs and their target
gene experimental validation can provide input in
deciphering AD pathogenesis. Bridging the gap
between significant miRNAs and autophagy would be
impressive for better understanding of their intricate
relationships and thus providing a novel diagnostics/
therapeutic strategy in AD. Thus, these findings
would provide a clue to explore significantly miRNAs
and its target ULKlas potential biomarkers in the
future AD diagnosis/therapy.
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Conclusions

Our study not only demonstrate that miR-4487and
miR-6845-3p may participate in AD occurrence and
development and provide the first evidence that
miR-6845-3p may be an effective strategy to modulate
cell axon elongation attributed to AP reduced, but it also
contributes to greater insight on new potential mecha-
nisms and functions for predicting AD. Together, further
in-depth miRNA research and discovery will provide
novel promising ideas and strategies for elucidating the
pathological mechanisms of AD and for developing ef-
fective methods for early diagnosis and treatment of AD.
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