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Abstract
Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological
and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by
interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration
derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in
humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in tox-
icological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on
several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms
concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the
incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the
present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms
are at the root of the effect of low dose of BPA on endocrine system.
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Introduction

Bisphenol A (BPA; 4,40-dihydroxy-2,2-diphenylpropane; CAS

80-05-7) has a long story in science. This monomer was first

developed as a synthetic estrogen in the 1890s, but only in the

1930s, the estrogenic properties of BPA were reported in the

reproductive system of female rats.1 Successively, chemical

industries used BPA as a monomer in the manufacturing of

polymers (eg, polycarbonate and epoxy resins), as an antioxi-

dant and inhibitor of end of polyvinyl chloride polymerization,

and as a precursor for the synthesis of a flame retardant.2 In turn,

these materials are currently used as components of many con-

sumer products including reusable plastic bottles, feeding bot-

tles, internal coating of food and beverage cans, thermal paper,

medical devices, dental materials, and so on.2 Unfortunately,

like other chemical substances, BPA can be released from these

materials in dependence of temperature and pH to migrate in

food,3,4 air,5,6 skin,7 saliva,8 and blood.6 To make this picture

more alarming, considerable amounts of BPA (ranging from

0.25 to 1.11 mg/kg) have been found in randomly selected fresh

food samples from an area of Southern Italy, probably deriving

from plastic irrigation pipes.9 Consequently, it is estimated that

food contributes to more than 90% of the overall BPA exposure,

while exposure through dust ingestion, dental surgery, and der-

mal absorption remains below 5% in normal situations.10

Overall, human exposure to BPA is frequent and widespread,

and more than 90% of individuals have detectable amounts of

BPA in urine as reported by biomonitoring studies conducted in

the United States, Germany, and Canada.5,11-13

However, the US Food and Drug Administration and the

European Food Safety Authority have determined that human

exposure to BPA is below safe exposure levels (from 50 to

4 mg/Kg weight/day).14,15 In marked contrast with these reas-

suring reports, France has banned BPA in food contact materials

(LOI no 2010-729 du 30 juin 2010, http://www.legifrance.

gouv.fr/affichTexte.do?cidTexte¼JORFTEXT000022414734),

plastic manufacturers are starting to release ‘‘BPA-Free’’ plastic

material, and the scientific community continues to publish dis-

couraging statements on the risk of BPA for human beings and

wildlife health, renewing the demand for making the screening

for exposures a research priority.16-19
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These discrepancies derive from the serious endocrine-

