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Network meta-analysis (NMA) is gaining popularity for comparing multiple
treatments in a single analysis. Generalized linear mixed models provide a uni-
fying framework for NMA, allow us to analyze datasets with dichotomous,
continuous or count endpoints, and take into account multiarm trials, potential
heterogeneity between trials and network inconsistency. To perform inference
within such NMA models, the use of Bayesian methods is often advocated.
The standard inference tool is Markov chain Monte Carlo (MCMC), which
is computationally expensive and requires convergence diagnostics. A deter-
ministic approach to do fully Bayesian inference for latent Gaussian models
can be achieved by integrated nested Laplace approximations (INLA), which
is a fast and accurate alternative to MCMC. We show how NMA models fit in
the class of latent Gaussian models and how NMA models are implemented
using INLA and demonstrate that the estimates obtained by INLA are in
close agreement with the ones obtained by MCMC. Specifically, we emphasize
the design-by-treatment interaction model with random inconsistency param-
eters (also known as the Jackson model). Also, we have proposed a network
meta-regression model, which is constructed by incorporating trial-level covari-
ates to the Jackson model to explain possible sources of heterogeneity and/or
inconsistency in the network. A publicly available R package, nmaINLA, is
developed to automate the INLA implementation of NMA models, which are
considered in this paper. Three applications illustrate the use of INLA for
a NMA.
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1 INTRODUCTION

Network meta-analysis (NMA)1 or mixed treatment com-
parison,2 which is a generalization of the pairwise

(2 treatments) meta-analysis,3 allows us to compare mul-
tiple treatments, although they have not been evaluated
directly in a single trial. In recent years, with the increasing
number of alternative treatment options, NMA gains an
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increasing popularity especially in the medical literature.4

The NMA can be regarded as the next generation evi-
dence synthesis tool or the new norm for comparative
effectiveness research.5

Many statistical models and parametrizations have been
proposed for NMA. The standard approach to NMA is the
contrast-based model where the information of the rela-
tive treatment effects, expressed for example as log odds
ratios, is pooled over trials. An alternative approach is the
arm-based (AB) model6 where absolute effects on each
treatment arm, for instance, log odds, are pooled. For fur-
ther details of these 2 methods, we refer readers to Piepho,7

Dias, and Ades8 and Hong et al.9 In this paper, we exclu-
sively consider contrast-based modeling approaches, and
we return to AB models in the discussion.

A contrast-based model can be defined using a
difference-based likelihood or an arm-based likelihood (not
to be confused with AB models).8 The difference-based
likelihood approach uses a normal approximation to pro-
duce a summary estimate and its variance for each relative
treatment effect. Also, if there are no events in at least one
of the trial arms for datasets with dichotomous endpoints,
a continuity correction is needed. On the other hand, a
contrast-based model with an arm-based likelihood avoids
normal approximations and continuity corrections and
uses, for instance, a Binomial likelihood for datasets with
dichotomous end points. For these reasons, an arm-based
likelihood approach is preferable , and hence, we focus on
these types of models in the following.

Two of the most important challenges regarding NMA
models are heterogeneity between trials and lack of con-
sistency (inconsistency) in estimated treatment effects.
Inconsistency arises when treatment effects obtained by
direct evidence and indirect evidence(s) do not agree.
The NMA models may be divided into 2 categories accord-
ing to their approaches to inconsistency. Firstly, the
loop-inconsistency approach assumes that an inconsistency
only occurs in closed loops of the network; these are rep-
resented by inconsistency random effects2 or node split-
ting.10 Secondly, the design-inconsistency approach was
introduced to handle issues of the loop-inconsistency
method with the presence of multiarm trials. The incon-
sistency parameters are treated as fixed effects by Higgins
et al11 and as random effects by Jackson et al12 we refer
the model using random inconsistency parameters as Jack-
son model. Moreover, to explain possible sources of het-
erogeneity and inconsistency in the network, a network
meta-regression model (an extension of an NMA model by
including study-level covariates) can be used.13

The NMA models can be treated using frequentist
methods. Recently, to fit the Jackson model with a
difference-based likelihood, Jackson et al14 and Jack-
son et al15 proposed 2 estimation methods, which are

Highlights

What is already known: Bayesian inference
using Markov chain Monte Carlo (MCMC) is one
of the most popular approaches for fitting network
meta-analysis (NMA) models to take into account
possible heterogeneity and inconsistency in the net-
work.
What is new: As an alternative to MCMC, inte-
grated nested Laplace approximations (INLA) can
be used to make inference for widely used NMA
models including the design-by-treatment inter-
action model. INLA is faster than MCMC and
does not require checking of convergence diagnos-
tics unlike MCMC. Furthermore, a new network
meta-regression model is suggested to explain pos-
sible sources of heterogeneity and/or inconsistency.
Potential impact for RSM readers outside the
authors' field: To make it more accessible to
NMA-practitioners, a publicly available R package,
nmaINLA, is developed for fitting the discussed
NMA models using INLA.

extensions of the pairwise random-effects meta-analysis
introduced by DerSimonian and Laird.16 Furthermore, a
likelihood-based method was introduced by Law et al17

and a Paule-Mandel estimator suggested by Jackson et al18

to fit the Jackson model with a difference-based like-
lihood. Alternatively, Bayesian inference is often used
to fit NMA models. The standard way for a Bayesian
inference is Markov chain Monte Carlo (MCMC), which
is a simulation-based technique. The statistical software
packages WinBUGS,19 OpenBUGS,20 JAGS,21 and Stan22

are popular MCMC tools. However, MCMC is compu-
tationally expensive and requires the careful inspection
of convergence diagnostics by the user. A determinis-
tic approach to do Bayesian inference for latent Gaus-
sian models (LGMs) has been proposed by Rue et al,23

the integrated nested Laplace approximations (INLA),
which is a fast and accurate alternative to MCMC. Paul
et al24 introduced INLA implementation of bivariate
meta-analyses of diagnostic test studies. Sauter and Held25

showed that many NMA models that are in the class of
LGMs and INLA can be used as an inference technique
alternative to MCMC for NMA models. They demon-
strated how INLA can be applied to a NMA model with
difference-based likelihood,1 with arm-based likelihood2

and the node-splitting approach.10

The primary contribution of this paper is to introduce
the usage of INLA for statistical inference within the
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Jackson model with arm-based likelihood. Moreover, we
propose a network meta-regression model as an extension
of the Jackson model. We use a common regression frame-
work, which allows us to analyze datasets with different
type of outcomes including continuous, dichotomous, and
count using INLA. Another contribution to the existing
literature is the introduction of an R package, nmaINLA
(https://CRAN.R-project.org/package=nmaINLA), which
is developed to automate INLA implementation of NMA
models described in the paper and publicly available from
CRAN. We demonstrate that the estimates obtained by
INLA are very close to the ones by MCMC. In Section 2, we
describe different NMA models including methods to deal
with the inconsistency in the network. In Section 3, we dis-
cuss Bayesian inference of NMA models using INLA. The
INLA implementation of NMA models is demonstrated
using 3 applications in Section 4. We close with some
conclusions and provide a brief discussion.

