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The objective of this experiment was to evaluate the effect of supplementing rumen-protected Lys based
on a Lys-deficient diet on liver metabolism in growing Holstein heifers. The experiment was conducted
for 3 months with 36 Holstein heifers (initial body weight: 200 ± 9.0 kg; 7-month-old). Heifers were
randomly assigned to 2 diets based on corn, soybean meal, alfalfa hay, and wheat bran: control, Lys-
deficient diet (LD; 0.66% Lys in diet), and Lys-adequate diet (LA; 1.00% Lys in diet). The results showed
no difference in growth performance between the 2 groups (P > 0.05). However, there was a clear trend
of increasing feed conversion rate with Lys supplementation (0.05 < P < 0.01). The serum urea nitrogen
concentration was significantly decreased, and the aspartate aminotransferase-to-alanine aminotrans-
ferase ratio was significantly decreased by Lys supplementation (P < 0.05). Moreover, growing heifers fed
a Lys-adequate diet had lower levels of urine nitrogen excretion and higher levels of the biological value
of nitrogen (P < 0.05). Metabolomic analysis revealed that 5 types of phosphatidylcholine and 3 types of
ceramide were significantly increased and enriched in sphingolipid metabolism and glycerophospholipid
metabolism (P < 0.05). His, Leu, and Asp levels were significantly decreased in the liver following Lys
supplementation (P < 0.05). In conclusion, Lys supplementation may promote the synthesis of body
tissue proteins, as evidenced by significantly decreased amino acids in the liver and urine N excretion, it
also improves hepatic lipid metabolism by providing lipoprotein precursors.

© 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lys has been identified as an amino acid (AA) that can limit milk
and milk protein synthesis and growth in growing heifers (Li et al.,
2019; Noftsger and St-Pierre, 2003). Therefore, feeding a Lys-
deficient diet leads to decreased nitrogen (N) efficiency, causing
increased N excretion (Wang et al., 2012). Accordingly,
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supplementation with rumen-protected AA, specifically Lys, is an
effective way to optimize dietary AA patterns and achieve optimal
body weight (BW) and withers heifer height. Thus, the manage-
ment of growing dairy heifers has a considerable effect on future
milk yield, fertility, and longevity (Handcock et al., 2019).

Optimal Lys supplementation is characterized by improved ef-
ficiency of Nmetabolism (Li et al., 2019; Tan et al., 2021;Wang et al.,
2012). However, recent studies have revealed that Lys is also an
important bioactive molecule that plays key roles in signaling
pathways and metabolic regulation, including energy, glucose, and
lipid metabolism (Hu and Guo, 2020; Kong et al., 2020; Wu, 2009).
For example, a study indicated that dietary Lys restriction could
enhance milk fat accumulation in dairy cows (K�rí�zov�a et al., 2010),
and prepartum supply of intestinally available Lys in Holstein cows
could improve milk fat and energy-corrected milk yields (Fehlberg
et al., 2020). However, we speculate that Lys metabolism and
functions in dairy cows are inferred from pre-ruminants, and adult
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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Table 1
Ingredients and composition of basal total mixed ration (%, dry matter basis).

Ingredients Content Nutrient levels2 Level

Corn 45.67 Metabolizable energy, MJ/kg 10.13
Soybean meal 11.97 Crude protein 14.95
Wheat bran 15.00 Rumen degradable protein3 9.85
Alfalfa hay 25.00 Rumen undegradable protein3 5.10
Limestone 1.06 Ether extract 3.04
Salt 0.30 Ash 7.58
Premix1 1.00 Neutral detergent fiber 29.22
Total 100.00 Acid detergent fiber 13.99

Calcium 1.12
Phosphorus 0.60

1 The premix provided the followingminerals and vitamins for total mixed ration:
Cu, 12.5 mg/kg; Fe, 90 mg/kg; Zn, 90 mg/kg; Mn, 30 mg/kg; I, 1.0 mg/kg; Se, 0.3 mg/
kg; Co, 0.5 mg/kg; vitamin A, 15,000 IU/kg; vitamin D3, 5,000 IU/kg; vitamin E,
50 mg/kg.

2 Nutrient levels were measured, except for metabolizable energy, rumen
degradable protein, and rumen undegradable protein. Metabolizable energy was
measured and calculated using digestibility and metabolism trials. The energy of
CH4 was calculated using the equation suggested by Eggleston et al. (2006).

3 Values estimated based on NRC (2001). The rumen undegradable protein con-
tent (% crude protein) of corn, soybean meal, wheat bran, and alfalfa hay was 32.8%,
24.3%, 14.6%, and 31.6%, respectively.
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ruminants are distinguished from pre-ruminants by rumen mi-
crobial fermentation (Malmuthuge and Guan, 2017). Unfortunately,
very few studies have investigated the functions of Lys in rumi-
nants. In our previous study, we found that changes in the livers of
3e6-month-old calves with dietary Lys deficiency were related to
lipid metabolism and the sectional urea cycle (Kong et al., 2020).

Furthermore, the addition of Met plus Lys at higher amounts to
cow rations during transition periods was shown to protect the
cows against liver lipid accumulation (Lin et al., 2014; Grummer,
1993). However, the objectives of post-weaning calves and transi-
tion cows are to adapt to rumen volume expansion and the onset of
lactation, respectively (Roche et al., 2017), and that of growing
heifers is to obtain the appropriate target BW and muscle devel-
opment (Kertz et al., 2017). Thus, we hypothesized that the effects
of Lys supplementation on liver metabolism differ among these
stages.