disrupting effects associated with BPA exposure.18,20 Toxico-

logical in vivo studies indicate that BPA doses of 20 to 400 mg/

kg/d can disrupt normal physiology by interfering with endo-

genous hormones in rodents, nonhuman primates, and cell cul-

ture test systems.21 Epidemiological studies showed

relationships between BPA exposure and increased body mass

index,22-24 cardiovascular disease,25 behavior,7 and other

endocrine-disrupting effects, although other studies have been

unable to reproduce these results.12

In contrast to this toxicological approach used by to predict

the possibility of BPA effect, a new paradigm has emerged in

the in vivo BPA research in which much lower, environmen-

tally relevant doses of BPA are used to directly assess the

hazards posed by this compound. From these experiments

emerged a curious feature typical of the BPA actions: its oscil-

lating nonmonotonic dose response. Biphasic U- or inverted

U-shaped dose–response curves that show ascending and des-

cending phases were reported in relation to the BPA dose

used.26,27 After these experiments, endocrinologists, who were

well familiar with the hormone nonmonotonic curves, began to

challenge the high doses used by toxicological studies and well

accepted by government regulatory agencies in the absence of

other data, and they started to apply the basic approaches used

for decades to determine physiologically relevant doses for

hormones. In a very elegant study, the group of vom Saal

et al28 observed that the fetal serum estradiol concentration

during the development of the male murine reproductive tract

was 0.21 pg/mL of plasma. An increase in this estradiol level to

0.31 pg/mL of plasma resulted in permanent developmental

changes (eg, enlargement of the prostate).29 Therefore, an

estrogenic endocrine disruptor, like BPA, would be biologi-

cally active in the fetus if its estrogenic activity in blood was

equivalent to an increase in estradiol of only 0.1 pg/mL of

plasma. These pioneering experiments opened a new avenue

in the field of BPA effects. Nowadays, accumulating literature

is available on BPA endocrine-disrupting capability at nano-

molar to micromolar serum concentrations.26-32 Nonetheless, a

clear definition of low doses is not yet available. Vandenberg

et al reported that low dose of a chemical could be evidenced

by biological changes occurring in the range of typical human

exposures or by any biological changes obtained at doses lower

than those tested in toxicology assessments. Furthermore, low

dose is any dose of a chemical below the lowest observed

adverse effect level or a dose administered to an animal that

produces blood concentrations of that chemical present in the

general human population (ie, environmentally relevant

dose).31,32 In this review, we will consider the BPA effects

occurring at doses lower than those tested in toxicological

studies and well accepted by government regulatory agencies

(ie, lower than 50-4 mg/kg weight/d in exposed animals and

lower than 10�5 mol/L in cell lines).

Another subject of significant debate in the field of BPA

action is the possible mechanisms at the root of BPA low-dose

effects. Indeed, BPA triggers several action mechanisms

including the interference of the activity of nuclear receptors,

noncanonical steroid hormone receptors, and orphan receptors

(eg, aryl hydrocarbon receptor, AhR).33,34 Moreover, enzy-

matic pathways involved in the steroid biosynthesis and/or

metabolism and numerous other mechanisms that converge

upon endocrine and reproductive systems have been proposed

to explain BPA actions.33,34 If all or just few of these mechan-

isms concur to the nonmonotonic curves of endocrine-

disrupting potential of BPA is still unclear.

Thus, far from solving the contradiction on the safety of

BPA doses accepted by government regulatory agencies, but

considering that the incidence and/or prevalence of health

problems associated with endocrine disruption increased

worldwide, the goal of the present review is to give an over-

view of the many mechanisms of BPA action in order to deci-

pher whether different mechanisms are at the root of the effect

of low dose of BPA on endocrine system.

Mechanisms Leading to Activation of Nuclear
Receptors

Estrogen Receptors

The BPA molecule has structural features that confer the ability

to bind to the 2 estrogen receptor (ER) subtypes (ie, ERa and

ERb), although BPA displays 1000- to 2000-fold less affinity

to the ERs than 17b-estradiol (E2), the most active estrogen.4,35

Both ERa and ERb, as well as the other 46 members of nuclear

receptor superfamily, are ligand-activated transcription factors

that, upon E2 binding, change conformation and migrate into

the nucleus. Nuclear ligand-bound ERs interact with coactiva-

tors and corepressors and with estrogen responsive elements

(EREs) in the promoters of target genes to regulate E2-target

gene expression.35,36 However, the change in ER conformation

differs as a function of the ligand,36,37 rendering ER more or

less prone to the transcriptional coactivators or corepressors

recognition.

Exogenous ligands produce a displacement of a-helices

forming the ligand-binding domain (LBD) of ERs38,39 due to

their chemical structure that does not allow a proper accom-

modation in the confines of the hormone-binding site, contrary

to what happens when E2 binds to ERs. A different LBD dis-

placement between the 2 ERs is also possible; indeed, BPA acts

as an ERa agonist, producing the same displacement as that of

E2, while BPA does not allow the ERb LBD to assume the right

conformation, thus acting as an antagonist.36 A proper LBD

displacement is necessary for a transcriptional competent con-

formation, thus the BPA as well as other estrogen-like com-

pounds binding to the ERs may lead to coactivators or

corepressors recruitment depending on their agonist or antago-

nist action. As a consequence, differences in the regulatory

activity on gene expression are expected. Distinct gene expres-

sion patterns following exposure to E2 or BPA have been

reported in the uterus of immature rats.40

Until recently, the majority of the studies on BPA focused on

these nuclear mechanisms of estrogen responses that rely on ER

action into the nucleus. On these bases, BPA has been and is still
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defined as a ‘‘weak estrogen.’’41 However, estrogens, as well as