2 STATISTICAL MODELS FOR NMA

We use a generalized linear mixed model (GLMM) frame-
work to describe network meta-analysis models. In Section
2.1, we describe a fixed effect model, then a consis-
tency model in Section 2.2, and continue with the
design-inconsistency in Section 2.3. We propose a novel
network meta-regression model in Section 2.4.

2.1 Fixed effect model
The models described here follow the ones described in
Dias et al26 and Dias and Ades.8 To model datasets with
different type of end points, we describe a common regres-
sion framework. The essential idea is that the basic model
remains the same, but the likelihood and the link function
can change to reflect the nature of the data (continu-
ous, dichotomous, or count), and the sampling process
that generated it (eg, Normal, Binomial, or Poisson). As
a special case, a pairwise meta-analysis is just a net-
work meta-analysis with only 2 treatments included in
the network.

For simplicity, we firstly consider a fixed effect NMA
model. Each trial i ∈ {1, 2, … , S} has treatment
arms, which are defined using trial-specific treatment
indices k ∈ {1, 2, … ,K} where K ≥ 2, and T is
the total number of treatments. The first treatment of
a trial i is baseline treatment, t1, compared with the
nonbaseline treatments. We distinguish trial-specific base-
line treatment t1 from the reference treatment, say treat-
ment 1, which may or may not be present in trial i. For
instance, to parametrize an NMA dataset, if there exists
placebo treatment in one of the trials, placebo can be

chosen as the reference treatment, but placebo do not
necessarily present in each trial in the dataset. We spec-
ify a likelihood with some unknown parameters, 𝑝(𝑦|𝜃i,tk ),
where y is the observed data and 𝜃i,tk is the relative treat-
ment effect parameter of interest of arm tk of study i. A link
function G(.) is used to transform 𝜃i,tk onto a scale where
its effects can be assumed to be additive

G(𝜃i,tk ) =
{

𝜇it1 , if k = 1
𝜇it1 + dt1tk , otherwise, (1)

where 𝜇it1 is the absolute treatment effect of baseline treat-
ment (t1) in trial i and it is treated as a nuisance param-
eter. Hereafter, subscript t1 is dropped from 𝜇it1 , since it
is redundant. The main interest is in dt1tk , which is the
relative treatment effect between t1 and tk.

The parametrization of the network is achieved using
basic parameters, which can be chosen as any set includ-
ing T − 1 available treatment comparisons in the network.
All other available treatment comparisons in the network
are functional parameters, which can be calculated from
the basic parameters. For instance, if dt1t2 and dt1t3 are basic
parameters in the network, then a functional parameter
dt2t3 can be calculated using following equation

dt2t3 = dt1t3 − dt1t2 . (2)

Now, we consider the models for datasets with a dichoto-
mous outcome. Assume that the number of events 𝑦i,tk and
the number of patients ni,tk are given in treatment arm tk
of trial i. Then the likelihood function can be written as
𝑦i,tk ∼ Bin(𝜋i,tk ,ni,tk ) and a logit link function is used to
define the treatment effect parameter (G(𝜃i,tk ) = logit(𝜃i,tk )
in Equation 1).

Likewise, the NMA models for continuous outcome data
can be formulated using a normal likelihood with identity
link function.26 When the data available for the NMA are
counts, a Poisson likelihood with log link can be used.26

For simplicity, from this point on, we exclusively consider
models for dichotomous outcomes.

2.2 Consistency model
As for the pairwise meta-analysis, heterogeneity between
trials can be taken into account using random effects in the
NMA context. If there is no multiarm trial in the network,
trial-specific heterogeneity random effects, say 𝛾i,t1tk 's, are
added to Equation 1 and it is assumed that the 𝛾i,t1tk 's are
independently (and normally) distributed with mean zero
and some variance (heterogeneity variance). However,
treatment comparisons in a multiarm trial are not inde-
pendent, since all nonbaseline treatments are compared
to the same baseline treatment. To illustrate this situation,
consider a 3-arm trial i including treatments t1, t2, and

https://CRAN.R-project.org/package=nmaINLA
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t3. To account for this dependency within trial i, a multi-
variate normal distribution with mean zero vector is used
for the random effects vector 𝜸i = (𝛾i,t1t2 , 𝛾i,t1t3)

⊺. A simple
but a convenient structure of the covariance matrix of the
multivariate normal distribution is suggested by Higgins
and Whitehead.27 In general, we model heterogeneity as

𝜸i ∼ T−1(𝟎,Σ𝛾 ), (3)

where 𝚺𝛾 is a symmetric homogeneous covariance matrix
with diagonal entries equal to 𝜏2 and nondiagonal entries
set to 𝜏2∕2. This form of covariance matrix is justified by
the assumption that heterogeneity variances are the same
for each treatment comparison for each trial.27 Inclusion
of heterogeneity random effects in Equation 1 with a logit
link leads to the following model

logit(𝜋i,tk ) =
{

𝜇i, if k = 1
𝜇i + dt1tk + 𝛾i,t1tk , otherwise. (4)

We refer to this model as consistency model, since it
assumes that there is no inconsistency in the network.

2.3 Design-inconsistency model
The consistency assumption may not hold up if there is
discrepancy between evidence coming from direct esti-
mates and indirect estimates. To take into account the
possible inconsistency in the network, the Lu-Ades model2

or design-inconsistency approaches can be used. The
Lu-Ades model adds inconsistency parameters to closed
loops where loop inconsistency may arise. However, Hig-
gins et al11 showed that the estimates of the Lu-Ades
model depend on treatment ordering. Also, Jackson et al28

have shown that the Lu-Ades model is a restricted ver-
sion of the design-inconsistency model. Therefore, we
exclusively consider the design-inconsistency model in
this paper. The design-by-treatment interaction model for
inconsistency was introduced in Higgins et al.11 The cen-
tral concept of this approach is the design, which refers
to the sets of treatments included in a particular study.
We use D(i) = 1, 2, … , D̄ to denote the design of trial
i. For example, if the first design compares treatments 1
and 2, then D = 1 refers to 2 arm-trials, which com-
pare treatments 1 and 2. Design inconsistency means
differences in treatment effects between designs. Higgins
et al11 treated design-inconsistency parameters as fixed
effects, whereas Jackson et al12 treated them as random
effects; hereafter, we use the term Jackson model for the
latter. The advantage of treating inconsistency parameters
as fixed effects is that no common distribution assumption
is needed as in the Jackson model.11 On the other hand,
the Jackson model introduces inconsistency parameters
as random effects. Hence, inconsistency is treated as an

additional source of variation alongside heterogeneity as in
the consistency model. The Jackson model also facilitates
the sensitivity analyses in terms of a single sensitivity
parameter (the inconsistency variance), and more impor-
tantly, we can “estimate average treatment effects across all
designs, rather than the design-specific treatments effects
we obtain when using fixed effects for the inconsistency
parameters .”12 In this section, we only discuss the Jackson
model.

