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Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic 
benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse 
diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 
2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although 
germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be 
used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral 
and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been 
designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation 
and side effects. In this review we explain about the history of gene therapy, all types of gene delivery 
systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and 
somatic cells by viral [retroviral, adenoviral, adeno association, helper‑dependent adenoviral systems, 
hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein–Barr virus)] and nonviral systems 
(physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and 
(chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above‑mentioned, 
advantages, disadvantages, and practical use of each system are discussed.
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INTRODUCTION

Basically gene therapy is an intracellular delivery 
of genomic materials (transgene) into specific cells 
to generate a therapeutic effect by correcting an 
existing abnormality or providing the cells with 
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a new function.[1] Different types of gene delivery 
systems may be applied in gene therapy to restore 
a specific gene function or turning off a special 
gene(s). The ultimate goal of gene therapy is single 
administration of an appropriate material to replace 
a defective or missing gene.[2] The first human gene 
transfer was utilized in 1989 on tumor‑infiltrating 
lymphocytes[3,4] and the first gene therapy was done 
on ADA gene for treatment of patients with SCID 
(Severe Combined Immunodeficiency Defect) in 1990.[5] 
Although initially the main focus of gene therapy 
was on inherited genetic disorders, now diverse 
diseases, including autosomal or X‑linked recessive 
single gene disorders (CF(Cystic Fibrosis), ADA 
(Adenosine Deaminase) –SCID, emphysema, retinitis 
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pigmentosa, sickle cell anemia, phenylketonuria, 
hemophilia, DMD (Duchenne Muscular Dystrophy), 
some autosomal dominant disorders, even polygenic 
disorders, different forms of cancers, vascular 
disease, neurodegenerative disorders, inflammatory 
conditions, and other acquired diseases are targets of 
gene therapy. To date, thousands of disorders have 
been treated by more than hundreds of protocols of 
gene therapy.[1] There are 2 major categories of gene 
therapy: Germline gene therapy and somatic gene 
therapy. Although germline gene therapy may have 
a great potential, because it is currently ethically 
forbidden, it cannot be used.[6‑8] To date, human gene 
therapy has been limited to somatic cell alterations 
and there is a remarkable development in the field. 
There are different viral and nonviral vectors for gene 
delivery, but all gene therapy applications depend on 
the fact that the genetic material needs to be delivered 
across the cell membrane and ultimately to the cell 
nucleus. Each of the delivery systems has some 
advantages and disadvantages, and in this review 
we explain about all types of gene delivery systems 
briefly [Figure 1].

DIFFERENT METHODS OF GENE THERAPY

Germline gene therapy
The technology of this type of gene therapy is simple 
as genetic abnormalities can be corrected by direct 
manipulation of germline cells with no targeting, and 
not only achieve a cure for the individual treated, but 
some gametes could also carry the corrected genotype. 
Although it almost never has been tested on humans, 
some different transgenic techniques have been used 
on other species, which include the following:
(1)	 Gene delivery to the nuclei taken from somatic 

cells at metaphase stage.[9,10]

(2)	 Ex vivo alteration of egg cells, following in vitro 
fertilization.[11,12]

(3)	 Manipulation of embryonic stem cells of mouse 
during in vitro culture by different gene delivery 
systems.[12‑14]

(4)	 Pronuclear microinjection of exogenous DNA 
solution by a glass needle.[15]

(5)	 Transgenic delivery into sperm cells by direct or 
indirect injection to testis or other parts of the 
genital system.[16,17]

Somatic gene therapy
Somatic gene therapy involves the insertion of genes 
into diploid cells of an individual where the genetic 
material is not passed on to its progeny. Somatic 
cell therapy is viewed as a more conservative, 
safer approach because it affects only the targeted 
cells in the patient, and is not passed on to future 
generations; however, somatic cell therapy is 
short‑lived because the cells of most tissues ultimately 
die and are  replaced  by  new cells. In addition, 
transporting the gene to the target cells or tissue 
is also problematic. Regardless of these difficulties, 
however, somatic cell gene therapy is appropriate and 
acceptable for many disorders.

