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ABSTRACT The draft genome sequence of Lactobacillus paracasei DmW181, an an-
aerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181
possesses genes for sialic acid and mannose metabolism. The assembled genome is
3,201,429 bp, with 3,454 predicted genes.

Lactobacillus paracasei is a Gram-positive anaerobic bacterium that is part of the
lactic acid bacteria (LAB) group that have been studied for, among other reasons,

use as probiotics (1). LAB are also commonly associated with fruit flies (2). In the present
study, we sequenced and analyzed the genome of L. paracasei DmW181 derived from
wild Drosophila flies.

Wild Drosophila flies were collected from a household kitchen in Ithaca, NY, USA
(42.427481°N 76.463983°W). Flies were homogenized, and the homogenate was plated
on modified de Man-Rogosa-Sharpe (MRS) medium (3). The 16S rRNA gene from a
single colony was analyzed by Sanger sequencing, and a preliminary taxonomic
assignment as Lactobacillus casei or L. paracasei was made. DNA was extracted using
the Qiagen DNeasy blood and tissue kit (Qiagen, Hilden, Germany). Using NEBNext
double-stranded DNA (dsDNA) fragmentase (NEB, Ipswich, MA, USA), DNA was frag-
mented and adaptors were ligated using NEBNext UltraII DNA library prep kit compo-
nents, as instructed by the manufacturer (NEB). A magnetic bead size selection
achieved an insert size of 1,100 nucleotides, and the library was sequenced on an
Illumina HiSeq 2500 with chemistry for 250-bp paired-end reads. A total of 5,290,771
reads passed quality filtering and were used for genome assembly. Reads were as-
signed to one of five separate bins, each representing 200� genome coverage, and
assembled into contigs using Velvet 1.2.10 (4), with k-mer lengths varying between 185
and 207. For each bin, a single assembly that maximized N50 was selected and used to
assemble the final genome, as in our previous work (5). The final assembly contained
3,201,429 nucleotides in 127 contigs, with a maximum contig length of 515,598 bp and
N50 of 72,562 bp. A total of 3,454 putative genes were predicted by the NCBI Prokary-
otic Genome Annotation Pipeline. When we compared the shotgun genome assembly
with L. casei and L. paracasei isolates available in the JSpeciesWS Web server (6), the
highest similarity was 99.9% with L. paracasei Lpp46, so we named this strain L. para-
casei DmW181.

Preliminary genome analysis and annotation with RAST version 2.0 (7) were per-
formed to evaluate unique genetic features of L. paracasei DmW181 that could influ-
ence interactions with Drosophila. Comparative genomic analysis revealed genes
unique to L. paracasei DmW181, relative to the 2 Lactobacillus casei isolates in RAST, L.
casei ATCC 334 and Lactobacillus casei BL23. Sialic acid metabolism genes were found,
including a utilization regulator and genes that participate at the interface of mannose
and sialic acid metabolism. Previous research has shown that sialic acid could be
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important for the growth of some bacteria that colonize the mammalian gut (8–10). We
suggest that future work could test if sialic acid influences colonization of the Droso-
phila gut by Lactobacillus or other bacteria.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession no. NDXH00000000. The version described in
this paper is version NDXH01000000.
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