other steroid hormones, can also induce rapid (seconds to min-

utes) extranuclear responses based on ER localized at the plasma

membrane. A small pool of ERa and ERb is palmitoylated and

localized at the plasma membrane in association with

caveolin 1.36,42-44 At the plasma membrane, ligand-activated

ERs interact with other signaling proteins (eg, growth factor

receptors; cellular-Rous sarcoma oncogene [c-Src]), thus form-

ing multimolecular complexes mediating the rapid signal trans-

duction events.36,45 However, to date, the ERa-mediated

extracellular regulated kinase/mitogen-activated protein kinase

(ERK/MAPK) and phosphatidyl-inositol-3-kinase/AKT (PI3K/

AKT) pathways, as well as the ERb-mediated p38/MAPK sig-

naling, appear to be the unique molecular circuitries activated by

E2 in different cell contexts.46 Several data support that BPA-

dependent estrogenic activity flows through the ERa-mediated

extranuclear signals activation that results in the ERK/MAPK

and AKT phosphorylation.4,37 Therefore, BPA acts as an E2-

mimetic by binding to ERa leading to the activation of rapid

extranuclear pathways (or nongenomic mechanism).4,37

Another example of BPA action by ERa extranuclear mechan-

isms is the Caþþ release from intracellular stores that can lead to

changes in cell motility, signaling processes, and exocytosis.47

On the other hand, BPA behaves as an E2 antagonist preventing

ERb to signal to its downstream targets (ie, p38/MAPK).35,37

The physiological consequence of these BPA-induced mod-

ulations of E2 action mechanisms is diverse in dependence of

the tissue examined; however, the E2 modulation of cell pro-

liferation represents a good example of BPA impact on E2

effects. In fact, the balance between ERa/ERb signaling and

levels is at the root of E2-regulated cell death and proliferation

equilibrium, since ERa rapid signals drive cells to proliferation

(eg, mammary ductal cells during lactation), while E2-induced

ERb rapid signals inhibit cell proliferation (eg, mammary duc-

tal cells after ovulation or lactation).46,48 Moreover, E2 exerts a

fine regulation on ERa and ERb levels inducing the ligand-

dependent reduction in the total ERa content and increasing

ERb levels.49 BPA exposure (from nmol/L to mmol/L) mimics

E2 in the presence of ERa acting as a proliferative agent4 while

in the presence of ERb BPA acts as a complete antagonist of

E2–ERb complex.35,37 All these data indicate that BPA modi-

fies E2-regulated cell death and proliferation equilibrium by

promoting only cell proliferation that, without the balance of

ERb activities, could drive cells to cancer transformation.

A relatively recent discovery is the 7-transmembrane estro-

gen receptor, GPR30, that has been recognized as an estrogen

receptor,50,51 although this notion continues to be seriously

disputed.52,53 The BPA and other endocrine disruptors show

high binding affinities for GPR30. In particular, in cells iso-

lated from pancreatic islets, concentration of 10�9 mol/L BPA

is able to influence oscillations of cytosolic Caþþ concentra-

tion.54 As GPR30 is expressed in a broad range of tissues, BPA

could even activate other signals in all these tissues.55

As a whole, the pleiotropic effects elicited by E2 are obtained

by the synergy of different signal transduction pathways (ie,

nuclear and extranuclear) and are mediated by different

receptors (ie, ERa, ERb, and GPR30) whose activation depends

on the cellular context of target cells, on the receptor subtype

and location within cells (ie, membrane, cytosol, and nucleus)

as well as on the chemical nature of the ligand itself.36,37,46 The

synergy between these mechanisms illustrates the complexity

of BPA-induced endocrine disruption that should be taken into

consideration when screening for environmental estrogens. In

addition, in light of the effects of low doses of BPA on extra-

nuclear mechanisms, it is now becoming clear that ‘‘weak’’

activity via one pathway (ie, nuclear mechanism) does not

necessarily predict the potency of an endocrine disruptor or

mimetic acting via another signaling pathway.

Androgen Receptor

Exposure to BPA has been associated with a reduced propor-

tion of male births in the populations of a number of countries

and increased the risk of cryptorchidism, hypospadias, and

reduced semen quality in males,56 suggesting a possible BPA

interference with the male reproductive function. The androgen

receptor (AR), expressed in all male and female organs, shares

similar cellular localization44 and action mechanisms of ERs.