There are 3 types of somatic gene therapy
Ex vivo delivery
In this system the genetic material is explanted from 
the target tissue or bone marrow, cultivated  and 
manipulated in vitro, and then transducted and/or 
transfected into the target tissue. There are no 
immunologic problems in this way but only the 
technique is used in cases where the target cells act 
as protein secretion resources (like the treatment 
of ADA or hemophilia) or as a vaccine for cancer 
treatment, so there are major limitations on the 
use of ex vivo delivery. In addition, at present only 
a small percentage of reimplanted cells remain 
viable.[18,19]

In situ delivery
The administration of the genetic material directly 
into the target tissue is in  situ delivery. As most 
of the current delivery systems need no effective 
targeting, the way is proper. The system has been 
utilized in the delivery of CFTR gene by lipid and 
adenoviral vectors to a specific site in the respiratory 
tract and is also used in the treatment of different 
cancers. However, low efficiency of transduction is 
the main problem of this system, because in cancer 
therapy one malignant cell can re‑establish the 
tumor again.[20‑22]

In vivo delivery
The transfer of genetic material through an appropriate Figure 1: Different gene delivery systems



Nayerossadat, et al.: Viral and nonviral delivery systems for gene delivery

Advanced Biomedical Research | April - June 2012 | Vol 1 | Issue 2	 3

vector, which can be a viral or nonviral vector, into 
the target tissue is in vivo delivery. This technique is 
the least advanced strategy at present but potentially 
it might be the most useful. The problem of this way 
is insufficient targeting of vectors to the correct tissue 
sites; however, improvement in targeting and vector 
development will solve the problem.

DIFFERENT VECTOR SYSTEMS FOR GENE 
DELIVERY

Viral vectors
One of the successful gene therapy systems available 
today are viral vectors, such as retrovirus, adenovirus 
(types 2 and 5), adeno‑associated virus, herpes virus, 
pox virus, human foamy virus (HFV), and lentivirus.[23] 
All viral vector genomes have been modified by deleting 
some areas of their genomes so that their replication 
becomes deranged and it makes them more safe, but 
the system has some problems, such as their marked 
immunogenicity that causes induction of inflammatory 
system leading to degeneration of transducted 
tissue; and toxin production, including mortality, 
the insertional mutagenesis; and their limitation in 
transgenic capacity size.[24,25] During the past few years 
some viral vectors with specific receptors have been 
designed that could transfer the transgenes to some 
other specific cells, which are not their natural target 
cells (retargeting).[26]

Retroviral vectors
Retroviral vectors are one of the most frequently 
employed forms of gene delivery in somatic and 
germline gene therapies. Retroviruses in contrast 
to adenoviral and lentiviral vectors, can transfect 
dividing cells because they can pass through the 
nuclear pores of mitotic cells; this character of 
retroviruses make them proper candidates for in situ 
treatment.[27,28] In addition, all of the viral genes have 
been removed, creating approximately 8 kb of space for 
transgenic incorporation. Retroviruses are useful for ex 
vivo delivery of somatic cells because of their ability to 
linearly integrate into host cell genome; for example, 
they have been used for human gene therapy of X‑SCID 
successfully but incidence of leukemia in some patients 
occurred because of integration of retroviruses to the 
LMO2  gene and inappropriate activation of it.[29‑34] 
Retroviral vectors also have been applied for familial 
hyperlipidemia gene therapy and tumor vaccination. 
However, the main limitations of retroviral vectors are 
their low efficiency in vivo, immunogenic problems, the 
inability to transduce the nondividing cells and the 
risk of insertion, which could possibly cause oncogene 
activation or tumor‑suppressor gene inactivation.[27‑34]

Adenoviral vectors
Adenoviral vectors have been isolated from a large 
number of different species, and more than 100 different 
serotypes have been reported. Most adults have been 
exposed to the adenovirus serotypes most commonly 
used in gene therapy (types 2 and 5). Adenoviruses 
type  2 and 5 can be utilized for transferring both 
dividing and nondividing cells and have low host 
specificity so can be used for gene delivery into large 
range of tissues.[35] Adenoviruses are able to deliver 
large DNA particles (up to 38 kb),[36] but in contrast to 
retroviruses, as they would not integrate into the host 
genome, their gene expression is too short term. Natural 
and acute immunologic responses against adenoviruses 
have made their clinical application limited to a few 
tissues, such as liver, lung (especially for CF(Cystic 
Fibrosis) treatment), or localized cancer gene therapy. 
Although the risk of serious disease following natural 
adenovirus infection is rare and the viral genome would 
not integrate into the host genome, gene therapy by 
adenoviral vectors has caused serious bad side effects 
and even death of some patients.[37‑40] Recently, in 
addition to safety of these vectors, several essential 
genes have been deleted so that viral replication can 
only occur under control and also most of the viral 
genome is deleted to obtain sufficient space for 38 kb 
of transgene particles, this kind of adenoviruses are 
called “gutless” or “pseudo” adenoviruses.

