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Abstract: This study demonstrates that the luciferin of the firefly squid Watasenia scintillans, which
generally reacts with Watasenia luciferase, reacted with human albumin to emit light in proportion
to the albumin concentration. The luminescence showed a peak wavelength at 540 nm and was
eliminated by heat or protease treatment. We used urine samples collected from patients with
diabetes to quantify urinary albumin concentration, which is essential for the early diagnosis of
diabetic nephropathy. Consequently, we were able to measure urinary albumin concentrations by
precipitating urinary proteins with acetone before the reaction with luciferin. A correlation was
found with the result of the immunoturbidimetric method; however, the Watasenia luciferin method
tended to produce lower albumin concentrations. This may be because the Watasenia luciferin reacts
with only intact albumin. Therefore, the quantification method using Watasenia luciferin is a new
principle of urinary albumin measurement that differs from already established methods such as
immunoturbidimetry and high-performance liquid chromatography.

Keywords: Watasenia scintillans; luciferin; albumin; bioluminescence; urine; diabetic nephropathy

1. Introduction

The firefly squid Watasenia scintillans is a luminescent deep-sea squid that inhabits the
Japan Sea. As it migrates from the deep sea to shallow waters to spawn every spring, the
blue luminescence can be observed by the naked eye. The brightest light organ of Watasenia
is located at the tip of the fourth arm that emits light. Other small organs scattered on
the mantle emit weaker light. The luminescence is considered a counter-illumination
system to escape from predators [1]. Like other luminescent organisms, W. scintillans has
luciferase and luciferin in its body [2,3]. The luciferase of Watasenia has been found to be
ATP-dependent and to exist in a crystalline structure [4,5]. In recent years, there have been
attempts to identify Watasenia luciferase through mass spectrometry and transcriptome
analysis; however, active luciferase has not yet been purified [6,7]. Watasenia luciferin has
been identified and isolated from the light organ in arm photophores [8–10]. The structure
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of Watasenia luciferin is similar to that of coelenterazine, which is a luciferin present in a
wide variety of marine luminescent organisms [11,12]. Although there are no reports of
Watasenia luciferin being used for testing in medicine, this paper explores the potential use
of the luciferin in medical testing.

The kidney has a functional component unit involved in urine production called the
nephron, which is composed of the glomerulus and tubules, and it is known that albumin
leaks into the urine when the glomerulus is damaged. Albuminuria is considered a risk fac-
tor for various diseases, among which diabetic nephropathy is known to be closely related
to urinary albumin concentration. Diabetic nephropathy is a complication of diabetes and
progresses through several stages. In its early stage, trace amounts of albumin are leaked
into the patient’s urine. Early diagnosis and appropriate glycemic and blood pressure
control improve the prognosis of diabetic nephropathy [13–17]. Therefore, measuring uri-
nary albumin levels is critical for suppressing diabetic nephropathy progression. Urinary
albumin concentrations are very low compared with serum albumin concentrations, and
they coexist with several molecules. Moreover, urine samples contain intact as well as
half-degraded albumin, which is not observed in blood samples. These factors complicate
the measurement of urinary albumin and the interpretation of its results.

The measurement of urinary albumin by dipstick is simple and rapid, but it is not
highly quantitative. Immunoturbidimetry is a method used to quantify antigen–antibody
complex precipitates in a liquid by measuring the optical density, and it is widely used
to measure albumin concentrations in the urine of patients [18]. Although this method is
simple and sensitive, methods based on antigen–antibody reactions exhibit a prozone (hook)
effect, in which the signal is reversed at very high albumin concentrations [19]. Furthermore,
several researchers have reported the presence of immuno–unreactive albumin in urine [20].
In methods based on high-performance liquid chromatography (HPLC), albumin is purified
according to its molecular weight, and its concentration is measured; these methods are
considered to be capable of measuring immuno–unreactive albumin [21]. Nevertheless,
HPLC-based methods can also measure proteins of the same molecular weight as that of
albumin. Therefore, HPLC-based methods tend to produce larger albumin concentrations
than antibody-based methods [22]. In this study, we report that Watasenia luciferin reacts
with human albumin and emits luminescence; we also attempt to establish the Watasenia
luciferin method as a new quantitative technique for measuring urinary albumin levels in
addition to the two major existing methods.