The Jackson model relaxes the consistency relation
dt1tk = dtltk − dtlt1 to dt1tk = dtltk − dtlt1 + 𝜔

D(i)
t1tk

where 𝜔
D(i)
t1tk

is

a design-specific inconsistency random effect. Hence, 𝜔D(i)
t1tk

is added to Equation 4 resulting in

logit(𝜋i,tk ) =
{

𝜇i, if k = 1
𝜇i + dt1tk + 𝛾i,t1tk + 𝜔

D(i)
t1tk

, otherwise. (5)

For the inconsistency random effects, Jackson et al12 pro-
posed similar assumptions for the heterogeneity random
effects (see Equation 3):

𝝎
D(i) ∼ T−1(𝟎,𝚺𝜔), (6)

where 𝚺𝜔 denotes a square matrix with the diagonal
entries that are all 𝜅2 and all other entries are 𝜅2∕2. The
structure𝚺𝜔 is justified by assuming that the inconsistency
variances across designs are same for every treatment
comparisons. The inconsistency variance 𝜅2 is a mea-
sure of the degree of the inconsistency in the whole net-
work, and each inconsistency random effect𝜔D(i)

t1tk
describes

where particular inconsistencies arise. Note that incon-
sistency random effects are defined based on the data at
hand, and they should be specified after the set of the
designs, D(i)′s, of the network is determined. To illustrate
how to choose the inconsistency parameters, consider a
simple NMA dataset that includes one 3-arm trial and
two 2-arm trials. The 3-arm trial includes treatments 1, 2,
3; and one 2-arm trial includes treatments 1 and 2, and
the other trial includes 1 and 3. In this example, there are
3 different designs (D = 1, 2, 3) and 4 different inconsis-
tency random effects, namely, 𝜔1

12, 𝜔
1
13, 𝜔

2
12, and 𝜔3

13.
To parametrize the network, any T − 1 treatment com-

parisons can be chosen as basic parameters as in the fixed
effect and consistency model. However, for the implemen-
tation of the Jackson model (as well as fixed effect and
consistency models), as described in Law et al,17 we deter-
mine a reference treatment, treatment 1, and then choose
relative treatment effects compared to the reference treat-
ment as basic parameters d1tk 's where tk ≠ 1. This is done
only to make implementation and interpretation easier,
since the Jackson model is invariant to the choice of basic
parameters.
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2.4 Network meta-regression
The exploration of covariate-by-treatment interactions in
an NMA context or network meta-regression13 is used to
explain potential sources of heterogeneity in the network.
These models can be constructed by extending the con-
sistency or the fixed effect model with the inclusion of
study-level covariates, say xi's. Therefore, an NMA model
is a network meta-regression model without covariates. On
the other hand, an investigation of covariates to explain
inconsistency in the network may also be of interest. To
achieve this, some relevant covariates can be incorporated
to Jackson model. As a result, if the inconsistency vari-
ance is substantially decreased, then we may conclude
that the included covariate explained the reduced amount
of the total inconsistency in the network.12 We therefore
propose a network meta-regression model to achieve this.
On the other hand, even if we only include randomized
controlled trials for our analysis, meta-regression (pair-
wise or network) inherits the challenges attached to all
observational studies, for example, confounding. In other
words, we may obtain a correlation between a covariate
and a relative treatment effect; however, the correlation
may not be a causation. This is because it is not possi-
ble to randomize patients to one covariate (see Thompson
and Higgins,29, section 3 for further discussion of limitations
of meta-regression).

As explained in Dias et al,13 covariate-by-treatment inter-
actions can be modeled in 3 different ways: unrelated
interaction coefficients for each treatment, exchangeable
and related interaction coefficients, and one constant
interaction coefficient for all treatments. By following
the suggestion of Dias et al,13 we only discuss the third
model because of its easier interpretation. The third model
assumes that all covariate-by-treatment interactions are
identical; that is, a constant interaction coefficient 𝛽 is
assumed across all treatments relative to the reference
treatment implying the same covariate effect for each treat-
ment relative to the reference (𝛽 = 𝛽1tk for any tk ≠ 1).30

That means, the treatment effects relative to the reference
treatment, d12, d13, … , d1T, now become d12 + xi · 𝛽, d13 +
xi · 𝛽, … , d1T + xi · 𝛽. In the case of continuous covariates,
we use centered covariate values (xi − x̄) because this is
computationally more stable. To fit the proposed network
meta-regression model, Equation 5 becomes

logit(𝜋i,tk ) =
{
𝜇i, if tk = 1
𝜇i +d1tk+𝛾i,1tk+𝜔

D(i)
1tk

+(xi − x̄) · 𝛽, otherwise,
(7)

where 𝛽 represents the log odds ratio of an event per unit
change in the (centered) covariate for treatment tk rel-
ative to the reference treatment 1. Note that, with this
model, covariate-by-treatment interactions of a treatment

effect relative to a treatment other than the reference treat-
ment is assumed to be zero. For example, if we consider
covariate-by-treatment interaction of treatment 3 relative
to treatment 2, then interaction terms cancel out as fol-
lows:

(d13 + (xi − x̄) · 𝛽) − (d12 + (xi − x̄) · 𝛽) = d13 − d12. (8)

This suggests that the choice of the reference treatment
is important, and it affects the interpretation of the results.
Therefore, we need to determine a reference treatment (say
treatment 1), and basic parameters as d1tk 's where tk ≠ 1.
Otherwise, we do not obtain any meaningful interpreta-
tion from the results of the fitted model.