However, very few data are available on the effects of BPA on

AR transcriptional activity, while a lack of knowledge is still

present on the ability of these compounds to interfere with

androgen-dependent extranuclear signals.57-59 In our labora-

tory, we evaluated BPA effects on mouse satellite cell differ-

entiation, male rat vascular smooth muscle cells motility, and

AR levels and transcriptional activity in human prostate cancer

cells. All the cell models used expressed the AR wild type (ie,

110 kDa), while prostate cancer cells were positive for several

AR splicing forms (eg, ARDLBD and AR 75-80 kDa). Surpris-

ingly, BPA did not impair androgen effects in normal cell

lines,60,61 but it acted as an antiandrogen in cancer cells when

the AR splicing forms were expressed.60 These data have

recently been confirmed in HeLa cells transiently transfected

with AR wild type (110 kDa) or AR mutants (ie, AR *80 kDa

and AR *28 kDa; Marino M, unpublished data) and have also

been established by other authors with different AR mutants.62

Thus, androgen signaling seems to be less prone to BPA inter-

ference, but BPA could interfere with the therapy in patients

with advanced prostate cancer via mutant ARs.62,63 However,

taking into account that ERs, principally ERb, are mainly

expressed in male reproductive system (eg, testis, spermatozoa,

and prostate),64 it is worth considering whether some, or even

all, of the above-reported endocrine effects of BPA are due not

to their androgenicity but rather to their abilities to interfere

with the action of estrogen receptors.57,60

Estrogen-Related Receptors

Estrogen-related receptors (ERRs) are a subfamily of orphan

nuclear receptors closely related to ERa and ERb. Three of

these ERRs are known: ERRa, ERRb, and ERRg. Although

ERRs do not bind to estrogens, they share a significant and

remarkable homology with ERs, particularly in DNA binding
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domain and LBD. However, because ERR can bind to estrogen

response elements, a possible overlap between ER and ERR

action may exist.36

The ERRs possess a constitutive transcriptional activity,

which is known to be repressed by a few chemicals (ie, Desa-

metasone [DES], 4-hydroxytamoxifen [4-OHT]). BPA strongly

binds to human ERR with a half maximal inhibitory concen-

tration (IC50) value of 13.1 nmol/L preserving ERRg constitu-

tive activity even in the presence of 4-OHT.65 As ERRs and

ERa have the potential to interfere or collaborate with each

other in regulating common target genes and ERRg is highly

expressed in the mammalian brain during development as well

as in the brain, lung, and other tissues of adult, it could be

possible that the effects of low-dose BPA could be mediated

through this nuclear receptor.

Thyroid Hormone Receptor

Thyroid hormones (THs), including thyroxine (T4) and tri-

iodothyronine (T3), are essential for normal brain development,

and its mild or transient insufficiency produces different cogni-

tive deficits in both humans and animals.66 These effects are

mediated by thyroid hormone receptor (THRs), another member

of nuclear receptor superfamily, localized into the nucleus

where it acts as a repressor of transcription in strict association

with DNA and corepressors (ie, NCoR and SMRT). In the geno-

mic mechanism, T3 accesses to the cell nucleus to bind THR,

which disengages corepressors in favor of coactivators to thyr-

oid hormone responsive element. In turn, hormone responsive

gene transcription occurs. Extranuclear actions of THR are, at

least in part, dependent on integrin avb3, which activates

MAPK/c-Src pathway responsible for phosphorylation and acti-

vation of nuclear THR.67 It has been reported that low doses of

BPA impair T3 induction of THR in Xenopus laevis tail tissue

resulting in antimetamorphic effect.68 In addition, 10�9 to 10�7

mol/L BPA concentrations directly interfere with b3 integrin/c-

Src/MAPK/TR-b1 pathway suppressing THR-mediated tran-

scription.30 As a whole, although these and other data suggest

that THR is not a direct target of BPA action, perinatal BPA

exposure at a very low level may influence TH effects in brain

development presumably by extranuclear mechanisms.

Pregnane X Receptor

Constitutive androstane receptor (CAR) and pregnane X recep-

tor (PXR) function as sensors of toxic by-products derived

from endogenous metabolites and of exogenous chemicals in

order to enhance their elimination. This unique function of

CAR and PXR, members of nuclear receptor superfamily, sets

them apart from the steroid hormone receptors. The broad

response profile established that CAR and PXR are xenobiotic

sensors that coordinately regulate xenobiotic clearance in the

liver and intestine, inducing the transcription of genes involved

in xenobiotic/drug metabolism and transport.69

Pregnane X receptor is activated by many drugs and envi-

ronmental pollutants including BPA and several analogues,

which act as potent agonists for human PXR (hPXR).70

Although the BPA concentrations activating hPXR are rela-

tively high, combinations of BPA and other endocrine disrup-

tors could additively or synergistically activate hPXR in vivo.

Thus, additional in vivo studies are required to establish the

influence of such synergistic or additive effects in risk assess-

ment because exposure to mixtures of chemicals is much more

representative of real-world scenarios.