After Lys is absorbed by the small intestine, compared with the
other organs, the liver plays the most important role in Lys meta-
bolism (Lapierre et al., 2009; Pink et al., 2011; Wan et al., 2015), by
converting glucogenic AA and propionic acid to glucose (Larsen and
Kristensen, 2013; Van der Drift et al., 2012) and non-esterified fatty
acids (NEFA) to ketone bodies (Grum et al., 2002). However, the
liver has many vital functions that are difficult to measure and
quantify. Recently, the increased ease of use and efficiency of mass
spectrometry (MS)-based metabolomics has facilitated our under-
standing of the mechanisms underlying the variations in metabo-
lite concentrations by injecting samples for chromatographic
separation before MS analysis (Patti et al., 2012). Thus, we chose an
integrative approach to explore the effects of Lys supplementation
on liver function in growing heifers.

The present experiment was designed to determinewhether Lys
affects liver metabolism in growing Holstein heifers fed diets based
on corn, soybean meal, alfalfa hay, and wheat bran when Met and
Thr are not limited. Additionally, the effects of Lys supply on growth
performance, N flow, and serum biochemistry were investigated.
We expected to observe significant liver metabolism responses to
Lys supplementation in these heifers.

2. Materials and methods

2.1. Ethics statement for animal experiments

The experimental protocol was approved by the Ethics Com-
mittee of the Chinese Academy of Agricultural Sciences (CAAS,
Beijing, China). The experiment was performed under the animal
welfare practices and procedures in the Guidelines for Experi-
mental Animals of the Ministry of Science and Technology (permit
number AEC-CAAS-2017-01).

2.2. Animals, diets, and experimental design

Thirty-six growing Holstein heifers (age ¼ 22 ± 0.5-weeks old;
BW ¼ 200 ± 9.0 kg; mean ± standard deviation) from the Third
Ranch Branch, Good Earth Group Co., Ltd. (Heze City, Shandong,
China) were randomly allocated to 2 treatments based on BW and
age, and fedwith 2 total mixed rations (TMR): (1) Lys-deficient TMR
(LD) containing 0.66% Lys on a dry matter (DM) basis (n ¼ 18),
providing 70% of Lys requirements of the heifers, and (2) Lys-
adequate TMR (LA) containing 1.00% Lys on DM basis (n ¼ 18),
providing 100% of Lys requirements of the heifers. In the LD and LA
groups, the Met requirement was calculated according to a BW of
250 kg, average daily gain (ADG) of 1.1 kg, and the formula pro-
posed by Zinn and Shen (1998), in which the Met requirement ¼
1.956 þ 0.0292 � ADG � [268 e (29.4 � 0.0557 � BW0.75

� ADG1.097)/ADG] þ 0.112 � BW0.75. The Thr requirement was
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calculated according to a Thr:Met ratio of 72:33 (Wang et al., 2012)
to meet the requirements of Met and Thr. In the LA group, the Lys
requirement was calculated according to a Lys:Met ratio of 100:33
(Abe et al., 1998). The Lys:Met ratio was 100:22 in the LD group. The
heifers were fed a ration based on NRC (2001) recommendations
for 1.1 kg/d ADG and 250 kg BW, estimated to contain 10.46 MJ/kg
metabolizable energy and 15.1% crude protein (CP) on a DM basis.
After a 3-week adaptation period, an experimental feeding period
of 90 d (September to November) commenced. Rumen-protected
Lys, Met, and Thr products were used to meet the AA re-
quirements based on the AA levels in the basal diet. The basal diet
nutrient levels and compositions are shown in Table 1. The AA
requirement and composition of diets as well as metabolizable AA
were calculated and are shown in Table 2.

The growing heifers were housed in well-ventilated individual
pens (2.6 m long � 2.2 m wide � 2.2 m high) bedded with fer-
mented feces, which were replaced once a month to maintain
comfort and hygiene. The growing heifers were offered the TMR
twice daily at 08:00 and 17:00 and had ad libitum access to water.
The environmental conditions were continuously recorded, the
mean air temperature was 11.87 ± 7.54 �C.

2.3. Growth performance

The quantities of feed offered and refused were recorded daily for
each growing heifer by electronic scale (YPHX-3Ex, ANFEI Environ-
mental Technology Co., Ltd, Guangzhou, China). Feed samples were
collectedmonthly and used to determine the chemical compositions,
including DM, ash, CP, ether extract, neutral detergent fiber (NDF),
acid detergent fiber (ADF), calcium, and phosphorus (AOAC, 2006).
The DM content in samples were analyzed by drying the samples in
an AirForce oven at 105 �C for 2 h. The N content was determined by
the Kjeldahl method. The contents of NDF and ADF were quantified
using Van Soest et al. (1991) method. The ether extract was
measured using the weight loss of DM upon extraction with diethyl
ether in a Soxhlet extraction apparatus for 8 h. The calcium content
was determined using an atomic absorption spectrophotometer
(M9W-700, PerkineElmer Corp., Norwalk, CT, USA). The phosphorus
content was analyzed using the molybdovanadate colorimetric
method using a spectrophotometer (UV-600, Mapada Instruments
Co., Ltd., Shanghai, China). Lys, Met, and Thr concentrations in the
diet were analyzed by a Hitachi L-8900 automatic AA analyzer. The



Table 2
Dietary amino acid composition and metabolizable amino acid supply in heifers fed Lys-deficient and Lys-adequate diets.