Adeno‑associated vectors
Adeno‑associated vectors (AAV) are like adenoviral 
vectors in their features but because of having some 
deficiency in their replication and pathogenicity, are 
safer than adenoviral vectors.[41] In human, AAVs 
are not associated with any disease. Another special 
character of AAV is their ability to integrate into a 
specific site on chromosome  19 with no noticeable 
effects cause long‑term expression in vivo. The major 
disadvantages of these vectors are complicated 
process of vector production and the limited transgene 
capacity of the particles (up to 4.8 kb). AAVs have been 
used in the treatment of some diseases, such as CF, 
hemophilia B, Leber congenital amaurosis, and AAT 
(Alpha‑1 antitrypsine) deficiency.[41‑44]

Helper‑dependent adenoviral vector
Helper‑dependent adenoviral vector (HdAd), called 
also as “gutless” or “gutted” vector, are last generation 
of adenovirus vectors.[35] The disadvantages of the 
first‑generation AdV, such as a packaging capacity 
limitation (8 kb), immunogenicity, and toxicity, could 
be overcome, with the development of high‑capacity 
“gutless” Advs (HC‑AdV). In this helper‑dependent 
vector system, one vector (the helper) contains all 
the viral genes required for replication but has a 
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conditional gene defect in the packaging domain. 
The second vector contains only the ends of the viral 
genome, therapeutic gene sequences, and the normal 
packaging recognition signal, which allows selectively 
packaged release from cells.[46] Therefore, this 
helper‑dependent system reduces toxicity but helps 
prolonged gene expression of up to 32 kb of foreign 
DNA in host cells. Nowadays, gutless adenovirus is 
administered in different organs, such as muscle, liver, 
and central nervous system.[45‑51]

Hybrid adenoviral vectors
Hybrid adenoviral vectors are made of the high 
transduction efficiency of a gene‑deleted adenoviral 
vector and the long‑term genome‑integrating potential 
of adeno‑associated and retroviruses viruses. Such 
hybrid systems show stable transduction and limited 
integration sites.[52,53] Among integrating vectors, 
those derived from retroviruses are most common. 
One of the family of Retroviridae are called spuma 
retroviruses or foamy viruses (FVs). FVs are a group 
of apparently nonpathogenic nonhuman retroviruses, 
which have been developed only recently.[54,55] The 
potential advantages of FV vectors include a broad 
range of hosts, the largest packaging capacity of any 
retrovirus, and the ability to persist in quiescent 
cells. Because of these features, FVs have the unique 
potential to safely and efficiently deliver several genes 
into a number of different types of cells.[56,57]

Herpes simplex virus
Herpes simplex virus (HSV) is one of the recent viruses 
candidate in gene delivery. HSV systems include the 
development of the so‑called disabled infectious single 
copy (DISC) viruses, which comprise a glycoprotein H 
defective mutant HSV genome. When the defective 
HSV propagated in complementing cells’ viral particles 
are generated, they can infect in subsequent cells 
permanently replicating their own genome but not 
producing more infectious particles.[58] Herpes vectors 
can deliver up to 150 kb transgenic DNA and because 
of its neuronotropic features, it has the greatest 
potential for gene delivery to nervous system,[59] 
tumors, and cancer cells.[60‑64]

Lentiviruses
Lentiviruses are a subclass of retroviruses. They have 
recently been used as gene delivery vectors due to 
their ability to naturally integrate with nondividing 
cells, which is the unique feature of lentiviruses as 
compared with other retroviruses, which can infect 
only the dividing cells. Lentiviral vectors can deliver 
8 kb of sequence. Because lentiviruses have strong 
tropism for neural stem cells, extensively used for 
ex vivo gene transfer in central nervous system with 

no significant immune responses and no unwanted 
side effects. Lentiviral vectors have the advantages of 
high‑efficiency infection of dividing and nondividing 
cells, long‑term stable expression of a transgene, low 
immunogenicity, and the ability to accommodate 
larger transgenes.[65‑67]