Peroxisome Proliferator-Activated Receptors

One of the great concerns raised against BPA is the putative

effect of early exposure to BPA in the onset of obesity and

metabolic syndromes.71 In particular, rat perinatal exposure

to BPA modified early adipogenesis by modulating adipocyte

hypertrophy and overexpression of lipogenic genes including

PPARg (a nuclear receptor which dysregulation is involved in

the onset of diabetes and obesity), sterol regulatory element

binding protein 1C (SREBP-1C), lipoprotein lipase (LPL), and

fatty acid synthase (FAS).72,73 Intriguingly, although BPA

failed to directly bind to and activate PPARg-dependent gene

transcription, lower brominated BPA analogs, which are also

released in the environment, bind to the receptor displaying the

highest transactivation efficiency at nmol/L to mmol/L

concentrations.74

This discovery supports the idea that BPA could be involved

in the disruption of energy balance in humans and wildlife.75

Again, perinatal exposure could play a critical role being these

BPA derivatives present in human cord blood (200 pg/g fresh

weight) and maternal milk (0.1-37.4 ng/g lipid weight).76

Furthermore, as the main transcriptional active form of PPARg
is in association with RXR (an orphan nuclear receptor, which

binds to other environmental disruptors), additive (acting only

through PPARg) or synergistic (acting through both RXR and

PPARg) effects could occur, increasing the risk of metabolic

diseases.

Mechanisms Leading to Activation of Other
Receptors

Aryl Hydrocarbon Receptor

Aryl hydrocarbon receptor is member of basic helix-loop-helix/

PAS family transcription factors which mediates the effects of

various environmental chemicals, including its most potent

ligand 2,3,7,8,-tetrachlorodibenzo-p-dioxin. Upon ligand bind-

ing, cytoplasmic AhR associates with its translocator (AHR

nuclear translocator; ARNT) and enters into the nucleus, where

it binds to specific DNA response elements, leading to tran-

scription of several genes involved in xenobiotic metabolism

including cytochrome P450 family 1. Successively, the AhR

repressor (AhRR) heterodimerizes with ARNT to terminate the

activation of the AhR signaling pathway.77

BPA treatment in utero (0.02-20 000 mg/kg/d) upregulated

the expression of AhRR, impairing the AhR expression and
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function in embryos.78 Notably, BPA did not dramatically alter

genes in the AhR signaling pathway in adults.79

Remarkably, it has been showed that the agonist-activated

AhR/ARNT heterodimer directly associates with ERa and

ERb. This association resulted in the activation of transcription

and estrogenic effects.80 However, AhR-induced activation of

ER seems to be dependent on AhR ligand structure and, on the

basis of the previously cited literature, does not necessarily

occur for BPA.

Mechanisms Involving Hormone Metabolism

17b-Estradiol, cortisol, progesterone, dihydrotestosterone, and

aldosterone are the terminal steroid hormones produced in the

steroid biosynthesis pathway. In this pathway, cholesterol is

transported into the mitochondria by steroidogenic acute reg-

ulatory protein (StAR), where it is metabolized into pregneno-

lone by cytochrome P450 side chain cleavage (Cyp11a1). The

activities of both StAR and Cyp11a1 provide the necessary

precursors for the synthesis of other hormones, thus they are

considered the rate-limiting factors for steroidogenesis.33,81

Exposure to BPA (10 and 100 mg/mL) significantly decreased

expression of Cyp11a1 and StAR; as a consequence, the levels

of androstenedione, testosterone, and estradiol decreased.