Item Diet1

LD LA

Lys, % of DM
Required 1.00 1.00
Supply from basal diet 0.51 0.51
Supply from RPLys2 0.16 0.49
Balance �0.33 0

Met, % of DM
Required 0.33 0.33
Supply from basal diet 0.07 0.07
Supply from RPMet3 0.26 0.26
Balance 0 0

Thr, % of DM
Required 0.72 0.72
Supply from basal diet 0.49 0.49
Supply from RPThr4 0.23 0.23
Balance 0 0

Metabolizable Lys, % of DM 0.97 1.24
Supply from microbial protein5 0.68 0.68
Supply from rumen undegradable protein6 0.17 0.17
Supply from RPLys2 0.12 0.39

Metabolizable Met, % of DM 0.34 0.34
Supply from microbial protein5 0.19 0.19
Supply from rumen undegradable protein6 0.02 0.02
Supply from RPMet3 0.13 0.13

Metabolizable Thr, % of DM 0.71 0.71
Supply from microbial protein5 0.45 0.45
Supply from rumen undegradable protein6 0.17 0.17
Supply from RPThr4 0.09 0.09

Metabolizable Lys:Metabolizable Met:Metabolizable Thr ratio 100:35:73 100:27:57

DM ¼ dry matter, RPLys ¼ rumen-protected Lys, RPMet ¼ rumen-protected Met, RPThr ¼ rumen-protected Thr.
1 The growing heifers of the LD group were fed a Lys-deficient diet providing 66% of the Lys requirements of the heifers. The growing heifers of the LA group were fed a Lys-

adequate diet that provided 100% of the Lys requirements of the heifers. The treatment was achieved by using rumen-protected Lys based on Lys levels in the basal diet.
2 Rumen-protected Lys (Yahe Nutrition High Tech Co., Ltd, Beijing, China) contained 36% Lys and 64% hydrogenated fat. The passage rate from the rumen to the small

intestine was 80%.
3 Rumen-protected Met (Bluestar Adisseo, Antony, France) contained 44% Met and some silicon dioxide. The passage rate from the rumen to the small intestine was 50%.
4 Rumen-protected Thr (King Technology Co., Ltd, Hangzhou, China) contained 40% Thr. The passage rate from the rumen to the small intestine is 90%.
5 Rumen degradable protein was used with 85% efficiency for microbial protein (NRC 2001). The Lys, Met, and Thr content in microbial proteins was 8.10%, 2.29%, and 5.34%,

respectively (Sok et al., 2017).
6 The amino acid composition of crude protein in the diet was used as the amino acid composition of rumen undegradable protein.
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growing heifers were weighed at the start and end of the experi-
ment. The ADG, feed conversion ratio (FCR), and dry matter intake
(DMI) were calculated.

2.4. Blood sampling and analysis

At the end of the experiment (90 d), blood sampleswere collected
from 5 heifers which were close to the average BW through coccy-
geal venipuncture before morning feeding in each treatment. Then,
the serumwas separated by centrifugation (L420-A centrifuge, Cence
Group, Hunan, China) at 3,000� g at 4 �C for 10 min and then stored
at �20 �C until analysis. The serum metabolites and enzyme activ-
ities were determined by a biochemical auto-analyzer (Hitachi
automatic biochemical analyzer 7600, Tokyo, Japan) using
commercially available kits according to the manufacturer's in-
structions: NEFA, serum urea nitrogen (SUN), total cholesterol (TC),
triglyceride (TG), glucose, enzyme activities of alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST).

2.5. Diet apparent digestibility and N balance

A digestibility trial was conducted by selecting 4 heifers from
each group on the last week of this experiment (83 to 90 d) with a
3-d adaptation period and a 4-d sampling period. Total feces and
urine were recorded at the end of each 24-h period daily at 07:00.
The feces were mixed, and 100 g subsamples were sampled as a
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fixed proportion of total volume to produce a representative sam-
plewith 10mL 10% dilute hydrochloric acid and stored at�20 �C for
analysis. In addition,100mL urine samples were collected using the
same procedure as in the feces collection. Fecal and urine samples
were analyzed for DM, CP, and ash concentration, as described
above for feed samples (Li et al., 2019).
2.6. Liver sampling and analysis

Liver samples from 5 same heifers used for sampling serum
were obtained at the end of the experiment, as described in a
previous study (Kong et al., 2020). Briefly, liver samples were
collected through an incision (1 cm) on the right side of the
growing heifer between the 10th and 11th intercostal space on a
line from the mid-humerus to the tuber coxae. Multiple liver bi-
opsies (approximately 15 mg each sample) were taken from the
incision site using stainless steel, frozen immediately after collec-
tion in liquid N, and stored at�80 �C. After sampling, postoperative
heifers were injected with 6 mL of 5% flunixin meglumine (Hisun
Pharmaceutical Co., Ltd, Zhejiang, China) to prevent inflammation.

Tissue pieces were pulverized in the presence of liquid N in a
ceramic mortar and then freeze-dried. Fifty milligrams of freeze-
dried liver power were weighed for each sample (placed in ice
water until the next step). Metabolite extraction was carried out
using 1.5 mL of methanol/water solution (methanol:water ¼ 4:1,
vol:vol) in the presence of a 5 mm diameter stainless steel bead



Table 3
Effects of Lys supplementation on growth performance in growing Holstein heifers.