2. Results
2.1. Specific Reaction and Luminescence of Watasenia Luciferin and Human Albumin

We synthesized Watasenia luciferin according to a previously reported method [23],
with a slight modification (Schemes 1–4 and Supplementary Figures S1 and S2). We first
planned to isolate Watasenia luciferase using the synthesized luciferin, but this was not
successful. However, in this process, we discovered by chance that Watasenia luciferin
reacted with albumin and emitted light, and then we began characterizing the albumin–
luciferin reaction.

Human albumin, bovine albumin, and several other proteins were mixed with Watasenia
luciferin, and their luminescence was measured (Figure 1). The strongest luminescence was
observed in the reaction with human albumin, and the intensities of all other groups were
compared against human albumin to determine whether the difference was significant. The
luminescence levels of other proteins were similar to those observed without the protein.
This indicates that luciferin reacts specifically with albumin and emits luminescence.
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Scheme 4. Synthesis of Watasenia luciferin 1.
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Figure 1. Relative luminescence intensity emitted by the reaction of each protein (1 mg/mL) (hori-
zontal axis) with Watasenia luciferin. The values for each group were compared with human albumin
values (mean ± SEM, n = 4; one-way ANOVA with Dunnett’s test, *** p < 0.001).

2.2. Optimization of the Albumin–Luciferin Reaction

To optimize the albumin–luciferin reaction, Tris buffer solutions with several pH values
in the reaction solution were evaluated. The strongest luminescence was observed when
the reaction was performed using a buffer with pH 10 (Figure 2A). As the luminescence of
luciferin is considered to be due to oxidation [24], we evaluated whether the addition of
H2O2 to the solution would change the luminescence level. The results showed that the
luminescence increased with the addition of albumin, even without H2O2; however, in the
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presence of H2O2, the luminescence increased even further (Figure 2B). Based on these
findings, we measured the luminescence with H2O2 in a buffer solution with pH 10.
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Figure 2. (A) Relative changes in the luminescence intensity of the albumin–luciferin reaction at each
pH value (80 mM, Tris) (mean ± SEM, n = 4; one-way ANOVA with Dunnett’s test, *** p < 0.001).
(B) Relative changes in the luminescence intensity of the albumin–luciferin reaction with or without
200 mM hydrogen peroxide (mean ± SEM, n = 4; one-way ANOVA with Tukey’s test, *** p < 0.001,
n.s. = not significant).

2.3. Characterization of Albumin–Luciferin Bioluminescence

We investigated the relationship between the concentration of human albumin and
the amount of luminescence. Luminescence exhibited a proportional relationship with the
concentration of human albumin within the concentration range of 0−5 mg/mL (Figure 3).
The correlation coefficient was 0.996, and the calculated detection limit was 20 µg/mL. The
spectrum of the reaction between human albumin and Watasenia luciferin was measured
and was found to peak at 540 nm, which differed from the blue luminescence of living
W. scintillans (Figure 4).
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Figure 3. Scatter plots (red mark) and the approximate straight line of albumin concentration versus
luminescence intensity (n = 4 in each dose).
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Figure 4. Luminescence spectrum of the albumin–luciferin reaction.

We then determined the manipulations that would inhibit the luminescence to charac-
terize the albumin–luciferin reaction. When the human albumin was heat-denatured, the
amount of luminescence decreased depending on the duration of heat treatment (Figure 5A).
This indicates that albumin loses its luminescence ability when its higher-order structure is
destroyed by thermal denaturation. However, the signal in the immunoturbidimetric assay
showed no significant decrease, even with the albumin that was heat-denatured for 30 min
(Figure 5B).
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Figure 5. Effect of heat denaturation of albumin and trypsin treatment on albumin–luciferin lumines-
cence and immunoturbidimetric signals. Purified human albumin was heat-denatured at 95 ◦C for
each time period, and then the relative reduction in signals was measured by (A) albumin–luciferin
reaction and (B) immunoturbidimetric assays. Similarly, the albumin level was measured after
trypsin treatment (C,D). The values for each group were compared with the values of 0 min or 0%
(mean ± SEM, n = 4; one-way ANOVA with Dunnett’s test, * p < 0.05, *** p < 0.001).
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When the albumin was treated with different concentrations of trypsin and a serine
protease and reacted with luciferin, the amount of luminescence decreased according to the
trypsin concentration (Figure 5C). This indicates that the partial cleavage of the peptide by
trypsin leads to the loss of luminescence ability. When the same trypsinized samples were
measured through the immunoturbidimetric assay, the signal decreased depending on the
trypsin concentration, but the decrease was milder than that in the reaction with luciferin
(Figure 5D). These results indicate that the immunoturbidimetric method is more resistant
to the partial cleavage of albumin than the albumin–luciferin reaction.