However, these effects were completely reversed when BPA

exposure was removed.81 Moreover, BPA could increase or

prevent the catabolism of steroid hormones.82 All together,

these mechanisms leading to the modification of steroid hor-

mone balance and availability into target cells could contribute

to some of the reported BPA effects.58

Mechanisms Involving Genetic and Epigenetic
Regulation

Mammalian embryos undergo extensive germ line reprogram-

ming, which demethylates the DNA. However, some epige-

netic marks can be retained across generations

(transgenerational epigenetic inheritance). Although the

mechanisms are still unclear, it appears that maternal or pater-

nal phenotypes can be passed to offspring and that these stable

epigenetic modifications, including DNA methylation and his-

tone modifications, can be influenced by environmental sti-

muli.83 Thus, the environment can trigger epigenetic changes

in parents, which can then be passed on to the offspring. In

addition, direct epigenetic deregulation has been recently

involved in the mechanisms of endocrine disruptors such as

BPA.84,85 Intriguingly, early life exposure to BPA increased

susceptibility to prostate carcinogenesis through changes in

DNA methylation86 and may alter gene expression in hypotha-

lamic nuclei via DNA methylation and histone acetylation.87

Mouse offspring perinatally exposed to low doses of BPA (ie,

5 ng/kg) showed hypermethylation in tail tissue.88 Thus, the

epigenetic deregulation of specific genes (eg, hormone recep-

tors) during development may alter their expression or subse-

quent activity later in life, predisposing the organism to disease

in adulthood.89

Conclusion

There is substantial evidence indicating that BPA contributes to

the risk of cancer, developmental problems, diabetes, obesity,

metabolic syndrome, and possibly also contributes to infertility

and subfertility.20,21 The mechanisms at the root of these mul-

tiple effects are numerous and involve BPA binding to mem-

brane and nuclear estrogen receptors, interference with other

nuclear and nonnuclear receptors, alterations in the synthesis or

in the metabolism of hormone, and epigenetic deregulation.

These mechanisms are activated at BPA concentrations below

the concentration range in which ‘‘pharmaceutical’’ effects are

detected by classical toxicology and generate nonmonotonic

dose–response curves such as inverted U- or U-shaped

curves.90 These nonlinear dose–response curves complicate the

effects obtained for low- and high-dose BPA administration.

For instance, BPA shows a greater effect on prostate tumor

cell proliferation at concentration of 1 nmol/L than it does at

100 nmol/L.91 Low-dose BPA (1 mg/mL in drinking water,

corresponding to 150 ng BPA/g body weight) increases weight

of adipose tissue, while high-dose BPA (10 mg/mL in drinking

water, corresponding to 1.5 mg BPA/g body weight) has no

effect in female mice, and the opposite is true in male mice.92

In cerebellar neurons, BPA increased the phosphorylation of

ERK (via ER-dependent extranuclear mechanisms) at low

(10�10-10�12 mol/L) and high (10�7-10�6 mol/L) concentra-

tions, but BPA did not affect ERK signaling at intermediate

concentrations. Notably, the coadministration of E2 (10�10

mol/L) and BPA (10�12-10�10 mol/L) inhibited ERK activa-

tion.93 These results highlight that BPA effects could be very

different between genders and sustain that low- and high-dose

effects are not constant between physiological outcomes.

Thus, even if initially considered to be a ‘‘weak’’ estrogen or

androgen based on a low affinity for binding to ERa or AR or to

activate their transcriptional activity, BPA stimulates extranuc-

lear physiological responses and modulates the epigenetic reg-

ulation at low concentrations being equipotent with E2. These

effects at low concentrations of BPA have been explained by

the existence of an additional high-affinity BPA binding site

for nuclear receptors with inhibitory activity.93 However, as far

as we know, no evidence for another BPA binding site has been

reported, at least for ERs.36 On the other hand, the reported

changes in the ER conformation as a function of the ligand (ie,

BPA vs E2) described earlier (see Estrogen Receptors section)

could also be active in dependence on ligand concentrations. It

is possible that at low concentrations of BPA induce specific

receptor conformations that allow recruitment of just some,

specific proteins but not others. Further experiments with BPA

and E2 are required to demonstrate this hypothesis.

The data reported in this article strongly indicate that the

safe level determined for BPA by classical toxicological stud-

ies does not protect against low-dose effects.90 In addition, the

large number of endocrine-disrupting compounds present in the

environment raises questions about the possible additive,

synergic effects of simultaneous exposure to multiple com-

pounds.94,95 Finally, it is important to remember that the
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coexistence of nuclear receptors with multiple splicing forms

could influence the formation of homo- and heterodimers,

receptor posttranslational modifications, and localization at the

membrane, which are all parameters that can likely contribute

to the complex properties of BPA.

As a whole, it is very difficult to determine at which point in

time and at which concentrations BPA increases the risk of

pathologies. As correctly stated by Watson et al96 ‘‘extrapola-

tion of results from very high doses to predict lowest effective

doses is no longer acceptable’’. Thus, an increase in informa-

tion about responses and action mechanisms of low concentra-

tion BPA is expected in the near future. Until that time, the

application of the precaution principle in use of BPA is, in this

context, pivotal.
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