Item Treatments1 SEM P-value

LD LA

Initial BW, kg 227.31 229.20 1.661 0.58
Final BW, kg 326.23 333.90 2.586 0.15
ADG, kg/d 1.10 1.16 0.024 0.19
DMI, kg/d 7.15 7.05 0.046 0.33
FCR, gain/feed 0.15 0.17 0.003 0.09

BW ¼ body weight; ADG ¼ average daily gain; DMI ¼ dry matter intake; FCR ¼ feed
conversion rate.

1 LD group: growing heifers fed a Lys-deficient diet; LA group: growing heifers fed
a Lys-adequate diet. (n ¼ 18).
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using a homogenizer (Spex Sample PREP, Stanmore, UK) operating
at 20 Hz for 2 min and stood for 60 min at �20 �C (Yin et al., 2015).
The mixture was then centrifuged at 30,000 � g for 3 min at 4 �C. A
quality control (QC) sample was prepared by pooling an equal
amount of extract from the entire set of 10 samples. The extracts
were dried in a vacuum concentrator and then reconstituted using
250 mL of methanol-water solution (80:20, vol/vol). The mix was
finally centrifuged (30,000 � g for 5 min at 4 �C), and the super-
natants were finally transferred into glass vials for analysis. Addi-
tionally, 3 blank samples were injected before starting the QC for
the baseline stabilization of the Liquid Chromatogram (LC) -MS
system.

The chromatographic separation of the liver extracts by
reversed-phase liquid chromatography (RPLC) was achieved using
a water UPLC HSS T3 (100 mm � 2.1 mm, 1.8 mm particle size;
Waters Corporation, MA, USA) operated at 45 �C. Mobile phase A
was acetonitrile-water (60:40, vol/vol), and mobile phase B was
isopropanol-acetonitrile (90:10, vol/vol). Both A and B contained
0.1% formic acid and 10 mmol/L ammonium acetate. The gradient
conditions for RPLC are shown in Appendix Table 1. The flow rate
was 300 mL/min, and the injection volume was 1 mL.

Conversely, the hydrophilic interaction liquid chromatography
(HILIC) separation for the liver extracts was performed using the
Waters UPLC BEH Amide (100 mm � 2.1 mm; 1.7 mm particle size,
Waters Corporation, MA, USA) operated at 40 �C. Mobile phase A
was acetonitrile, and mobile phase B was water. Both A and B
contained 0.1% formic acid and 10 mmol/L ammonium acetate. The
gradient conditions for HILIC are shown in Appendix Table 2. The
flow rate was 300 mL/min, and the injection volume was 1 mL.

A Thermo Scientific Q Exactive hybrid quadrupole Orbitrapmass
spectrometer equipped with a HESI-II probe was employed. The
positive and negative HESI-II spray voltages were 3.7 kV and 3.5 kV,
respectively, and the heated capillary temperaturewas 320 �C. Both
the sheath gas and the auxiliary gas were N. The collision gas was
also Nwith 1.5mTorr pressure. The parameters of the full mass scan
were as follows: a resolution of 70,000, an auto gain control target
under 1 � 106, a maximum isolation time of 50 ms, and a mass-to-
charge ratio (m/z) range of 50 to 1,500. The LC-MS system was
controlled using Xcalibur 2.2 SP1.48 software (Thermo Fisher Sci-
entific), and data were collected and processed using the same
software.

2.7. Data analysis

LC-MS data was processed using Progenesis QI data analysis
software (Nonlinear Dynamics, Newcastle, UK) for imputing raw
data, peaks alignment, and normalization to produce peak in-
tensities for the retention time andm/z data pair. Before performing
the multivariate analysis, additional data preprocessing procedures
were required. The maximum allowed CV% value measured for
each frame in the QC sample injected before, during, and after the
acquisition sequence was set to 30%. After filtering the unneeded
variables, the data were normalized against the sum of the peak
areas. Orthogonal partial least squares discriminant analysis (OPLS-
DA) was used to visually discriminate between samples in the LD
group and LA group. Mass ions with variable important in projec-
tion (VIP) value greater than 1 were considered discriminant key
characteristic metabolites. The t-test was performed, and a P-value
less than 0.05 was considered significant. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) database was used to analyze and
visualize the affected pathway.

The growth performance, serum parameters, apparent di-
gestibility, and N balance data were analyzed by one-way ANOVA
using SAS (version 9.1, SAS Institute, Inc., Cary, NC, USA). The sta-
tistical differences among the means of the treatments were
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compared using Duncan's Multiple Range Test. Treatment differ-
ences with P < 0.05 were considered statistically significant.

3. Results

3.1. Growth performance

Table 3 shows the experimental data on growth performance.
No significant differences were found between the 2 groups
(P > 0.05). However, there was a clear trend of increasing FCR with
Lys supplementation (0.05 < P < 1).

3.2. Serum biochemical parameters

The serum biochemical parameters are shown in Table 4. No
significant differences were found in the serum TC, TG, glucose, and
NEFA levels between the 2 groups (P > 0.05). The concentration of
SUN was significantly lower in the LA group than in the LD group at
9 months of age (P < 0.05). The enzyme activities of AST and AST/
ALT were significantly lower in the LA group than those in the LD
group at 9 months of age (P < 0.05).