2.4. Detection of Albumin in the Urine of Diabetic Patients Using the Albumin–Luciferin Reaction

Next, because measuring albumin levels in urine is an essential method for the diagno-
sis of diabetic nephropathy, we evaluated the feasibility of using luciferin to measure trace
albumin levels in the urine of 20 patients with diabetes. First, we reacted the urine sample
directly with luciferin and measured the luminescence. However, the quantitative results
from the direct reaction between urine and luciferin revealed a low correlation with the
immunoturbidimetric results (Figure 6A,B and Figure 7A). This may be because coexisting
molecules in urine inhibit the albumin–luciferin reaction. Next, we attempted to purify
the protein in urine and react it with albumin to remove foreign substances in the urine.
For this purpose, we used ammonium sulfate precipitation, polyethylene glycol (PEG)
precipitation, and acetone precipitation.
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Figure 6. Comparison of albumin concentrations quantified by various methods. (A) Urine sam-
ple was quantified by an immunoturbidimetric assay. (B) Urine samples and albumin purified by
(C) ammonium sulfate precipitation, (D) polyethylene glycol (PEG) precipitation, and (E) acetone
precipitation were reacted with luciferin, and albumin concentration was calculated based on lu-
minescence. The horizontal axis represents the sample number, and the vertical axis represents the
calculated albumin concentration.
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Figure 7. Comparison of albumin quantification results obtained from the immunoturbidimetric
assay with those obtained using the albumin–luciferin reaction. Based on the values calculated
in Figure 6, correlations were determined between (A) immunoturbidimetry versus the direct re-
action of urine with luciferin, (B) immunoturbidimetry versus ammonium sulfate precipitation,
(C) immunoturbidimetry versus PEG precipitation, and (D) immunoturbidimetry versus acetone
precipitation. In each panel, the horizontal axis indicates the value of the immunoturbidimetric
method. The approximate straight line and correlation coefficient were calculated.
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In each method, the urine sample and standard albumin were precipitated, dissolved
again in phosphate-buffered saline (PBS), and reacted with luciferin. The concentration of
albumin was calculated and graphed based on the intensity of luminescence (Figure 6C–E).
The results were compared with those of the immunoturbidimetric assay (Figure 6A) using
urine samples; scatter plots were prepared, and correlation coefficients were calculated
(Figure 7B–D). Particularly, we observed a high correlation when acetone was used to
precipitate the protein in the urine (Figure 7D). Moreover, each purification method showed
a lower value than the albumin quantitative value obtained using the immunoturbidimetric
method (Figure 7A–D). We analyzed the data used in Figure 7D again using the Bland–
Altman plot. In urine containing high concentrations of albumin, the luciferin method
tended to yield lower readings than immunoturbidimetry (Figure 8). The coefficient of
variation (CV) value from the repeated measurements of luminescence from acetone-
precipitated samples of the same concentration was 5.2% (n = 8). In addition, a spike and
recovery test was performed, and it was found that the recovery rate was 105%. This result
means that the component in urine did not inhibit the reaction.
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3. Discussion

This study demonstrated that Watasenia luciferin specifically reacted with albumin and
emitted light (Figure 1). When reacted with purified albumin, it exhibited a very obvious
proportional relationship (Figure 3). Since the calculated detection limit (20 µg/mL) was
lower than the range of microalbuminuria (30–300 µg/mL), Watasenia luciferin has a
sufficient measurement range and sensitivity to measure trace albuminuria. This is a
new discovery and indicates that Watasenia luciferin can be used to measure albumin
concentrations in liquids. Moreover, after exploring the optimal conditions for the reaction,
200 mM H2O2 at pH 10 was found to be the best (Figure 2). This result is reasonable
because it has been previously shown that oxygen is required for the luminescence of
W. scintillans [24].

