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Abstract
Background: Prestimulus EEG alpha activity in humans has been considered to reflect ongoing top-down preparation 
for the performance of subsequent tasks. Since theta oscillations may be related to poststimulus top-down processing, 
we investigated whether prestimulus EEG theta activity also reflects top-down cognitive preparation for a stimulus.

Results: We recorded EEG data from 15 healthy controls performing a color and shape discrimination task, and used 
the wavelet transformation to investigate the time course and power of oscillatory activity in the signals. We observed 
a relationship between both anterior theta and posterior alpha power in the prestimulus period and the type of 
subsequent task.

Conclusions: Since task-differences were reflected in both theta and alpha activities prior to stimulus onset, both 
prestimulus theta (particularly around the anterior region) and prestimulus alpha (particularly around the posterior 
region) activities may reflect prestimulus top-down preparation for the performance of subsequent tasks.

Background
When people identify an object, they have to match what
they sense against their knowledge. In general, people
accomplish recognition by a combination of two informa-
tion processing pathways: top-down and bottom-up. Bot-
tom-up processing (i.e. sensation) occurs when the
sensory input information induces perceptual representa-
tion, whereas top-down processing (i.e. identification)
occurs when the perceptual representation is influenced
by some higher mental function such as previous knowl-
edge, motivation, or expectation.

To facilitate perceptual identification, one may use sub-
jective expectations of the stimulus to come. Accordingly,
a cognitive intention (e.g. expectation, mental readiness,
active redirection of attention), embedded in a top-down
process, may precede an event or stimulus. Bottom-up
sensory processing is then guided by such top-down pro-
cessing as a specific reallocation of attention relevant to
the type of stimulus to follow or task to be performed. In
this way, top-down intentional processing can increase
the speed and efficiency of perceptual identification.

In this regard, the influence of prestimulus mental
activity on the subsequent poststimulus responses (or
task-performances) is worth investigating. Indeed, some
studies showed the relationship between the prestimulus
alpha activity and the poststimulus event-related poten-
tial (ERP) components. Brandt's and Barry's groups have
reported that greater prestimulus alpha amplitude led to
larger ERP amplitudes [1-5], whereas Başar's group has
found an inverse relation between prestimulus root-
mean-square (RMS) alpha power and subsequent ERP
amplitudes [6-9]. As it is known, ERPs are based on the
recording of brain electrical potentials synchronized with
the presentation of external sensory stimuli (so-called
'exogenous') as well as the occurrence of internal cogni-
tive events (so-called 'endogenous') [10-12]. Likewise,
there is still a fundamental debate on whether ERP com-
ponents are generated from the ongoing EEG activity
(e.g. alpha) by means of phase-reset [13-19]. In general,
ERP components are influenced by bottom-up (sensory
or physical) factors and also reflect top-down (cognitive)
processing. However, since those studies show inconsis-
tent observations, the relationship between the prestimu-
lus alpha power and the poststimulus ERP components
has been still controversial.

Meanwhile, using a color-shape discrimination task,
Min and Herrmann [20] recently found that the prestim-
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ulus level of alpha activity differed significantly with the
type of poststimulus task, and interpreted this to mean
that prestimulus alpha activity reflects top-down prepa-
ration for the stimulus. Accordingly, the prestimulus
mental state, typically regarded as a resting state and thus
a baseline for poststimulus activity, may in fact be a task-
relevant top-down control stage. Some previous studies
consistently support this conception [21,22]. For
instance, Ergenoglu et al. [21] observed that alpha activity
modulates visual detection performance in humans.

Besides, Klimesch et al. [23] postulated that alpha syn-
chronization might reflect a top-down function in inhib-
iting task-irrelevant information, since the event-related
synchronization in the alpha band can be noticeably
observed during task-performance either under such
conditions where subjects have to withhold task-relevant
information or over the brain regions that are task-irrele-
vant [24-30]. Therefore, by means of two kinds of dis-
crimination tasks requiring inhibition of concurrent task-
irrelevant feature processing for improving task-perfor-
mance, here we would like to test a putative relationship
between prestimulus EEG dynamics and poststimulus
responses of task-performance from the viewpoint of
top-down inhibitory preparation to the task-irrelevant
feature of subsequently presented stimuli. Moreover,
Mordkoff and Yantis [31] reported that coactivation
occurs when target attributes from two separable dimen-
sions are simultaneously present, but not when target
attributes come from the same dimension. They argued
dividing attention between color and shape as evidence of
coactivation. To induce such coactivation, we employed
target attributes from two dimensions (color and shape).
This required subjects to inhibit the task-irrelevant fea-
ture to improve performance. Presumably, different task-
difficulties across the color and shape tasks may induce
differences in top-down preparation such as prestimulus
task-performance strategy.