3.3. Diet apparent digestibility and N metabolism

No significant differences were observed in the apparent DM
and organic matter digestibility (P > 0.05; Table 5). For N balance,
there were no differences in N intake and fecal N (P > 0.05). Urine N
was 12.10% lower in the LA group than in the LD group (P < 0.05),
and N retention rate tended to be higher in the LA group
(0.05 < P < 1). The biological value of N was also higher in the LA
group (P < 0.05).

3.4. RPLC-MS analysis

Score plots from the OPLS-DA showed an obvious separation
between the LD and LA groups in both positive (Fig. 1a) and
negative modes (Fig. 1b). The VIP of the OPLS-DA models were
applied to filter the significant metabolites, in which the ions far
from the origin were likely to be the significant metabolites in
the S-plots (Appendix Fig. 1). A VIP value > 1 and P-value < 0.05
were considered statistically significant. Ten metabolites differ-
entially expressed between the LD and LA groups were selected,
as summarized in Table 6, with 8 metabolites acquired from the
positive mode and 2 from the negative mode (P < 0.05). It is
interesting to note that 5 types of phosphatidylcholine (PC), PC
(16:0/20:4(8Z, 11Z, 14Z, 17Z)), PC (16:0/18:2(9Z, 12Z)), PC (16:0/
20:3(8Z, 11Z, 14Z)), PC (18:0/20:4(8Z, 11Z, 14Z, 17Z)), and PC
(18:0/20:3(5Z, 8Z, 11Z)), and 3 types of ceramide (Cer), namely
Cer (d18:1/24:1(15Z)), Cer (d18:1/22:0), and Cer (d18:1/23:0),



Table 4
Effects of Lys supplementation on serum biochemical parameters in growing Hol-
stein heifers.

Item Months of age Treatments1 SEM P-value

LD LA

TC, mmol/L 7 1.90 1.91 0.089 0.98
9 2.79 2.62 0.165 0.63

TG, mmol/L 7 0.17 0.15 0.011 0.50
9 0.18 0.19 0.010 0.59

SUN, mmol/L 7 3.61 3.34 0.115 0.27
9 5.03 4.15 0.219 0.03

Glucose, mmol/L 7 4.75 4.62 0.064 0.32
9 5.12 5.26 0.134 0.63

NEFA, mmon/L 7 346.45 350.39 3.588 0.61
9 353.07 340.20 4.142 0.13

AST, U/L 7 53.69 53.67 0.740 0.99
9 51.21 43.07 1.793 0.01

ALT, U/L 7 14.06 16.07 0.623 0.11
9 17.06 16.67 0.321 0.57

AST/ALT 7 3.83 3.40 0.141 0.14
9 3.00 2.59 0.103 0.03

TC ¼ total cholesterol; TG ¼ triglyceride; SUN ¼ serum urea nitrogen; NEFA ¼ non-
esterified fatty acid; ALT ¼ enzyme activity of alanine aminotransferase;
AST ¼ enzyme activity of aspartate aminotransferase.

1 LD group: growing heifers fed a Lys-deficient diet; LA group: growing heifers fed
a Lys-adequate diet. (n ¼ 5).

Table 5
Effects of Lys supplementation on the apparent digestibility of nutrient and nitrogen
metabolism in growing Holstein heifers.

Item Treatment1 SEM P-value

LD LA

Apparent digestibility of nutrient
Dry matter, % 71.71 70.94 0.474 0.46
Organic matter, % 72.47 70.88 0.656 0.25

Nitrogen metabolism2

Intake N, g/d 225.65 224.90 0.315 0.26
Fecal N, g/d 67.33 69.51 0.885 0.24
Urine N, g/d 94.66 83.21 2.682 0.02
Total N excretion, g/d 161.98 152.72 2.601 0.07
Absorbed N, g/d 158.33 155.39 1.044 0.18
Retained N, g/d 63.67 72.18 2.555 0.09
N digestibility, % 70.16 69.09 0.410 0.21
N retention rate, % 28.21 32.10 1.140 0.09
Biological value of N, % 40.17 46.46 1.650 0.04

N ¼ nitrogen.
1 LD group: growing heifers fed a Lys-deficient diet; LA group: growing heifers fed

a Lys-adequate diet. (n ¼ 4).
2 Total N excretion¼ fecal Nþ urine N; Absorbed N¼ intake Ne fecal N; Retained

N ¼ intake N e fecal N e urine N; N digestibility ¼ absorbed N/intake N; N retention
rate ¼ retained N/intake N; Biological value of N ¼ retained N/absorbed N.
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were increased by Lys supplementation (P < 0.05). In addition,
fatty acids, including arachidic acid and 11Z-eicosenoic acid were
decreased (P < 0.05).
3.5. HILIC-MS analysis

The OPLS-DA obtained fromHILIC-MS analysis is shown in Fig. 2.
Similarly, the differences between the LA and LD groups are high-
lighted in this figure. Significant metabolites were identified by
comparing the P-value and VIP. The S-plot of the OPLS-DA is shown
in Appendix Fig. 2. Table 7 summarizes the significant metabolites
obtained by HILIC-MS analysis. His, Leu, and Asp levels were
decreased by Lys supplementation (P < 0.05). Although other AA
were not filled, the relative contents of these AA were lower in the
LA group than that in the LD group (Fig. 3).
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3.6. KEGG pathways

Nineteen pathways were identified when 13 significantly
different metabolites were imported into the KEGG database. After
enrichment and pathway topology analysis of the identified path-
ways, only 8 pathways showed an impact value at the compre-
hensive level (Table 8): sphingolipid metabolism; Ala, Asp, and Glu
metabolism; His metabolism; glycerophospholipid metabolism,
aminoacyl-tRNA biosynthesis, Val, Leu, and Ile degradation, Val,
Leu, and Ile biosynthesis; N metabolism. A comprehensive analysis
of the -lop (P-value) and impact value showed that the pathways
that differed the most were aminoacyl-tRNA biosynthesis; His
metabolism; sphingolipid metabolism; Ala, Asp, and Glu meta-
bolism; and glycerophospholipid metabolism (Fig. 4).