An earlier report described that coelenterazine, a molecule similar to Watasenia lu-
ciferin, reacts with albumin to emit light [25]. Although the underlying mechanism was
not confirmed, it was predicted that Sudlow site I, to which molecules such as warfarin
bind [26], would be the binding site for coelenterazine based on the three-dimensional
structure of albumin. Watasenia luciferin may have a similar mechanism of action. Watasenia
luciferin reacted more strongly with human albumin than with bovine albumin, which
is in contrast to the action of coelenterazine [25]. Minor structural differences from coe-
lenterazine may increase the specificity for human albumin. Attempts are underway to
modify coelenterazine to develop a molecule that reacts more strongly with albumin [27].
However, there have been no attempts to apply it to medical measurement purposes, such
as the measurement of albumin in urine.
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As depicted in Figure 5, when the albumin was heat-denatured, the albumin–luciferin
reaction significantly reduced the intensity of luminescence. By contrast, the immunotur-
bidimetric method did not reduce the signal, even with heat-denatured albumin. When
the albumin was partially degraded by trypsin, the albumin–luciferin reaction was more
susceptible, and the luminescence tended to decrease. These results indicate that Watasenia
luciferin reacts with intact albumin but is less likely to react with partially degraded albu-
min. Specifically, the state of albumin recognized by Watasenia luciferin is slightly different
from that recognized using the immunoturbidimetric and HPLC methods.

Among the protein precipitation methods evaluated in this study, the acetone method
demonstrated the best correlation with the results of the immunoturbidimetric method
(Figure 7D). This may be because most proteins were precipitated by the acetone method,
and foreign substances were successfully removed. The ammonium sulfate and PEG meth-
ods may have incompletely removed the coexisting molecules, or the albumin may not
have been precipitated completely. Acetone precipitation is often used for the pretreatment
of proteomes [28] and is seldom used with the expectation of protein activity after precipita-
tion because it is an organic solvent. A surprising finding was that the ability of the binding
to luciferin was retained after acetone precipitation. Although acetone precipitation was
successful in this study, centrifugation is a time-consuming process and must be improved
if a simpler process is available.

When the results of the immunoturbidimetric method were compared with those
of the Watasenia luciferin method after acetone precipitation, a correlation (R = 0.880)
was obtained (Figure 7D); however, the Watasenia luciferin method tended to produce
lower values. This is consistent with the fact that Watasenia luciferin is less likely to
react with denatured or half-degraded albumin compared with the immunoturbidimetric
method (Figure 5). We found that the luciferin method using acetone precipitation yields
lower values compared to immunoturbidimetry, especially in the urine that contains high
concentrations of albumin (Figure 8). Urine with high albumin concentrations may have a
high percentage of half-degraded or modified albumin.

Currently, there is a lack of a perfect method for quantifying urinary albumin con-
centrations. Techniques such as the immunoturbidimetric assay, which is based on the
antigen–antibody reaction, cannot detect peptide albumin and do not detect immuno–
unreactive albumin [20]. However, the HPLC method, which is based on the principle of
fractionation by molecular weight, can detect immuno–unreactive albumin, but it has the
possibility of measuring proteins other than albumin that have similar molecular weights.
The luciferin-based detection method we have developed in this study also tends to specifi-
cally detect intact albumin but not degenerated albumin. As these methods differ in terms
of the state of albumin they detect, multiple methods of measurement can provide detailed
information regarding the state of albumin in the urine. Urinary albumin has various
states, such as intact, immuno–unreactive, peptide albumin, and dimers, and studies have
reported that these states change according to the disease state [29–32]. A combination of
multiple methods may help in clarifying the relationship between urinary albumin status
and disease.