In addition, theta activity has received attention as a
possible electrophysiological correlate of top-down pro-
cessing. It has been reported that spontaneous EEG theta
activity influences the amplitude of frontal visual evoked
potentials [32], and that Freunberger et al. [33] suggested
that phase-locked theta activity reflects top-down regula-
tion in information memory systems. Sauseng et al. [34]
also suggested that theta activity may represent top-down
processing, and gamma activity bottom-up processing,
based on observations of enhanced phase-synchrony
between theta and gamma bands for an attended visual
target. Studies consistently suggest that slow oscillations
(e.g. theta and alpha) are related to function in large, dis-
tributed networks [35,36], whereas high frequency oscil-
lations (e.g. gamma) are associated with neural processes
in more local networks [36]. These studies support the
conclusion that integration between top-down processes

depends critically on slow oscillations such as alpha and
theta.

Most studies on theta oscillations as a measure of top-
down processes have focused on event-related (or post-
stimulus) modulations, and thus neglect prestimulus
theta activity as ongoing top-down preparation for the
performance of subsequent tasks. Note that a prestimulus
mental state differs from a spontaneous mental state (i.e.
a resting state with no tasks) in that mental activity in a
prestimulus period would be influenced by the attributes
of subsequent tasks or events. The prestimulus mental
state may therefore present an appropriate target to
explore differences in top-down regulation in advance of
different task performances. We hypothesized that if
theta activity reflects top-down processing, it must be
largely controlled by ongoing top-down inhibitory pro-
cessing, particularly during a prestimulus mental state
almost entirely lacking in physical attributes of upcoming
stimuli (i.e. bottom-up processes). In the present study
we therefore investigated whether prestimulus theta
activity represents a state of cognitive readiness, as pre-
stimulus alpha activity does [20].

Results
Pairs of colored figures randomly drawn from a set of red
or green circles or squares were presented, and partici-
pants were requested to respond with the index finger of
one hand if the target feature of the task ('color' in the
color task and 'shape' in the shape task) was the same and
to respond with the other hand if it was not. As a result,
the shape task yielded significantly longer reaction times
than the color task (F(1,14) = 5.2, p < 0.05; color task: 486
ms, shape task: 528 ms). For the accuracy of the task-per-
formance, we also found a strong 'task' effect (F(1,14) =
15.0, p < 0.005), indicating that the color task perfor-
mance showed significantly higher accuracy than the
shape task performance (color task: 96.6%, shape task:
74.2%).

As shown in Figs. 1 and 2, we observed the significant
main effect of 'task' (F(1,14) = 5.1, p < 0.05) with higher
prestimulus total alpha power for the shape task (color
task: 10.9 μV2, shape task: 18.7 μV2). We also found that
the shape task was preceded by significantly higher pre-
stimulus total theta power than the color task (F(1,14) =
5.0, p < 0.05; color task: 6.0 μV2, shape task: 7.7 μV2). In
addition, we observed that the anterior ROI showed sig-
nificantly higher prestimulus total theta power than the
posterior ROI (F(1,14) = 10.0, p < 0.01; anterior ROI: 10.2
μV2, posterior ROI: 3.5 μV2; cf. Figs. 1 and 2).

Compared to the posterior region, the anterior region
showed significantly higher poststimulus total power of
both alpha (F(1,14) = 4.8, p < 0.05; anterior ROI: 12.9 μV2,
posterior ROI: 10.4 μV2) and theta activity (F(1,14) = 5,0,
p < 0.05; anterior ROI: 19.1 μV2, posterior ROI: 14.6 μV2).
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In addition, the shape task showed significantly lower
poststimulus alpha power than the color task (F(1,14) =
7.9, p < 0.05; color task: 12.3 μV2, shape task: 11.0 μV2).
However, the 'task' factor did not have a significant effect
on the poststimulus theta power.