4. Discussion

Lys has frequently been identified as a limiting AA (Li et al.,
2019; Wang et al., 2012). It regulates key metabolic pathways
necessary for maintenance, growth, reproduction, and immunity
(Wu, 2009). The present study was conducted to evaluate the ef-
fects of Lys supplementation on liver metabolism in growing Hol-
stein heifers through metabolomics. First, we found that FCR was
improved by Lys supplementation, but the improvement was too
marginal to differ from results obtained in calves (Abe et al., 1997;
Kong et al., 2020). This might be owing to the full rumen devel-
opment and ruminal microbial protein synthesis in 7 to 9-month-
old heifers (Abe et al., 1997). Furthermore, it is possible that the
theoretical Lys addition in this experiment was relatively higher
than the actual requirement of growing heifers because of the
absence of accurate data regarding Lys requirement. Further
research is needed to determine the Lys requirement of growing
heifers, and our results indicate that changes in the Lys profile may
affect the endogenous metabolism of growing heifers.

Dietary digestion was not altered by Lys supplementation. The
digestive efficiency of the diet always depends on rumen fermen-
tation and subsequent absorption in the small intestine. Gln, Glu,
and Asp rather than Lys are important energy sources in the small
intestine and are responsible for intestinal ATP-dependent meta-
bolic processes (Cabrera et al., 2013). Cabrera et al. (2013) found
that supplementation with Gln and Glu improved the intestinal
health and FCR of piglets. Keulen et al. (2020) also reported com-
parable results in calves. Lys has been traditionally considered not
to be utilized by the intestinal mucosa, which is consistent with our
observation on nutrient digestibility.

Apart from the small intestine, the liver is the largest organ that
responds to Lys metabolism. Studies have shown that the amount
of dietary Lys is negatively correlated with SUN concentration,
which is an end metabolite of the urea cycle in the liver through AA
deamination or a product of rumen fermentation (Wang et al.,
2012; Xue et al., 2011). Owing to Lys supplementation in the LA
group, lower body protein degradation and relatively infrequent
protein turnover might contribute to decreased AA concentration
in the liver, including Asp, His, and Leu, and the disruption of
relative AA pathways (Fig. 5). The data from the N balance experi-
ment also proved that the balance between protein degradation
and synthesis and the urea cycle in the liver was more optimal in
the presence of Lys supplementation; more N was retained and less
urea N discharged, thereby leading to increased FCR. Rius et al.
(2012) fed milk replacers containing high protein to calves and
reported that a greater intake of nutrients increased the net intake
of AA to support rapid body growth. Wray-Cahen et al. (1997)
infused AA into the mesenteric vein of dry cows and showed that
the liver removed Thr, Leu, Val, and Lys to a greater extent. The
results from these studies, combined with our results, indicate that



Fig. 1. Orthogonal partial least squares discriminant analysis score plots for the liver samples obtained from the RPLC-MS analysis in the positive mode (A) and negative mode (B).
LD group, growing heifers fed a Lys-deficient diet; LA group, growing heifers fed a Lys-adequate diet. The X-axis indicated score of the principal component. The Y-axis indicated
orthogonal T score. RPLC-MS ¼ reversed-phase liquid chromatography-mass spectrometry.

Table 6
Summary of the metabolites that changed significantly in the livers of growing heifers fed a Lys-adequate diet through RPLC-MS analysis.

Metabolites1 ID2 Formula Mode3 VIP P-value FC4 Direction5

Arachidic acid HMDB02212 C20H40O2 e 1.47 0.027 0.63 Y

11Z-Eicosenoic acid HMDB02231 C20H38O2 e 1.44 0.043 0.74 Y

PC (16:0/20:4(8Z, 11Z, 14Z, 17Z)) HMDB08462 C44H80NO8P þ 1.39 0.048 1.54 [

PC (16:0/18:2(9Z, 12Z)) HMDB08133 C42H80NO8P þ 1.17 0.049 1.28 [

PC (16:0/20:3(8Z, 11Z, 14Z)) HMDB07981 C44H82NO8P þ 1.16 0.015 1.41 [

PC (18:0/20:4(8Z, 11Z, 14Z, 17Z)) HMDB08049 C46H84NO8P þ 1.23 0.049 1.47 [

PC (18:0/20:3(5Z, 8Z, 11Z)) HMDB08046 C46H86NO8P þ 1.39 0.012 1.59 [

Cer (d18:1/24:1(15Z)) HMDB04953 C42H81NO3 þ 1.11 0.025 1.61 [

Cer (d18:1/22:0) HMDB04952 C40H79NO3 þ 1.10 0.021 1.59 [

Cer (d18:1/23:0) HMDB00950 C41H81NO3 þ 1.02 0.047 1.47 [

RPLC-MS ¼ reversed-phase liquid chromatography-mass spectrometry; VIP ¼ variable important in projection; FC ¼ fold change; PC ¼ phosphatidylcholine; Cer ¼ ceramide.
1 The different metabolites were filtered using significance estimate of P < 0.05 and VIP > 1.0 (n ¼ 5). LD group: growing heifers fed a Lys-deficient diet; LA group: growing

heifers fed a Lys-adequate diet.
2 Compound ID of metabolites in human metabolome database.
3 ‘-’ indicates negative mode and ‘þ’ indicates the positive mode.
4 Fold change indicates the relative amounts of LA group compared with LD group.
5 ‘[’ indicates the metabolite in LA group was increased when compared with LD group; ‘Y’ indicates the metabolite in LA group was decreased when compared with LD

group.
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the metabolic efficiency of the liver depends on the metabolizable
AA pattern and Lys supplementation and that Lys supplementation
in the present study could enhance the N retention rate of other AA
in the liver and increase the efficiency of N deposition.