The luciferin-based albumin assay is a simple method based on the reaction with
a single compound. This is an advantage, and there is no such thing as differences in
antibody reactivity due to differences in immunized animals. If a method to purify urinary
protein in a short time is developed, it is expected to become a simple and stable method
for measuring urinary albumin.

4. Materials and Methods
4.1. Synthesis of Watasenia Luciferin

To obtain the desired Watasenia luciferin 1, we synthesized pyrazin-2-amine 5 and ac-
etal derivative 8, according to a known method [33]. Commercially available pyrazine 2
was converted into dibromopyrazine 3 by the treatment of N-bromosuccinimide in
dimethylsulfoxide and H2O. The Negishi cross-coupling reaction of 3 yielded the benzyl
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derivative 4, which was further transformed into the desired pyrazin-2-amine 5 by the
Suzuki–Miyaura coupling reaction in the presence of a catalytic amount of (PhCN)2PdCl2
and 1,4-bis(diphenylphosphino)butane (dppb) as a ligand, as shown in Scheme 1.

The phenolic hydroxyl group of p-hydroxybenzaldehyde 6 was protected with a
tert-butyldimethylsilyl (TBS) group, followed by a reduction of the resulting TBS ether
with NaBH4 to produce the benzyl alcohol derivative 7 [34]. The benzyl chloride deriva-
tive derived from 7 was then converted into the corresponding Grignard reagent, which
had to be further reacted with ethyl diethoxyacetate at −78 ◦C to obtain the desired
acetal 8. The Grignard reagent was prepared according to the method described by
Shrestha and Bossmann et al. [33], but the desired acetal derivative 8 was seldom obtained
(7% over two steps). However, when the Grignard reagent was prepared in the presence of
1,2-dibromoethane, 75% of the desired acetal derivative 8 was synthesized over two steps,
as shown in Scheme 2.

After obtaining the desired pyrazin-2-amine 5 and acetal derivative 8, we examined
the synthesis of 1 according to the method described by S. Kojima et al., as shown in
Scheme 3 [23]. The mixture of 5 and 8 in EtOH and 10% HCl solution were refluxed
to yield 65% of the 3,7-dihydroimidazo[1,2a]pyrazine-3-one derivative 9. Finally, the
sulfonation of 9 was performed with sulfur trioxide pyridine complex (SO3-pyridine),
followed by treatment with sodium methoxide to form the sodium salt of 1. However, the
desired sodium salt of 1 could not be obtained, and only a complex mixture was obtained
(Scheme 3).

In 2003, M. Adamczyk et al. proposed a mechanism for luminescence via anion B
when a series of derivatives A with a 3,7-dihydroimidazo[1,2a]pyrazine-3-one skeleton
are deprotonated, as shown in Supplementary Figure S1 [35]. We believed that the failure
to obtain the sodium salt of 1 was due to the decomposition of the corresponding bis-
sulfonate anion of 9 by the addition of sodium methoxide, and we decided to attempt other
sulfonation reaction conditions. We attempted the synthesis of 1 under acidic conditions,
noting that the 3,7-dihydroimidazo[1,2a]pyrazine-3-one derivative 9 was obtained from
5 and 8 in a moderate yield after refluxing with 10% HCl solution. By treating 9 with an
excess amount of chlorosulfonic acid, the desired 1 was successfully synthesized with a
65% yield (Scheme 4 and Supplementary Figure S2).

See the supplementary methods for more information.

4.2. Urine Samples and Other Materials

Urine samples were collected from 20 patients with diabetes from the University of
Toyama Hospital and stored at −20 ◦C. Before usage, the urine samples were centrifuged
at 17,800× g for 5 min to remove insoluble components.

The proteins (1 mg/mL) shown in Figure 1 consisted of papain (Wako), trypsin
(Nacalai), RNaseA (Roche), transferrin (Nacalai), xanthine oxidase (Nacalai), collagenase
(Worthington Biochemical), dispase (Thermo Fisher), proteinase K (Roche), human serum
albumin (Nacalai), and bovine serum albumin (Sigma). IgG, shown in Figure 1, was raised
in our laboratory [36].