The topographical distributions for both alpha and
theta power between the two tasks are presented in Fig. 1.
As shown, the prestimulus anterior theta and posterior
alpha power were more intense in the shape task than in
the color task. Fig. 2 shows grand-averaged time-fre-

quency representations of power for total activity on the
anterior and posterior ROIs. Note that the theta power
had its maximum after the stimulation, whereas the alpha
power showed dominance and higher power before stim-
ulation.

Discussion
We observed more intense anterior theta and posterior
alpha power in the prestimulus phase of the shape task
than of the color task. One might possibly suspect that

Figure 1 Grand-averaged topographies of (A) prestimulus theta and (B) prestimulus alpha power for both tasks. These topographical distri-
butions were computed by averaging the mean power at subjects' individual alpha and theta frequencies over the time window from 300 to 50 ms 
prestimulus. Within this time window, individual alpha and theta frequencies were obtained from the frequencies showing maximal power of each 
task in alpha band on the electrode Oz and in theta band on the electrode Fz, respectively. Note the differences in prestimulus alpha power around 
the posterior region (including the electrodes Pz, O1, Oz and O2), and those of prestimulus theta power around the anterior region (including the 
electrodes AFz, F3, Fz and F4) between the two tasks. All views are from the vertex, and the upside is nasal. Color bars indicate scales of the power 
(μV2) of oscillatory activity.
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the effects of prestimulus activity come from prolonged
poststimulus responses. To validate the present effects as
prestimulus effects, we performed an additional experi-
ment with longer inter-stimulus intervals (ISIs; 2500-
3500 ms as compared with the present ISIs of 1500-2500
ms). Eventually, the same results were consistently
obtained although we replicated the experiment with lon-
ger ISIs (Min et al., unpublished observations). Therefore,
one can exclude a possibility that prestimulus effects are
confounded by tailing of poststimulus responses. More-
over, since the prestimulus oscillatory activity was mea-

sured sufficiently far from the mean latency for button-
responses (about 507 ms poststimulus; subsequently the
response-prestimulus time interval ranged approximately
from 2200 to 3200 ms), our observations in the prestimu-
lus period are also out of the possible confounding ranges
by response-related brain activity.

Based on behavioral results, the color feature may be
more salient, and thus harder to ignore than the shape
feature, in the successful performance of the shape task
[20]. To suppress such salient task-irrelevant information
as color, the shape task may demand more attention-

Figure 2 Grand-averaged time-frequency representations of total power of oscillatory activity (1-30 Hz) on (A) the anterior ROI and (B) the 
posterior ROI for both tasks. Stimuli were presented from 0 to 500 ms. Color bars indicate scales of the power (μV2). Note the alpha activity (about 
10 Hz) on the posterior ROI (averaged across the electrodes Pz, O1, Oz and O2) and the theta activity (about 6 Hz) on the anterior ROI (averaged across 
the electrodes AFz, F3, Fz and F4), and compare the differences between the two tasks, particularly before stimulus onset.
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readiness. The present study extends previous findings
that prestimulus alpha activity reflects 'cognitive readi-
ness' for an upcoming task [20,37-40], with evidence that
prestimulus theta activity may have similar functional
significance. It is noteworthy that theta power showed its
greatest intensity in the medial frontal region (see topog-
raphies, cf. Fig. 1A). Based on previous studies [41,42],
frontal midline theta activity seems to principally reflect
alternative activation of the anterior cingulate cortex
(ACC) and prefrontal cortex. Wang et al. [43] suggested
that theta activity from the ACC might reflect active inhi-
bition. They observed transient phase locking of task-rel-
evant theta activity in relation to active inhibition in
superficial cingulated layers. Yordanova et al. [44] also
proposed that theta oscillations particularly in relation to
movement execution are functionally associated with
error monitoring, of which the ACC is mainly in charge
[45]. In line with these findings, Hanslmayr et al. [46]
reported that theta activity in the ACC increased linearly
with increasing interference during the stroop task, and
concluded that sustained phase coupling between the
ACC and the prefrontal cortex most likely reflects the
engagement of cognitive control mechanisms. These
findings support a significant relationship between fron-
tal midline theta activity and inhibitory control of task-
irrelevant processing. As task difficulty increased in the
present study, the demand for inhibitory control in cogni-
tive preparation most likely increased, and resulted in sig-
nificant differences in theta power levels between the two
tasks. This interpretation is in accordance with the
assumption by Klimesch et al. [26] that theta power
reflects (at least in part) task difficulty and cognitive load.