Whitehouse et al. (2017) reported that plasma-free Lys was
increased linearly to increase the amount of metabolizable Lys, and
the plasma-free Lys dose-response method was effective in deter-
mining the relative bioavailability of rumen-protected Lys. Inter-
estingly, Lys supplementation decreased the Lys level in the liver,
suggesting that hepatic Lys concentration depended on many fac-
tors. This index, rather than the plasma Lys concentration, made it
difficult to determine the availability of rumen-protected Lys, as the
Lys concentration in the liver depended not only on portal vein
supplementation but also on hepatic artery supplementation.
Additionally, we found that glycogenic AA, such as Ala and Gln,
were not affected by Lys supplementation. This may explain the
same glucose concentration in the serum.

Using metabolomics, we found that many phospholipids and
sphingolipids, including 5 types of PC and 3 types of Cer, were
increased after Lys supplementation. In the past 2 decades, these
have been referred to as “bioactive lipids” because of their pivotal
role in immune regulation, inflammation, and maintenance of
1157
tissue homeostasis (Chiurchiù et al., 2018; Furse and de Kroon,
2015). Among them, PC is a phospholipid attached to choline
particles. It is a storage lipid for arachidic acid residues (Kramer
and Deykin, 1983), which is consistent with our results (Fig. 5).
Moreover, PC is a principal component of very-low-density lipo-
protein (VLDL) (McFadden, 2020), a key means of triacylglycerol
export from the liver. This implies that an increased PC content
might alleviate the accumulation of triacylglycerols in the liver,
partially explaining the decreased fatty acid levels in the liver. PC
are regarded as a potential set of predictive biomarkers of hepatic
lipidosis (Imhasly et al., 2014) and feed efficiency (Artegoitia et al.,
2017). Suppressed levels of unsaturated PC have been observed in
Holstein cows with moderate fatty liver disease (Sina et al., 2018).
These results suggest that lipid metabolism in the liver is affected
by Lys supplementation.

A previous study showed that rabbits fed a diet supplemented
with Lys and Met had increased hepatic PC levels and choline
phosphotransferase activity, the last enzyme in the PC biosyn-
thetic pathway (Giroux et al., 1999). Alternatively, DeLong et al.
(1999) reported that the hepatic synthesis of PC relied on the
cytidine diphosphate-choline pathway and Met transmethylation
cycles. Hence, Lys supplementation may consume Met and



Fig. 2. OPLS-DA scores plots for the liver samples obtained from the HILIC-MS analysis. LD group, growing heifers fed a Lys-deficient diet; LA group, growing heifers fed a Lys-
adequate diet. The X-axis indicated score of the principal component. The Y-axis indicated orthogonal T score. OPLS-DA ¼ orthogonal partial least squares discriminant anal-
ysis; HILIC-MS ¼ hydrophilic interaction liquid chromatography-mass spectrometry.

Table 7
Summary of the metabolites that changed significantly in the livers of growing
heifers fed a Lys-adequate diet through HILIC-MS analysis.

Metabolites1 ID2 Formula VIP P-value FC3 Direction4

L-Histidine HMDB00177 C6H9N3O2 1.41 0.044 0.87 Y

L-Leucine HMDB00687 C6H13NO2 1.39 0.047 0.81 Y

L-Aspartic acid HMDB00191 C4H7NO4 1.39 0.018 0.78 Y

HILIC-MS ¼ hydrophilic interaction liquid chromatography-mass spectrometry;
VIP ¼ variable important in projection; FC ¼ fold change.

1 The different metabolites were filtered using significance estimate of P < 0.05
and VIP > 1.0 (n ¼ 5). LD group: growing heifers fed a Lys-deficient diet; LA group:
growing heifers fed a Lys-adequate diet.

2 Compound ID of metabolites in human metabolome database.
3 Fold change indicates the relative amounts of LA group compared with LD

group.
4 ‘Y’ indicates the metabolite in LA group was decreased when compared with LD

group.

Table 8
Enrichment of the KEGG pathway using significantly changed metabolites from the
combined HILIC-MS and RPLC-MS analyses.

KEGG Pathway name -log (P-value)1 Impact value2

Sphingolipid metabolism 2.410 0.294
Alanine, aspartate and glutamate metabolism 2.449 0.265
Histidine metabolism 4.525 0.140
Glycerophospholipid metabolism 1.988 0.101
Aminoacyl-tRNA biosynthesis 6.150 0.056
Valine, leucine and isoleucine degradation 1.965 0.022
Valine, leucine and isoleucine biosynthesis 2.336 0.013
Nitrogen metabolism 4.759 <0.001

KEGG ¼ Kyoto Encyclopedia of Genes and Genomes; HILIC-MS ¼ hydrophilic
interaction liquid chromatography-mass spectrometry; RPLC-MS ¼ reversed-phase
liquid chromatography-mass spectrometry.