There are numerous examples of effective long‑term 
treatment of animal models of neurologic disorders, 
such as motor neuron diseases, Parkinson, Alzheimer, 
Huntington’s disease, lysosomal storage diseases, and 
spinal injury.[68‑73]

Poxvirus vectors
Poxvirus vectors are members of the Poxviridae family 
that are widely used for high‑level cytoplasmatic 
expression of transgenes. The high stable insertion 
capacity (more than 25 KB) of this virus is the most 
advantageous feature of it for gene delivery. The 
insertion of the transgene sequences is somewhat 
different from the other vector systems and utilizes 
homologous recombination or in  vitro ligation 
for construction of recombinant vaccinia virus 
vectors.[74‑76] Poxviruses have been used for cancer 
therapy in various studies, such as prostate cancer, 
colorectal cancer, breast cancer, and lung cancer.[77,78] 
Recombinant vaccinia virus vectors were also used for 
expression of E6 and E7 genes of human papilloma 
virus types 16 and 18 in cervical cancer patients to 
induce tumor regression.[79]

There are some problems in utilizing poxviruses for 
gene delivery because of their complex structure and 
biology, so further studies are required to improve 
their safety and to reduce the risk of cytopathic effects.

Epstein–Barr virus
Epstein–Barr virus as a herpes virus can be used for 
the expression of large DNA fragments in target cells. 
Because Epstein–Barr virus (EBV) establishes itself in 
the host nucleus in a latent state as extrachromosomal 
circular plasmid, this virus is suitable for long‑term 
retention in the target cell.[80‑82] Because of the natural 
B‑cell tropism of the virus, EBV‑derived vectors, such 
as B‑cell lymphoma, have been tested for immune 
therapy of cancer.[83]

However, other types of viruses are under investigation 
to date and recently, many more different virus vector 
systems are being developed. These are derived from 
vaccinia virus, human cytomegalovirus, EBV, but as 
mentioned earlier, problems, such as their mutagen 
and carcinogen properties and long‑term maintenance, 
are major limitations in utilizing the viral vectors in 
gene therapy.
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NONVIRAL DELIVERY SYSTEMS

Nonviral systems comprise all the physical and 
chemical systems except viral systems and generally 
include either chemical methods, such as cationic 
liposomes and polymers, or physical methods, such 
as gene gun, electroporation, particle bombardment, 
ultrasound utilization, and magnetofection. Efficiency 
of this system is less than viral systems in gene 
transduction, but their cost‑effectiveness, availability, 
and more importantly less induction of immune system 
and no limitation in size of transgenic DNA compared 
with viral system have made them more effective 
for gene delivery than nonviral delivery systems to 
date.[84,85]

Physical methods of nonviral gene delivery
Physical methods applied for in vitro and in vivo gene 
delivery are based on making transient penetration in 
cell membrane by mechanical, electrical, ultrasonic, 
hydrodynamic, or laser‑based energy so that DNA 
entrance into the targeted cells is facilitated.

Naked DNA
Naked DNA alone is able to transfer a gene (2–19 kb) into 
skin, thymus, cardiac muscle, and especially skeletal 
muscle and liver cells when directly injected,[86,87] also 
it has been applied directly.[87] Long‑term expression 
has been observed in skeletal muscle following injection 
for more than 19  months. Single injection yields 
transgenic expression in less than 1% of total myofibers 
of the muscle but multiple injection would improve it. 
Although naked DNA injection is a safe and simple 
method, its efficiency for gene delivery is low so it is only 
proper for some applications, such as DNA vaccination.

DNA particle bombardant by gene gun
DNA particle bombardant by gene gun is an ideal 
alternative technique to injection of naked DNA. Gold 
or tungsten spherical particles (1–3 µm diameter) are 
coated with plasmid DNA and then accelerated to high 
speed by pressurized gas to penetrate into target tissue 
cells.[88] Actually it is a modification of a technique 
called “biolistic,” originally developed for plant 
transgenesis, but now used for in vitro and in vivo gene 
delivery into mammalian cells too,[89,90] such as skin, 
mucosa, or surgically exposed tissue and especially for 
DNA‑based immunization or vaccination.[91]