3 BAYESIAN INFERENCE FOR
FITTING NETWORK
META-ANALYSIS MODELS USING
INLA

The NMA models that we described in Section 2 are in the
class of GLMMs. Fong et al31 have shown that INLA can be
used to fit GLMMs; hence, it is possible to make inference
for our NMA models using INLA. To be more precise, we
can show that NMA models are in the family of LGMs as
described in Rue et al.32, section 2.1 This can be achieved by
describing NMA models with a 3-stage model formulation
as follows:

Stage 1: Assume that N is the total number of arms of
all trials, 𝜇 is the vector of all baseline treatment effects,
db is the vector of the basic parameters, and 𝛽 is the con-
stant interaction coefficient. Also, the random effects
vector 𝜸 contains all trial-specific heterogeneity ran-
dom effects. Likewise, 𝝎 contains all inconsistency ran-
dom effects, 𝜔D(i)

t1tk
for the Jackson model. The observed

data y = {y1, … , yN} is described by the likelihood

𝑝(y|𝜶,Ψ) = N∏
i=1

𝑝(𝑦i|𝛼i,Ψ), (9)

where 𝜶 = (𝜇,db, 𝛽, 𝜸,𝝎) includes all model parame-
ters, and hyperparameters are denoted by 𝚿 = (Ψ1 =
𝜏2,Ψ2 = 𝜅2).
Stage 2: It is assumed that random effects 𝜸 and 𝝎 are
both normally distributed (Equations 3 and 6). Also, if
we assume normal priors for all elements of 𝜇, db, and
for 𝛽, then the joint distribution for𝜶 has a multivariate
normal distribution (𝜶 ∼  (𝟎,ΣΨ)), which is called the
latent Gaussian field.
Stage 3: Lastly, priors are defined for the hyperparam-
eters 𝚿 = (Ψ1 = 𝜏2,Ψ2 = 𝜅2). Note that normal
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as well as nonnormal priors can be selected for the
hyperparameters.

Now, we briefly review how INLA computation
approach works. Basically, the INLA methodology uses
multiple Laplace approximations33 and numerical integra-
tion. For our NMA models, the joint posterior distribution
is given by

𝑝(𝜶,Ψ|y) ∝ 𝑝(Ψ) × 𝑝(𝜶|Ψ) × N∏
i=1

𝑝(𝑦i|𝛼i,Ψ)

∝ 𝑝(Ψ) × ΣΨ
−1∕2 exp

(
−1

2
𝜶

TΣΨ
−1
𝜶 +

N∑
i=1

log (𝑝(𝑦i|𝛼i,Ψ))

)
.

Our main objective is computing the marginal posterior
distributions of 𝜶 and 𝚿. For 𝜶, we can write

𝑝(𝛼i|y) = ∫ 𝑝(𝛼i|Ψ, y)𝑝(Ψ|y)dΨ, (10)

which is evaluated via the approximation

�̃�(𝛼i|y) = ∫ �̃�(𝛼i|Ψ, y)�̃�(Ψ|y)dΨ. (11)

Thus, we need to calculate �̃�(Ψ|y) and �̃�(𝛼i|Ψ, y). For
�̃�(Ψ|y), we can write

𝑝(Ψ|y) = 𝑝(𝜶,Ψ|y)
𝑝(𝜶|Ψ, y)

=
𝑝(y|𝜶,Ψ)𝑝(𝜶,Ψ)𝑝(Ψ)

𝑝(y)
1

𝑝(𝜶|Ψ, y)

≈
𝑝(y|𝜶,Ψ)𝑝(𝜶|Ψ)𝑝(Ψ)

�̃�(𝜶|Ψ, y)
|𝜶=𝜶∗(Ψ) = �̃�(Ψ|y),

where �̃�(𝜶|Ψ, y) is the Laplace approximation of p(𝜶|𝚿, y)
and 𝜶

∗(𝚿) is the mode for a given 𝚿. The calculation
of �̃�(𝛼i|Ψ, y) is performed using the simplified Laplace
approximation, which is based on a Taylor expansion of the
Laplace approximation around mode.34

Then Equation 11 can be solved using numerical inte-
gration:

�̃�(𝛼i|y) ≈ ∑
𝑗

�̃�(𝛼i|Ψ𝑗 , y)�̃�(Ψ𝑗|, y)𝚫j (12)

for some integration points 𝚿j with appropriate weights
𝚫j. The weights 𝚫j depend on the selection of the val-
ues 𝚿j. The default selection scheme in INLA is the
central composite design strategy. In the central com-
posite design strategy, the mode of Ψ∗ of �̃�(Ψ𝑗|, y) and

the Hessian at the mode are located. Then some rele-
vant points in 𝚿-space (a q-dimensional space where q
is the number of hyperparameters) are selected for per-
forming second-order approximation (see Rue et al23,
section 6.5 for details). Therefore, with this strategy,
instead of laying out a dense grid of integration points , for
example, using points with equal weights, only a limited
number of well-chosen points are used. Lastly, marginal

posterior densities for p(Ψk|y) can be obtained similarly
from p(𝚿|y).35

The INLA R package, hereafter referred as R-INLA,
provides an interface for R to INLA (a free-standing pro-
gram) so that models can be fitted using standard R com-
mands. Additional to posterior marginals, R-INLA also
provides estimates of the deviance information criterion
(DIC),36 and the Watanabe-Akaike information criterion.37

The R-INLA package is available on INLA website (http://
www.r-inla.org/). The use of R-INLA to fit different NMA
models including Lu-Ades model is explained in Sauter
and Held25 and the accompanying Supporting Informa-
tion. However, for the practitioner carrying out an NMA,
the range of options and the required knowledge of avail-
able features in R-INLA might be overwhelming. Fortu-
nately, the data preparation and postprocessing steps can
be automated. To this end, we present a new R package
nmaINLA, which is a purpose-built package defined on
top of R-INLA extracting only the features needed for
network meta-analysis. Our package nmaINLA (https://
CRAN.R-project.org/package=nmaINLA) implements all
NMA models described in the text. nmaINLA extracts
the features needed for NMA models from R-INLA and
presents in an intuitive way. Therefore, users do not
need to know the structure of the general R-INLA out-
put object. A tutorial for the installation and how to use
the nmaINLA package is given in the Supporting Infor-
mation. The development version of nmaINLA is avail-
able on Github (https://github.com/gunhanb/nmaINLA).
For the NMA models that are not supported by
nmaINLA, one may extend our package or use directly
the R-INLA.

We compare the results obtained using the INLA
approach with MCMC. For the MCMC method, we use
JAGS21 from within R with the help of R2jags38 R pack-
age. Raw data, R code, and JAGS code to reproduce all
results of this paper are presented in the Supporting Infor-

http://www.r-inla.org/
http://www.r-inla.org/
https://CRAN.R-project.org/package=nmaINLA
https://CRAN.R-project.org/package=nmaINLA
https://github.com/gunhanb/nmaINLA
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mation. All analyses were run on a laptop with Intel(R)
Core(TM) 4 Duo i3-6100U processor 2.30 GHz.