A recent EEG-fMRI study [47] also showed enhance-
ment of frontal theta and occipital alpha power during a
modified Sternberg working memory task. While we
observed modulations of anterior theta and posterior
alpha power in the prestimulus period, they reported
similar phenomena in the 'maintenance' phase during a
working memory task. Our present observations in the
prestimulus period and their observations in a working
memory retention phase are all consistent with modula-
tion of alpha and theta frequency bands depending on the
current cognitive load. Understandably, the mental load
increases with the attention a task demands, and induces
greater alertness, which can help either strengthened
inhibition of task-irrelevant processing or enhanced
attention to task-relevant processing. These different
experimental phases (i.e. 'prestimulus'; versus 'retention'
period) may in fact represent analogous mental states,
and thus share in part the same neural networks.

To integrate top-down influences into bottom-up infor-
mation requires long-range communications, which slow
oscillations such as alpha and theta activities might
achieve [35,36,48]. The interplay between alpha and theta

oscillations may, for example, reflect the transfer of infor-
mation between memory systems [49], and the central
executive functions of working memory may be reflected
in the fronto-parietal coherence in alpha and theta bands
[35,50]. Since the functional coupling between anterior
and posterior brain regions may be essential to accom-
plish top-down control [51], the interactions between
anterior theta and posterior alpha activities and top-
down regulation processing must be explored in future
research.

Conclusions
The present study extends our previous findings that pre-
stimulus alpha activity reflects ongoing top-down prepa-
ration for the performance of upcoming tasks [20,40], by
evidence that prestimulus theta activity may have similar
functional significance. Based on both behavioral and
electrophysiological results, the difficult task (shape task),
which requires more inhibition of the competing color
feature, was preceded by significantly higher alpha and
theta power as compared to the easy task (color task).
Since such task-differences were reflected in both alpha
and theta activities prior to stimulus onset, both prestim-
ulus alpha and prestimulus theta activities may reflect
top-down cognitive processing in preparation for the per-
formance of subsequent tasks.

Methods
Subjects
Fifteen normal healthy volunteers (9 females, mean age
23; range 18-29 years) participated in this study, in accor-
dance with the ethics guidelines at the Institutional
Review Board of Yonsei University and the Declaration of
Helsinki (World Medical Association: Ethical Principles
for Medical Research Involving Human Subjects, 1964).
Subjects gave informed consent prior to the start of the
experiment. All had normal or corrected-to-normal
vision, and none was color-blind, as determined by the
Ishihara color test. None had a personal or family history
of psychiatric disorders.

Stimuli and procedure
This study employed the same experimental paradigm as
Min et al. [20,40] did. Pairs of colored figures randomly
drawn from a set of red or green circles or squares were
used as stimuli (cf. Fig. 3). The areas of circles and
squares were matched. Stimuli were presented for 500
ms, on a computer monitor placed in front of the subject
at a distance of one meter. Two colored figures (a stimu-
lus set) were presented side-by-side on a light-gray back-
ground at an eccentricity of 3° (visual angle), and each
colored figure in a stimulus set subtended a 4° visual
angle. All types of stimuli appeared approximately at ran-
dom, with equal probability. Each stimulus presentation
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was followed by variable ISIs ranging randomly between
1500 and 2500 ms. We instructed subjects to remain cen-
trally fixated and to press a button with the index finger
of one hand if the target feature of the two presented
stimuli ('color' in the color task and 'shape' in the shape
task) was the same across the two presented stimuli, and
to press another button with the other hand if it was not.
Subjects were asked to press the button as quickly as pos-
sible. To limit the experimental paradigm to top-down
processing, we employed the same physical stimuli across
both tasks while the subjects performed different tasks.

The experiment consisted of two task-sessions: a color
task and a shape task. Stimuli in each task were presented
in two blocks separated by short rest periods. Response
hands and the order of tasks were counterbalanced across
subjects. The experiment consisted of 384 trials for each
task. Only trials with correct responses were further ana-
lyzed.