1 The KEGG pathway P-values were calculated by comparing the proportion of
metabolites in this pathway.

2 The impact value is calculated by adding up the importance measures of each of
thematchedmetabolites and then dividing by the sum of the important measures of
all metabolites in each pathway.
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improve choline phosphotransferase activity in the liver. How-
ever, the growing heifers in the 2 groups had the same Met intake,
and the Met content in the liver was the same between the 2
groups. Thus, an optimal balance and interaction exist among the
AA in the diet, especially between Lys and Met (Tsiplakou et al.,
2020; Wang et al., 2010). Although our interpretation was
limited by the lack of data on enzyme activity andMetmetabolism
in the liver, the aforementioned factors likely played a role in the
response. Overall, these findings suggest that the role of Lys in the
PC biosynthetic pathway could become a concern, and an inves-
tigation into the relationship between Lys and Met in the liver
should be conducted.

Cer are component lipids that comprise sphingolipids. Similar to
PC, Cer are found in high concentrations in the cell membrane and
VLDL (Wiesner et al., 2009). Thus, sphingolipid and phospholipid
metabolism are intertwined. Cer are recognized as biomarkers for
metabolic disease because of their crucial role in liver homeostasis
to protect the liver from fatty liver disease (Luukkonen et al., 2016;
Pewzner-Jung et al., 2010). Therefore, circulating Cer concentra-
tions were increased in early lactation cows, which experienced
adipose tissue free fatty acid mobilization and liver steatosis.
Similar observations were made in dairy cows supplemented with
Cer through an abomasal fistula (Myers et al., 2019) and those
subjected to intravenous triacylglycerol infusion (Rico et al., 2018).
These recent studies have demonstrated that Cer in lipoproteins
enhance lipid transport. Considering our previous work on evalu-
ating the effects of Lys reduction on liver metabolism in calves
(Kong et al., 2020), we were not surprised to detect metabolites
involved in lipid metabolism in growing heifers. The amount of Cer
in the liver depends on the de novo synthetic pathway and
sphingomyelin hydrolysis (McFadden and Rico, 2019). Although the
regulatory mechanism remains to be defined, we conclude that Lys
is pertinent to lipid metabolism by Cer.

Many studies have investigated serum-sensitive biomarkers of
fatty liver in dairy cows. For example, serum proteins, such as



Fig. 3. The relative content of AA detected in the livers of growing heifers fed a Lys-deficient diet or a Lys-adequate diet. The X-axis indicates the different amino acids in liver. The Y-
axis indicates the relative content of amino acids generated frommetabolomics. The values are the mean ± SEM (n ¼ 5); LD group, growing heifers fed a Lys-deficient diet; LA group,
growing heifers fed a Lys-adequate diet. AA ¼ amino acid.
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fibroblast growth factor-21, hemoglobin, and angiopoietin-like
protein 4 can be used as fatty liver biomarkers in lactating dairy
cows (Shen et al., 2018; Wang et al., 2018). Gerspach et al. (2016)
found that AST, rather than NEFA, TC, or TG, is a biochemical
parameter that distinguishes cows with fatty liver. Studies have
also indicated that the AST to ALT ratio is positively correlated with
disease severity in several chronic liver diseases (Mansoor et al.,
2015; Sheth et al., 1998). Owing to liver diseases, high concentra-
tions of AST in hepatic cells are released as a result of apoptosis and
enter the circulating plasma. In our study, we found no effects of Lys
Fig. 4. The metabolome view map of the significant metabolic pathways characterized
in the liver of the growing heifers of the LD and LA group. This figure shows the
pathways that are significantly changed based on enrichment and related indicators.
The X-axis represents the pathway impact, and the Y-axis represents pathway
enrichment. Larger sizes and darker colors indicate greater pathway enrichment and
higher pathway impact values, respectively. LD group, growing heifers fed a Lys-
deficient diet; LA group, growing heifers fed a Lys-adequate diet.
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supplementation on serum NEFA, TC, and TG levels in growing
heifers. Significantly different results were obtained for the AST
concentration and AST to ALT ratio. Both values were within the
normal range. Thus, we suspected that Lys supplementation could
alleviate hepatic cell apoptosis.
Fig. 5. Schematic diagram of the metabolic pathway. Red represents the decreased
metabolites. Green represents the increased metabolites. The metabolites changed in
the LA group (growing heifers fed a Lys-adequate diet) compared with the LD group
(growing heifers fed a Lys-deficient diet) from the metabolomics used to draw this
figure. SUN ¼ serum urea nitrogen; N ¼ nitrogen.
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5. Conclusion

In this study, Lys supplementation and meeting the Lys
requirement of growing Holstein heifers led to less N emission from
AA deamination in the urea cycle and regulated lipid metabolism
by increasing apolipoprotein precursors, including PC and Cer, and
further increased FCR and the biological value of N. The role of Lys
in hepatic metabolism is further emphasized by involving not only
N metabolism but also lipid metabolism. This study partially
revealed the function of Lys in the liver and explained the mecha-
nism of changes in apparent performance. Further studies should
be conducted to investigate the pathway mediated by Lys with
hepatic cell culture. Additionally, we speculated that Lys might be
important for the transition dairy cows in relieving lipid accumu-
lation and alleviate negative energy balance.
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