Electroporation
Electroporation is temporary destabilization of the 
cell membrane targeted tissue by insertion of a pair 
of electrodes into it so that DNA molecules in the 
surrounding media of the destabilized membrane 
would be able to penetrate into cytoplasm and 
nucleoplasm of the cell[92,93] but unfortunately the 

trangene can integrate only to 0.01% of the treated 
cells.[94] Electroporation has been used in  vivo for 
many types of tissues, such as skin, muscle, lung,[95‑97] 
HPRT gene delivery,[98] and tumor treatment.[99] There 
are some problems in this method too that the more 
important are the difficulty in surgical procedure in the 
placement of electrodes into the internal tissues and 
that the high voltage applied to tissue might damage 
the organ and affect genomic DNA stability.[100]

Hydrodynamic
Hydrodynamic is a simple and highly efficient method 
for direct intracellular delivery of any water‑soluble 
compounds and particles into internal organs.[101] 
The efficiency of this simple method in vivo is higher 
than any other nonviral system. This method has 
been successful for gene delivery into rodent liver 
and expression of hemophilia factors,[102] cytokines,[103] 
erythropoietin,[104] and hepatic growth factors,[105] in 
mouse and rat but it has been successful only in small 
animals and not in human.

Ultrasound
Ultrasound can make some nanomeric pores in membrane 
to facilitate intracellular delivery of DNA particles 
into cells of internal organs or tumors, so the size and 
concentration of plasmid DNA have great role in efficiency 
of the system.[106,107] The most important limitation of 
the system is low efficiency of it, especially in vivo.

Magnetofection
Magnetofection is a simple and efficient transfection 
method that has the advantages of the nonviral 
biochemical (cationic lipids or polymers) and physical 
(electroporation, gene gun) transfection systems in one 
system while excluding their inconveniences, such as 
low efficiency and toxicity. In this method the magnetic 
fields are used to concentrate particles containing 
nucleic acid into the target cells.[108,109] In this way, 
the magnetic force allows a very rapid concentration 
of the entire applied vector dose onto cells, so that 
100% of the cells get in contact with a significant vector 
dose. Magnetofection has been adapted to all types of 
nucleic acids (DNA, siRNA, dsRNA, shRNA, mRNA, 
ODN,…), nonviral transfection systems (transfection 
reagents) and viruses. It has been successfully tested 
on a broad range of cell lines, hard‑to‑transfect 
and primary cells.[110,111]

Chemical nonviral delivery systems
Chemical systems are more common than physical 
methods and generally are nanomeric complexes, which 
include compaction of negatively charged nucleic acid by 
polycationic nanomeric particles, belonging to cationic 
liposome/micelle or cationic polymers. The nanomeric 
complex between a cationic liposome or micelle and 
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nucleic acids is called lipoplex; but polyplex is the 
nanomeric complex formed between a cationic polymer 
and nucleic acids. These nanomeric complexes are 
generally stable enough to produce their bound nucleic 
acids from degradation and are competent to enter cells 
usually by endocytosis.[112] Cationic nonviral delivery 
systems have several advantages compared to other 
nonviral systems and especially viral vectors, such as 
low toxicity and antigenicity because they are made of 
only biological lipids, long‑term expression with less 
risk of insertional oncogenesis but still low efficiency 
is the disadvantage of this system as well. Generally 
cationic lipids are included in 6 subcategories:
(1)	 Monovalent cationic lipids
(2)	 Polyvalent cationic lipids
(3)	 Guanidine containing
(4)	 Cholesterol derivative compounds
(5)	 Cationic polymers: Poly(ethylenimine) (PEI)
	 Poly‑l‑lysine) (PLL)
	 Protamine
	 Other cationic polymers[113]

(6)	 Lipid–polymer hybrid

Mechanism of gene delivery by cationic particles
The mechanism of gene delivery by cationic systems 
includes 4 steps:
(1)	 Nonspecific interaction between cationic particles 

and cell surface
(2)	 Endocytosis into endocytosis vesicles (endosomes)
(3)	 Compaction and release of the DNA particle from 

endosomes
(4)	 Translocation of the DNA particle to nucleus by 

membrane receptors and transgenic expression of 
it.[114]