EEG recording
EEG was recorded using a GRASS 15A54 amplifier
(Grass Technologies, USA) with 21 sintered Au/Ag-elec-
trodes. Their locations, in accordance with the interna-
tional 10-20 system were as follows: AFz, Fp1, Fp2, Fz, F3,
F4, F7, F8, Cz, C3, C4, T3, T4, Pz, P3, P4, T5, T6, Oz, O1
and O2. We also placed an electrode on each mastoid for
the linked reference and a ground electrode at nasion. Eye
movement activity was monitored with two additional
electrodes placed supra-orbitally on both eyes and refer-
enced to the linked mastoids. Electrode impedances were
kept below 10 kΩ prior to data acquisition. EEG was sam-
pled at 1000 Hz (analogue band-pass filter 0.1-100 Hz)
and stored for off-line analysis. Data were epoched from
1000 ms prestimulus to 1000 ms poststimulus. Epochs

containing eye-movements or other artifacts (maximum
amplitude ± 70 μV or electrode drifts) were rejected (As a
result, the average rejection rate was 25.6%).

Wavelet transformation
The power of oscillatory activity was investigated by con-
volving the EEG signals with Morlet wavelets [52,53]. The
Morlet-convolved signal shows a Gaussian envelope with
a temporal standard deviation (σt) and a spectral standard
deviation (σf = 1/(2πσt)) around its central frequency (f0):

To have unit energy at all scales, the wavelet functions
should be normalized prior to the convolution. For the
Morlet wavelet transform, the normalization parameter
A is σt

-1/2π-1/4. A wavelet family is characterized by a con-
stant ratio (f0/σf), and we employed a wavelet family with f
0 ranging from 1 to 30 Hz in 1 Hz steps (cf. Fig. 2) and 3.8
as its constant ratio in order to consider optimal spectral-
temporal resolution of lower frequency bands such as
theta and alpha activities [54].

The wavelet transform was performed for each individ-
ual trial, and the absolute values of the resulting trans-
forms were averaged. This measure of signal amplitude in
single trials reflects the total activity for a certain fre-
quency range, irrespective of whether it is phase-locked
to the stimulus or not. We will refer to this measure as the
total activity, since it includes evoked as well as induced
activity. In the present study, we computed the power
(μV2) of oscillatory activity.

Analytic methods
Since we were interested in EEG oscillatory activity
around both anterior and posterior regions, we selected
for further analyses the two regions of interest (ROIs):
anterior ROI (including the electrodes AFz, F3, Fz and
F4) and posterior ROI (including the electrodes Pz, O1,
Oz and O2), which showed most pronounced responsive-
ness to prestimulus theta and alpha power, respectively
(cf. Fig. 1). In the present study, we confined alpha activity
to the frequency range from 8 to 13 Hz and theta activity
to the frequency range from 4 to 7 Hz. For the prestimu-
lus total power of these activities, we computed mean
power in the time window from 300 to 50 ms prior to
stimulus onset in each frequency range. This time win-
dow was chosen to avoid the temporal smearing of post-
stimulus activity into the baseline [52], while trying to
take the time window as close to the stimulus onset as
possible and also to include a reasonable period that
included at least one cycle of both alpha and theta fre-
quencies. No baseline correction was applied to the total
power, since total alpha power in a prestimulus period

Ψ π( , ) exp( )exp( / ).t f A i ft t t= −2 22 2s (1)

Figure 3 A task flow diagram of sample stimuli and the ISIs. Two 
stimuli randomly drawn from a set of red or green circles or squares 
were presented bilaterally against a light-gray background on a com-
puter monitor. Stimulus presentation was followed by a fixation cross 
presented during every ISI. The ISIs ranged randomly from 1500 to 
2500 ms.
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would vanish after baseline correction. For the poststim-
ulus total theta power, we measured maximum theta
power in the time window from 200 to 450 ms poststimu-
lus. This time window was determined on the basis of the
grand averages (most pronounced and free of offset
responses) and the previous studies about task-related
(late) theta response were taken into account [54,55]. In
the case of the poststimulus total alpha power, we chose
the same time window, when the poststimulus amplitude
modulation of alpha activity was most pronounced, and
took minimum alpha power, since the grand-average of
total alpha activity decreased after stimulation, as shown
in Figs. 1 and 2. This phenomenon is typically referred to
as 'alpha-blocking'.

Reaction times and accuracy of task-performance
(error rates) were also measured for the behavioral analy-
sis. Reaction times were collected within their individual
95% confidence intervals. These behavioral measures
were analyzed with a repeated measures analysis of vari-
ance (ANOVA) that included a within-subjects factor
labelled as 'task' ('color task' versus 'shape task'). In addi-
tion to this factor, we used a within-subjects factor
labelled as 'ROI' ('anterior' versus 'posterior') to compare
the electrophysiological activity between anterior and
posterior brain areas.
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