4 APPLICATIONS

In this section, we illustrate INLA technique using
3 different applications. In Section 4.1, an NMA dataset
in Diabetes is considered as an example to evaluate
the relative effect on HbA1c change of adding different
oral glucose-lowering agents. In Section 4.2, we analyzed
an NMA dataset comparing different interventions to aid
smoking cessation. Lastly, a dataset is considered to com-
pare number of treatments to prevent stroke in patients
with atrial fibrillation in Section 4.3. For the prior spec-
ifications, we use independent normal priors with mean
zero and variance 1000 for all components of 𝜶 in all
3 applications. For the hyperparameters 𝜏 and 𝜅, uni-
form priors on the interval [0, 5] were used in the first
and second applications as in Jackson et al.12 In the third
application, we used uniform priors on the interval [0, 2]
for hyperparameters 𝜏 and 𝜅, which we take from Bat-
son et al.39 For implementations in JAGS, we used the
BUGS code from the code given in Dias et al,26 Jackson
et al,12 and Dias et al13 in Sections 4.1, 4.2, and 4.3,
respectively. Both for the Diabetes and Smoking appli-
cations, after burn-in of 30 000 iterations, 20 000 iter-
ations in the fixed effect and consistency models and
50 000 iterations in the Jackson model were used to
obtain posterior distributions. For the Stroke prevention
application, after burn-in of 50 000 iterations, 50 000
additional iterations were used in the fixed effect and
consistency models (with and without covariate), and
100 000 additional iterations were used for the Jackson
models (with and without covariate). For all 3 applica-
tions, 3 MCMC chains were used with 5 as the thinning
parameter. The number of iterations was chosen to ensure
that all Monte Carlo standard errors were around 0.005.
Convergence diagnostics was checked using JAGS imple-
mentation of Gelman-Rubin statistics,40 as well as visual
inspection of traceplots and autocorrelation plots. We used
DIC as a model comparison criterion, which is available
from R-INLA.

4.1 Diabetes: NMA with continuous
endpoints
The Diabetes dataset is originally analyzed by Senn et al,41

and the raw data are shown in table AI of Senn
et al.41 The dataset includes the results from 26 ran-
domized controlled trials examining the effectiveness of
adding various oral glucose-lowering agents to a base-
line sulfonylurea therapy in patients with type 2 dia-
betes. The outcome measured in the studies was either
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FIGURE 1 Network of trials of Diabetes application. Lines
indicate that there is data available from one or more studies
comparing the two treatments. Width of lines is proportional to the
number of trials for that comparison. The size of the circle is
proportional to the number of participants to that treatment
[Colour figure can be viewed at wileyonlinelibrary.com]

the mean HbA1c level at follow-up or the mean change
in HbA1c level from baseline to follow-up. A total of 10
different treatment types were examined in these studies
(1, placebo; 2, metformin; 3, rosiglitazone; 4, pioglita-
zone; 5, acarbose; 6, miglitol; 7, sulfonylurea alone; 8,
sitagliptin; 9, vildagliptin; 10, benfluorex). Figure 1 shows
the plot of the network of this dataset. One study included
3 treatment arms, while the rest of the studies included
2 treatment arms. There are 16 different designs in the
network. The available data are the sample mean, stan-
dard deviation, and number of patients for each arm
of each study. Firstly, we calculated each standard error
of the sample mean. Since there is a continuous out-
come available, a normal likelihood with identity link is
used to fit the models for this application as described
in Section 2.1. We have fitted the fixed effect model,
the consistency model, and the Jackson model using
both MCMC and INLA. To give some sense of how our
nmaINLA package looks like in a routine data analy-
sis, below we show the corresponding R code to fit the
Jackson model

http://wileyonlinelibrary.com
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Figure 2 shows the posterior median and the 95%
equi-tailed credible interval (CI) obtained by INLA and by
MCMC for all basic parameter estimates of the 3 fitted
models. The estimates of heterogeneity and inconsistency
standard deviations are displayed in Table 1. Individual
inconsistency random effects are displayed in Table 2.
Senn et al41 have fitted fixed effect and consistency mod-
els using frequentist methods to analyze the Diabetes data.
Our results are in broad agreement with their results (see
figures 5 and 7 in Senn et al41).

The median and 95% equi-tailed CI of the heterogene-
ity from Table 1 suggesting a substantial heterogeneity in
the network. However, the estimates of the inconsistency
are very close to zero, and also the individual inconsistency
parameters from Table 2 are almost zero with high stan-
dard deviations. Therefore, we can conclude that there is
no evidence of substantial inconsistency in the network.
The DIC values of the fixed effect model, the consis-
tency model, and the Jackson model are 36.86, −28.82,
and −28.27, respectively. The consistency model offers a
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Fixed effect model
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Jackson model
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d12 d13 d14 d15 d16 d17 d18 d19 d110

FIGURE 2 Median and 95% equi-tailed credible interval (CI) of the marginal posterior distributions of all relative treatment effects by
MCMC and by INLA for the Diabetes data
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TABLE 1 Estimates of heterogeneity and inconsistency standard deviation
of consistency and Jackson model for the Diabetes application

Consistency Jackson
MCMC INLA MCMC INLA

Heterogeneity (𝝉)
Posterior median 0.336 0.335 0.339 0.339
Lower b (95% CI) 0.217 0.218 0.216 0.216
Upper b (95% CI) 0.531 0.531 0.548 0.547
Inconsistency (𝜿)
Posterior median 0.122 0.122
Lower b (95% CI) 0.006 0.007
Upper b (95% CI) 0.480 0.488

Abbreviations: INLA, integrated nested Laplace approximations; MCMC, Markov chain
Monte Carlo.

TABLE 2 Estimated inconsistency parameters obtained from
the fitted Jackson model for the Diabetes dataset

MCMC INLA
Design Parameter Mean Stdev Mean Stdev

1 𝜔1
1,2 −0.01 0.16 −0.01 0.15

2 𝜔2
1,5 −0.01 0.18 −0.01 0.17

𝜔2
1,2 −0.00 0.18 −0.00 0.18

3 𝜔3
1,3 0.04 0.16 0.04 0.16

4 𝜔4
1,4 −0.02 0.17 −0.02 0.17

5 𝜔5
2,4 0.03 0.18 0.03 0.17

6 𝜔6
3,4 −0.01 0.17 −0.00 0.17

7 𝜔7
2,3 0.00 0.17 −0.00 0.16

8 𝜔8
3,7 0.06 0.19 0.06 0.18

9 𝜔9
5,7 −0.00 0.18 −0.00 0.17

10 𝜔10
1,5 0.01 0.18 0.01 0.17

11 𝜔11
1,8 −0.00 0.20 −0.00 0.19

12 𝜔12
1,9 −0.00 0.20 −0.00 0.19

13 𝜔13
2,7 −0.06 0.19 −0.05 0.18

14 𝜔14
1,6 0.00 0.20 −0.00 0.19

15 𝜔15
2,3 0.02 0.17 0.02 0.17

16 𝜔16
1,10 0.00 0.20 −0.00 0.19

Abbreviations: INLA, integrated nested Laplace approximations; MCMC,
Markov chain Monte Carlo.

large improvement in DIC compared to the fixed effect
model, which confirms possible presence of the hetero-
geneity. The DIC value of the Jackson model is very close
to the DIC value of the consistency model. However, as
displayed in Figure 2, including inconsistency random
effects has considerable impact on the credible intervals
(hence, the precisions) of the basic parameters. Therefore,
although there is not strong evidence of any inconsistency
in this network, it has quite considerable impact when it is
included in the model.