4.3. Measurement of Luminescence

The intensity of luminescence was measured using a multiplate reader ARVO X2
(PerkinElmer). The solution used in the reaction consisted of 80 mM Tris (pH 10), 200 mM
H2O2, 200 µM Watasenia luciferin, and 1 mg/mL protein sample (Figures 1, 2 and 5),
which was performed in a 96-well plate (Nunclon Delta white microwell, Nunc). Spectrum
measurements were performed using SpectraMax i3 (Molecular Device). The intensity
of luminescence was measured at wavelengths at every 20 nm width. The solution con-
sisted of 80 mM Tris (pH 10), 200 mM H2O2, 200 µM Watasenia luciferin, and 1 mg/mL
human albumin.



Int. J. Mol. Sci. 2022, 23, 8342 12 of 14

4.4. Immunoturbidimetric Assay

N-assay TIA Micro Alb (Nittobo) was used to measure the albumin concentration
in urine samples via immunoturbidimetry. According to the manufacturer’s instructions,
3.5 µL of urine samples and standards was mixed with 150 µL of buffer R1 in a 96-well plate
(BM6000, BM Bio) and incubated at 37 ◦C for 5 min. Then, 50 µL of buffer R2 was added to
the mixture and incubated at 37 ◦C for 5 min. Absorbance was measured at wavelengths of
700 and 340 nm using a SpectraMax i3 multiplate reader. The signal intensity of the sample
was obtained by the subtraction of the OD value at 700 nm from that at 340 nm. Purified
human albumin (Nacalai) was used as a standard.

4.5. Heat Inactivation and Trypsin Digestion of Human Albumin

Human albumin was heat-inactivated using a heat block (Zymoreactor II, ATTO) for
1, 2, 5, 10, and 30 min at 95 ◦C, and then it was immediately cooled on ice. For trypsin
treatment, purified albumin was reacted with trypsin (Nacalai) at various concentrations
(0%, 2.5 × 10−2%, 1.25 × 10−3%, 2.5 × 10−3%, and 2.5 × 10−4%) for 30 min at 37 ◦C. After
the completion of the reaction, the albumin was immediately reacted with luciferin, and the
luminescence was measured. The same samples were subjected to immunoturbidimetric
assays to measure OD.

4.6. Acetone Precipitation

A mixture of 100 µL of the patient urine sample and 900 µL of the ice-cold acetone
was cooled overnight at −20 ◦C. Next, the mixture was centrifuged at 17,800× g for 30 min,
and the resulting precipitate was dissolved in 50 µL of PBS. Purified human albumin was
treated in the same manner to be used as a standard.

4.7. Ammonium Sulfate Precipitation

Saturated ammonium sulfate solution (900 µL) was mixed with 100 µL of the urine
sample and allowed to stand on ice for 1 h. It was then centrifuged at 17,800× g for 30 min,
and the resulting precipitate was dissolved in 50 µL of PBS.

4.8. PEG Precipitation

PEG 8000 (MP Biomedicals) was dissolved in water to prepare a 50% (w/w) solution.
Then, 100 µL of the PEG solution was mixed with 100 µL of the urine sample, placed on ice
for 1 h, and centrifuged at 17,800× g for 30 min to precipitate the protein. The precipitate
was dissolved in PBS and used for the reaction with luciferase.

4.9. Spike-Recovery Test

HSA (100 µg) was added to the patient urine (100 µL), acetone-precipitated, and
reacted with luciferin to measure luminescence. The difference between the luminescence
of urine with and without HSA was calculated. The same procedure was performed with
PBS, and the recovery rate was calculated. This confirmed whether the components in the
urine inhibited the reaction of HSA with luciferin.

4.10. Statistical Analysis

One-way ANOVA with Dunnett’s test or Tukey’s test was conducted to determine
the statistical significance. The data were expressed as the mean ± SEM. p < 0.05 was
considered to indicate statistical significance. In Figures 3 and 7, the approximate straight
line was computed by the least-squares method.

5. Conclusions

Watasenia luciferin specifically reacts with albumin and emits light in proportion to
its concentration. We demonstrated that this luminescence can be used as an indicator to
detect urinary albumin after acetone precipitation. This is a new principle for quantifying
urinary albumin.
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