For targeting of cationic particles various 
cell‑targeting legends are covalently attached to a 
lipid anchor (in lipoplexes) or a DNA‑binding cationic 
polymer (in polyplexes),[115] including proteins,[116‑118] 
antibodies,[119,120] small chemical compounds,[121] 
carbohydrates,[122] peptide ligands,[123] and vitamins,[124] 
some of these ligands have enhanced the vector 
efficiency from 10‑ to 1000‑folds. When lipoplex or 
polyplex particles made association with cell surface, 
they would enter the cell by endocytosis. It seems 
more of the lipid particles in early endosomes become 
trapped in lysosomes and degenerate by nucleases 
so the interaction of endosome with lysosome is a 
consensus and lipoplex or polyplex particles should be 
released before contraction of lysosome to endosome, so 
fugenic peptides can help it, these peptides originating 
from viruses can cut off the endosomal membrane to 
release the genomic DNA leading to increase of genetic 
translocation efficiency of the liposome.[125]

In this section we focus mainly on the 2 most common 

cationic particles: Cationic lipids and cationic 
polymers:

Cationic liposomes
Cationic liposomes are the more important current 
nonviral polycationic systems, which compact 
negatively charged nucleic acids lead to the formation of 
nanomeric complexes. Cationic liposomes have unique 
characteristics, such as capability to incorporate 
hydrophilic and hydrophobic drugs, low toxicity, no 
activation of immune system, and targeted delivery 
of bioactive compounds to the site of action.[126‑129] 
But the rapid degradation of liposomes due to the 
reticuloendothelial system and the inability to achieve 
sustained drug delivery over a prolonged period of 
time are 2 drawbacks of these delivery systems that 
have been overcome by modification of the surface 
of liposomes with hydrophilic polymers, such as 
polyethylene glycol (PEG)[128] and integration of the 
pre‑encapsulated drug‑loaded liposomes within depot 
polymer‑based systems.[130]

All liposomes have 1 or 2 fatty acids and alkyl moieties 
that are 12–18  carbons in length, in addition to a 
positively charged polar head group hydrophobic 
groups, this hydrophobic structure causes the cationic 
lipids. Since the first monovalent cationic lipid, 
DOTAP, was synthesized by Felgner et al. in 1987,[131] 
hundreds of new cationic liposome/micelle systems 
have been reported for gene delivery in vitro or in vivo. 
The routine way to prepare a lipoplex is mixing the 
solution of plasmid DNA and liposome in a proper 
buffer. The gene delivery efficiency of liposomes is 
dependent on the size, structure, and even the amount 
of the liposome, the charge ratio between transgenic 
DNA and cationic liposome, presence of helper lipid, 
and the structure and proportion of it and cell type.

As mentioned earlier, cationic systems are mad 
of either a single synthetic cationic amphiphile 
(cytofectin), such as DOTAP, DOTMA, DOSPA, DOGS, 
or more commonly of a combination of a cationic 
amphiphile and a neutral lipid, such as DOPE and 
cholesterol, these neutral helper lipids unstabilize the 
endosomal membrane to facilitate lipid exchange and 
membrane fusion between lipoplexes and endosomal 
membrane leading to more gene expression.[132,133] 
Cationic liposome‑mediated delivery of DNA materials 
is optimal in  vivo when the mol ratio of cationic 
liposome to nucleic acid in the lipoplex mixture is 
such that the positive/negative charge ratio is around 
1 or greater[134‑136] and in  vitro the optimal ratio is 
closer to 1.[137‑140] However, multivalent lipids with 
long and unsaturated hydrocarbon chains are more 
efficient than monovalent cationic lipids with the same 
hydrophobic chains.[141]
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Cationic liposomes are being used in gene delivery into 
lung, skeletal muscles, spleen, kidney, liver, testis, 
heart, and skin cells.[141‑148]

For gene transfer in  vivo, many complexes (in 
equimolar ratios) are used that the more general 
ones are Chol/DOPE (1:1), DOTMA/DOPE (1:1), and 
DOTAP/DOPE (1:1).

Liposome‑based technology has progressed from 
the first‑generation conventional vesicles to stealth 
liposomes, targeted liposomes, and more recently 
stimuli‑sensitive liposomes.[149,150] These new 
generation of liposomes overcome most of the 
challenges encountered by conventional liposomes, 
such as the inability to escape from immune system, 
toxicity due to charged liposomes, and low half‑life 
stability.[151‑153]