1

2

3

4

FIGURE 3 Network of trials of Smoking cessation [Colour figure
can be viewed at wileyonlinelibrary.com]

The MCMC and INLA methods gave very similar results.
If we consider all 3 models, the largest absolute difference
for the posterior median estimate based on MCMC and
INLA among basic parameters was found in the Jackson
model for d18 (0.0059). Furthermore, the largest absolute
difference of the INLA and MCMC posterior mean esti-
mates of individual inconsistency random effects in the
Jackson model was 0.0032. For the Jackson model, the
MCMC run took 30 seconds while INLA only took
4.9 seconds.

http://wileyonlinelibrary.com
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FIGURE 4 Median and 95% equi-tailed credible interval (CI) of the marginal posterior distribution of all relative treatment effects by
MCMC and by INLA for the Smoking cessation data

4.2 Smoking cessation: NMA
with dichotomous endpoints
The second application includes 24 trials investigating
interventions to aid smoking cessation and has been
considered by Jackson et al12 and Sauter and Held25 among
others. The number of individuals who successfully quits
smoking after 6 to 12 months is reported for 4 different
interventions (1 , no contact; 2 , self-help; 3 , individual
counseling; and 4 , group counseling). The plot of the net-
work is displayed in Figure 3. There are two 3-arm trials,
one for treatments 1, 3, and 4 and one for treatments 2,
3, and 4. And there are 8 different designs in the network.

Figure 4 shows the posterior median and the 95%
equi-tailed CI obtained by INLA and by MCMC for basic
parameter estimates of the consistency and the Jackson
model. Furthermore, the marginal posterior densities from
the Jackson model are displayed in Figure 5 as histograms
of the MCMC samples and as solid lines of the INLA

results. Finally, Table 3 demonstrates the estimates of
inconsistency random effects obtained by MCMC and
INLA. Jackson et al12 presented the fitted consistency and
Jackson model using MCMC for the Smoking dataset. We
obtained very similar results with the results displayed in
table 3 of Jackson et al.12

The posterior median for the heterogeneity standard
deviation is 0.82 with 95% CI [0.55, 1.3] suggesting that
there may be notable heterogeneity in the network. The
posterior median for the inconsistency standard deviation
is 0.4 with 95% CI [0.02, 1.87], suggesting moderate but
highly uncertain inconsistency. Moreover, when we exam-
ine the inconsistency random effects in Table 3, it is hard
to claim that there is strong evidence for the inconsistency
in this network, since standard deviations are very wide.
The DIC values of the consistency model, and the Jackson
model are 326.56 and 326.62, respectively. Since the DIC
values are almost indistinguishable, we may conclude that
no strong inconsistency in the network. On the other hand,
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FIGURE 5 Marginal posterior density estimates of all basic parameters, the heterogeneity and inconsistency variances by MCMC
(histogram) and by INLA (straight line) obtained from the fitted Jackson model for the Smoking cessation dataset [Colour figure can be
viewed at wileyonlinelibrary.com]

as in the Diabetes application, including inconsistency
parameters to the consistency model influences the
precision of the basic parameters, which can be seen from
Figure 4. This observation was also made by Jackson et al.12

We can conclude that both inference techniques, MCMC
and INLA, give similar results in our analysis. Based
on MCMC and INLA of the fitted Jackson model, the
largest absolute difference for the posterior median esti-
mate of the basic parameters was 0.0035 and for the pos-
terior mean estimate of the inconsistency parameters was
0.017 (𝜔5

14). For the Jackson model, the MCMC run took

34.2 seconds while the computing time was 6.5 seconds
with INLA.

4.3 Stroke prevention:
network meta-regression
with dichotomous endpoints
Data have been collected and analyzed by Batson et al,39

and the raw data are given in the supporting information
of their paper. Stroke data include 19 studies that compare
15 different treatments to prevent stroke in patients

http://wileyonlinelibrary.com
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TABLE 3 Estimated inconsistency parameters obtained from the
fitted Jackson model for the Smoking dataset

MCMC INLA
Design Parameter Mean Stdev Mean Stdev

1 𝜔1
1,3 0.03 0.54 0.02 0.53

𝜔1
1,4 −0.26 0.63 −0.28 0.64

2 𝜔2
2,3 −0.06 0.54 −0.07 0.55

𝜔2
2,4 −0.09 0.54 −0.10 0.55

3 𝜔3
1,3 −0.08 0.50 −0.10 0.50

4 𝜔4
1,2 −0.12 0.56 −0.13 0.55

5 𝜔5
1,4 0.39 0.77 0.39 0.76

6 𝜔6
2,3 −0.10 0.54 −0.11 0.55

7 𝜔7
2,4 0.10 0.55 0.09 0.55

8 𝜔8
3,4 −0.04 0.51 −0.03 0.50

Abbreviations: INLA, integrated nested Laplace approximations; MCMC,
Markov chain Monte Carlo.

with atrial fibrillation (AF). Treatments include fixed
low-dose warfarin with or without aspirin, aspirin
monotherapy, aspirin plus clopidogrel, indobufen, idra-
parinux, triflusal, and ximelagatran. The corresponding
network plot is given in Figure 6. The primary outcome
was the number of patients who had stroke events, a
dichotomous end point. The study-level covariate of mean
age is available. We fit a network meta-regression model
as described in Section 2.4 using both MCMC and INLA.
Placebo was chosen to be the reference treatment. Note
that since one study does not have the mean age informa-
tion, the corresponding network meta-regression model
reduced in size by one (hence, 18 studies). In the net-
work meta-regression models, the interaction coefficient
(𝛽) is common for all treatment versus placebo. Table 4
displays the results of the fitted consistency and Jackson
model with no covariate and with covariate information
(mean age) using MCMC and INLA. Moreover, individual
inconsistency random effects of the Jackson model with-
out the covariate information are displayed in Table 5. Our
results are in broad agreement with Figure 2 and Table 1
of Batson et al.39

From the Jackson model using INLA, the poste-
rior median of the heterogeneity standard deviation
is 0.27 with 95% CI [0.02, 0.92] suggesting moderate
heterogeneity in the network. The posterior median of
the inconsistency standard deviation is 0.55 with 95% CI
[0.03, 1.61], suggesting there may be notable inconsis-
tency with high uncertainty in the network. The DIC
values of the consistency model and the Jackson model
without covariates are 283.05 and 283.72, respectively,
which shows that adding inconsistency parameters does
not result any improvement in DIC. From the results of
individual inconsistency random effects, only 𝜔3

26 and 𝜔6
26
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FIGURE 6 Network of trials of Stroke data [Colour figure can be
viewed at wileyonlinelibrary.com]

are relatively large but with very wide standard devia-
tions. On the other hand, the addition of a covariate to
the consistency model and the Jackson model, actually,
increase the estimates of both heterogeneity and incon-
sistency standard deviations (𝜏 and 𝜅). The DIC values
of the consistency model and the Jackson model with
covariates are 271.31 and 272.05, respectively. To compare
the models with covariate and without covariate infor-
mation, we calculate the DIC values of the consistency

http://wileyonlinelibrary.com
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TABLE 4 Quantiles of the marginal posterior distributions of basic parameters, heterogeneity, and inconsistency standard
deviations by MCMC (top) and INLA (bottom) for Stroke application

No covariate Covariate (age)
Consistency Jackson Consistency Jackson
Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5%

MCMC
𝛽 0.02 −0.37 0.38 0.01 −0.37 0.37
d1,2 −1.23 −1.80 −0.72 −1.21 −3.10 0.78 −1.19 −2.41 −0.11 −1.20 −3.43 1.10
d1,3 −1.50 −2.50 −0.59 −1.48 −4.17 1.32 −1.44 −3.17 0.18 −1.46 −4.73 1.91
d1,4 −1.13 −2.10 −0.21 −1.10 −3.83 1.79 −1.07 −2.77 0.46 −1.06 −4.31 2.05
d1,5 −0.68 −1.50 0.18 −0.58 −2.86 2.10 −0.30 −2.13 1.26 −0.25 −3.02 2.77
d1,6 −0.11 −1.31 1.06 0.06 −2.05 3.15 0.03 −1.71 1.84 0.25 −2.34 3.60
d1,7 −0.61 −1.85 0.60 −0.64 −3.50 2.40 −0.55 −2.44 1.13 −0.58 −3.75 2.61
d1,8 −0.47 −1.45 0.49 −0.40 −3.18 2.50 −0.41 −2.12 1.16 −0.41 −3.65 2.83
INLA
𝛽 0.01 −0.35 0.36 0.01 −0.36 0.37
d1,2 −1.21 −1.79 −0.70 −1.22 −2.84 0.41 −1.19 −2.37 −0.17 −1.20 −3.34 0.90
d1,3 −1.48 −2.50 −0.55 −1.49 −3.86 0.89 −1.46 −3.13 0.04 −1.47 −4.52 1.55
d1,4 −1.10 −2.12 −0.17 −1.11 −3.48 1.26 −1.08 −2.75 0.41 −1.09 −4.14 1.92
d1,5 −0.67 −1.52 0.24 −0.59 −2.53 1.59 −0.31 −1.97 1.30 −0.28 −2.96 2.49
d1,6 −0.10 −1.29 1.14 0.03 −1.99 2.50 0.06 −1.54 1.81 0.21 −2.35 3.29
d1,7 −0.63 −1.85 0.58 −0.62 −3.07 1.85 −0.60 −2.38 1.07 −0.60 −3.71 2.49
d1,8 −0.42 −1.47 0.55 −0.43 −2.81 1.96 −0.40 −2.08 1.12 −0.41 −3.47 2.62
MCMC
d1,9 −1.60 −2.74 −0.49 −1.55 −4.12 1.38 −1.55 −3.35 0.15 −1.55 −4.95 1.92
d1,10 −1.32 −2.16 −0.53 −1.28 −4.04 1.51 −1.27 −2.85 0.08 −1.29 −4.61 1.74
d1,11 −1.25 −2.21 −0.34 −1.22 −4.11 1.92 −1.20 −2.87 0.38 −1.21 −4.57 1.96
d1,12 −1.28 −2.27 −0.40 −1.26 −3.90 1.77 −1.22 −2.93 0.39 −1.24 −4.55 1.95
d1,13 −0.88 −1.86 0.05 −0.85 −3.44 2.04 −0.82 −2.55 0.77 −0.83 −4.03 2.40
d1,14 −1.24 −2.21 −0.36 −1.21 −3.84 1.69 −1.18 −2.92 0.38 −1.20 −4.37 1.95
d1,15 0.15 −0.78 1.06 0.18 −2.10 2.78 0.26 −1.40 1.73 0.31 −2.40 3.27
𝜏 0.23 0.01 0.84 0.27 0.01 0.96 0.37 0.02 1.30 0.38 0.02 1.31
𝜅 0.58 0.02 1.86 0.61 0.02 1.89
INLA
d1,9 −1.57 −2.76 −0.44 −1.57 −4.01 0.86 −1.55 −3.32 0.07 −1.56 −4.66 1.51
d1,10 −1.28 −2.15 −0.49 −1.29 −3.61 1.04 −1.26 −2.73 0.04 −1.27 −4.22 1.65
d1,11 −1.23 −2.24 −0.30 −1.23 −3.60 1.14 −1.20 −2.87 0.29 −1.21 −4.26 1.80
d1,12 −1.26 −2.28 −0.33 −1.26 −3.64 1.11 −1.24 −2.90 0.26 −1.25 −4.30 1.77
d1,13 −0.85 −1.86 0.07 −0.86 −3.22 1.51 −0.83 −2.49 0.66 −0.84 −3.88 2.17
d1,14 −1.21 −2.22 −0.29 −1.21 −3.58 1.15 −1.19 −2.85 0.30 −1.20 −4.24 1.82
d1,15 0.16 −0.79 1.10 0.19 −1.82 2.32 0.26 −1.23 1.69 0.29 −2.30 2.98
𝜏 0.26 0.02 0.87 0.27 0.02 0.92 0.35 0.03 1.21 0.38 0.03 1.29
𝜅 0.55 0.03 1.61 0.65 0.03 1.85

Note: The first line shows the estimate for the interaction coefficient (𝛽). INLA, integrated nested Laplace approximations; MCMC, Markov
chain Monte Carlo.

model and the Jackson model without covariate when we
drop the study, which does not have mean-age informa-
tion, and the results are 269.78 and 270.58, respectively.
This suggests that adding covariates does not offer any
notable improvement in the DIC values. Furthermore,
from the results of the Jackson model with covariate,
the posterior median estimate of 𝛽 is 0.01 with 95% CI
[−0.36, 0.37]. Therefore, we can conclude that the inclu-
sion of mean-age covariate to the model fails to explain
the source of heterogeneity and/or the inconsistency in
the network.