Cationic polymers
Cationic polymers at first were introduced by Wu 
et al.1987[184] as PLL, the same year of synthesizing the 
first cationic lipids, and were further expanded by a 
second generation, PEI by Behr et al. in 1995.[154] To date 
a variety of linear or branched cationic polymers have 
been synthesized, including PLL‑containing peptides, 
endosomolytic peptides (histidine‑rich peptides), 
fusogenic peptides, nuclear localization peptides (mono 
partite NLS(Nuclear localization signal), bipartite 
NLS, nonclassical NLS), proteosomes.[155] However, 
PLL is still the most widely studied cationic polymer 
and has been used in a variety of polymerizations of 
lysine ranging from 19 to 1116 amino acid residues 
(3.97–233.2 kDa). While the molecular weight of the 
polymer increases, the net positive charge of it also 
increases and are therefore able to bind DNA tighter 
and form more stable complexes, totally. There is 
a relationship between the length of the polymer, 
gene delivery efficiency, and toxicity as the length of 
the polymer increases, so does its efficiency and its 
toxicity.[155,156] However, the efficiency of PLL‑mediated 
polyplexes are low when the PLL is used alone so 
some conjugation agents are used to facilitate cellular 
uptake in vitro (as EGF(fibroblast growth factor) or 
transferring) or endosomal escape in vivo (as fusogenic 
peptides or defective viruses). Also the attachment 
of PEG to the polymer can prevent plasma protein 
binding and increase circulation of half‑life of the 
complex.[157,158] Different homogenous PLL‑conjugated 
peptides have been developed that have low toxicity, 
higher efficiency, and site‑specific attachment of 
ligands used for cell targeting.[159‑162] The optimal 
peptide sequence contains 18  lysines followed by 
a tryptophan and alkylated cysteine (AlkCWK18). 
A variety of branched forms of cationic peptides with 
a lysine as branching point have been explored.[162] 

PEI is the most important cationic polymer next to 
PLL. PEI is one of the most positively charged dense 
polymers, synthesized in linear (LPEI) or branched 
(BPEI) form, which have high transfection activity 
in vitro and moderate activity in vivo but the linear 
forms have low toxicity and high efficiency than 
branched forms.[163] As PLL, conjugation of some 
agents, such as galactose, anti‑CD3 antibodies and 
RGD motif‑containing peptides can facilitate PEI 
polyplex cellular uptake.[164‑166] Two advantages of 
PEI is that it forms toroidal polyplex particles, which 
are stable to aggregation in physiological buffer 
conditions, PEI also has a strong buffering capacity 
at almost any pH because of the great number of 
primary, secondary, and tertiary amino groups.[167] One 
disadvantage of PEI is its nonbiodegradable nature[168] 
and its serious toxicity in vivo (in contrast to cationic 
liposome/micelle). There are conflicting associations 
between the gene delivery efficiency and PEI toxicity, 
such as PLL, the most active PEI is 25 k for BPEI and 
22 k for LPEI.[169] Unfortunately, due to this property 
there are some limitations in the application of PEI in 
nonviral vector in vivo delivery. More biodegradable 
cationic polymers, such as aminoesters have been 
explored that have less toxicity than PEI and PLL.[170] 
However, as mentioned earlier, there are a variety 
of new cationic polymer groups but each of them 
have some advantages and disadvantages.[155] The 
notable factors for in vivo application are toxicity and 
transfection efficiency.

Lipid–polymer systems
Lipid–polymer systems are 3‑part systems in which 
DNA is first precondensed with polycations and 
then coated with either cationic liposomes, anionic 
liposomes, or amphiphilic polymers with or without 
helper lipids.[171‑174]

CONCLUSION

Although numerous viral and nonviral gene delivery 
systems have been developed in the last 3 decades, 
all of them have some disadvantages that have made 
some limitations in their clinical application and yet no 
delivery system has been designed that can be applied 
in gene therapy of all kinds of cell types in vitro and 
in vivo with no limitation and side effects; however, 
some delivery systems has been explored, which can 
be efficient for gene delivery to specific cells or tissues. 
So it seems that the process of developing successful 
delivery systems, especially nonviral systems, for use 
in in vivo is still in its adolescence and more efforts 
are needed. Totally, key steps effective in improving 
the currently available systems include the following: 
(1) improving extracellular targeting and delivery, 
(2) enhancing intracellular delivery and long‑time 
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expression, and (3) reducing toxicity and side effects 
on human body. However, clinical successes in 2009–
2011 have bolstered new optimism in the promise of 
gene therapy. These include successful treatment of 
patients with the retinal disease Leber congenital 
amaurosis,[175‑178] X‑linked SCID,[179] ADA–SCID,[180] 
adrenoleukodystrophy,[180] and Parkinson’s disease.[181]
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