Both methods MCMC and INLA gave similar results.
Approximately, the MCMC run took 27.1 seconds, while
INLA took only 5.4 seconds for the Jackson model with
covariate.

5 DISCUSSION

We have presented an approximate Bayesian inference
technique, INLA, to fit various contrast-based NMA
models with arm-based likelihood including the Jack-
son model as well as their network meta-regression
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TABLE 5 Estimated inconsistency parameters obtained from the
fitted Jackson model for the Stroke dataset

MCMC INLA
Design Parameter Mean Stdev Mean Stdev

1 𝜔1
1,2 −0.05 0.86 −0.01 0.70

2 𝜔2
2,3 0.02 0.87 −0.00 0.70

𝜔2
2,4 0.00 0.87 −0.00 0.70

3 𝜔3
2,5 −0.06 0.67 −0.03 0.57

4 𝜔3
2,6 −0.38 0.82 −0.00 0.70

𝜔3
2,15 −0.14 0.69 −0.11 0.58

𝜔4
2,5 −0.17 0.69 −0.15 0.56

5 𝜔5
2,7 0.01 0.85 −0.00 0.70

6 𝜔6
2,6 0.42 0.83 0.34 0.68

7 𝜔7
2,8 −0.01 0.86 −0.00 0.70

8 𝜔8
2,9 −0.04 0.87 −0.00 0.70

9 𝜔9
2,15 0.03 0.67 0.01 0.55

10 𝜔10
2,10 −0.01 0.84 −0.00 0.70

11 𝜔11
2,11 0.00 0.90 −0.00 0.70

12 𝜔12
2,12 −0.01 0.86 −0.00 0.70

13 𝜔13
2,13 −0.01 0.89 −0.00 0.70

𝜔13
2,14 −0.01 0.87 −0.00 0.70

Abbreviations: INLA, integrated nested Laplace approximations; MCMC,
Markov chain Monte Carlo.

extensions. Furthermore, to make it more accessible
for researchers, we provide an R package, nmaINLA,
which automates INLA implementation of NMA mod-
els. There are good reasons to prefer INLA to MCMC.
Firstly, INLA has better time performance. Secondly, there
is no need to check any MCMC convergence diagnos-
tics. Actually, this is very crucial for a large network,
since the number of parameters to check diagnostics is
increasing dramatically.

There is an ongoing debate about merits of the
contrast-based (CB) models and the arm-based (AB)
models. Relative treatment effect are assumed to be
exchangeable across trials in the CB approach, whereas
AB approach assumes that absolute treatment effects are
exchangeable.8 The supporters of CB approach claim that
“arm-based pooling effectively breaks randomization, and
in fact runs against the entire way in which random-
ized controlled trials are designed, analysed, and used .”8

AB modelers respond that “although AB models require
different assumptions than CB models, it is not obvious
that they are less reasonable, and the payoffs they can pro-
vide (significantly increased modeling flexibility, as well
as greater ease of interpretation, prior specification, and
model fitting) can be substantial.”9 For our concern, AB
models are also in the family of LGMs. Therefore, it is
certainly possible to use INLA to fit AB models, although

our package nmaINLA does not support AB models,
yet. Alternative to the Jackson model, the node-splitting
method10 is another method to detect network incon-
sistencies. Although we have not discussed this method
and not implemented it in nmaINLA; INLA of course
could be used. The explanations and the necessary R-code
are presented in Sauter and Held.25

One may find it restrictive to assume that heterogene-
ity and inconsistency random effects are normally dis-
tributed, hence explore different distributions for this
assumption, for instance, t distribution.42 Although this
modeling approach is not in the scope of latent Gaussian
models, INLA still can be used as an inference tool for such
models.43

Unfortunately, there is no analytical expression for the
approximation error obtained by INLA. A simple way to
investigate its accuracy is comparison with long MCMC
runs. The accuracy of INLA for fitting GLMMs has been
investigated in rich simulation studies by Fong et al31

and Grilli et al.44 They reported INLA works very well in
most cases, but in some extreme cases, of binary GLMMs
with few or zero events per variable, INLA exhibits some
inaccuracy. Moreover, for the special situation when a
covariate (almost) perfectly predicts the response (quasi-
complete separation) in binary response GLMMs, Sauter
and Held45 have shown that the approximation error by
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INLA is substantial. Ferkingstad and Rue46 introduced a
copula-based correction, which significantly increase the
accuracy of INLA for such extreme cases of GLMMs,
and it is already implemented in R-INLA. As a matter
of fact, in the case of such “sparse data” situations47 of
binary GLMM, it is known that both maximum likelihood
methods and Bayesian inference with vague priors may
result serious bias away from the null.48 Hence, different
penalization techniques of maximum likelihood estimates
(MLE) or using weakly informative priors for Bayesian
inference have been advocated to avoid such biases.49 Such
problems may occur in the NMA context as well, espe-
cially when the model is a binary GLMM. Therefore,
network meta-analyzer should be cautious not to obtain
biased results regardless of his/her inference tool (MLE,
MCMC, or INLA).

Using vague priors for hyperparameters of NMA models
may make it extremely hard to identify these parameters.
This can be overcome by using more informative priors.
Using predictive distributions as priors for hyperparame-
ters to fit the Jackson model is proposed by Law et al.17

On the other hand, Simpson et al50 has been introduced a
principled and broad framework to construct prior distri-
bution for a large class of hierarchical models. The priors
that they develop, PC priors, are implemented in R-INLA;
hence, they can be used in a NMA context, especially
for constructing priors for hyperparameters. Moreover,
checking sensitivity of heterogeneity and inconsistency
parameters to the chosen prior distributions may be par-
ticularly useful for NMA models. Although we did not
discuss any sensitivity analysis, it can be easily conducted
due to the computational speed of INLA.51 We note that
the standard ranking of treatments as discussed in Lu
and Ades2 is not possible using INLA. Although point
estimates of ranking of treatments are provided, it is not
possible to estimate the associated errors using INLA. This
is because INLA is computing marginal posteriors but not
joint posteriors. On the other hand, the standard ranking
may be misleading since it does not take other evidences
into account.52
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