
Citation: Torgasheva, N.A.; Diatlova,

E.A.; Grin, I.R.; Endutkin, A.V.;

Mechetin, G.V.; Vokhtantsev, I.P.;

Yudkina, A.V.; Zharkov, D.O.

Noncatalytic Domains in DNA

Glycosylases. Int. J. Mol. Sci. 2022, 23,

7286. https://doi.org/10.3390/

ijms23137286

Academic Editors: Mariarita De

Felice and Mariarosaria De Falco

Received: 30 May 2022

Accepted: 29 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Noncatalytic Domains in DNA Glycosylases
Natalia A. Torgasheva 1, Evgeniia A. Diatlova 1,2, Inga R. Grin 1, Anton V. Endutkin 1, Grigory V. Mechetin 1,
Ivan P. Vokhtantsev 1,2 , Anna V. Yudkina 1 and Dmitry O. Zharkov 1,2,*

1 SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk,
Russia; ashatan314@gmail.com (N.A.T.); e.diatlova@g.nsu.ru (E.A.D.); grin@niboch.nsc.ru (I.R.G.);
aend@niboch.nsc.ru (A.V.E.); mechetin@niboch.nsc.ru (G.V.M.); i.vokhtantsev@g.nsu.ru (I.P.V.);
ayudkina@niboch.nsc.ru (A.V.Y.)

2 Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
* Correspondence: dzharkov@niboch.nsc.ru

Abstract: Many proteins consist of two or more structural domains: separate parts that have a defined
structure and function. For example, in enzymes, the catalytic activity is often localized in a core
fragment, while other domains or disordered parts of the same protein participate in a number
of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins
that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the
present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases,
mostly concerned with the human enzymes but also considering some unique members of this group
coming from plants and prokaryotes.
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intrinsically disordered protein regions; protein–protein interactions; post-translational modifications;
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1. Introduction

Many protein molecules in living cells consist of two or more structural domains, tens
to hundreds of amino acids long [1,2]. A domain is usually defined as a separate protein
part that has a defined structure and function and may evolve largely independently of
the rest of the protein. In the case of enzymes, their catalytic activity is often localized in
one or several domains, which form a core fragment, while other domains of the same
protein may participate in activity regulation, protein–protein interactions, localization in
the cell, etc.

In multidomain proteins, often, the function of the core fragment is known, whereas
the roles of other domains are unclear. The development of methods for protein domain
prediction based on homology and structural modeling [3–5] has led to the description
of hundreds of domains of unknown functions. Moreover, there are many cases when
a protein possesses known domains and long tails or linkers that are not identified as
domains. Structurally, they may be true domains (i.e., have a defined structure and be
separated from other domains), but more often, they are disordered and either not solved
by X-ray crystallography or prevent crystallization and thus have to be removed to solve
the core structure of the protein. This greatly complicates the analysis of their functions.

An important group of proteins that contain noncatalytic domains is DNA glycosy-
lases, a class of enzymes participating in DNA base excision repair (BER) (Table 1). DNA
glycosylases recognize their substrate-damaged bases and cleave the N-glycosidic bond
between the base and C1′ of deoxyribose. How BER proceeds after that depends on the
nature of the DNA glycosylase. Monofunctional DNA glycosylases stop after base excision,
forming an apurinic/apyrimidinic (AP) site, which is further cleaved by AP endonucleases,
introducing a break into the damaged strand 5′ to the AP site. Bifunctional DNA glycosy-
lases possess an AP lyase activity, nicking DNA 3′ to the AP site by β-elimination, with
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AP endonucleases cleaving the modified deoxyribose off the 3′-end. Alternatively, some
bifunctional DNA glycosylases catalyze β,δ-elimination, leave a 3′-terminal phosphate, and
require polynucleotide kinase/3′-phosphatase (PNKP) for its removal. BER is completed
by incorporation of an undamaged nucleotide and strand break ligation [6,7].

Table 1. DNA glycosylases from humans and E. coli.

Enzyme Substrate Specificity Structural Superfamily
Human

UNG U in single- and double-stranded DNA, any context α/β-fold

TDG T, U, 3,N4-ethenoC and oxidized/deaminated derivatives of 5-methylC
opposite to G in XpG dinucleotides

α/β-fold

SMUG1 U in single- and double-stranded DNA, any context α/β-fold
MBD4 T and U opposite to G in XpG dinucleotides HhH

NTHL1 Oxidized pyrimidines HhH
MUTYH A and 2-OH-A opposite to G or 8-oxoguanine HhH

OGG1 8-oxoguanine and FapyG opposite to C HhH
MPG Ring-alkylated purines, hypoxanthine, 1,N6-ethenoA FMT_C

NEIL1 Oxidized pyrimidines and purines, ring-open N7-alkylated G
modifications, psoralen cross-links H2TH

NEIL2 Oxidized pyrimidines and purines in bubble DNA H2TH
NEIL3 Oxidized pyrimidines and purines in single-stranded DNA H2TH

E. coli
Ung U in single- and double-stranded DNA, any context α/β-fold
Mug U and 3,N4-ethenoC opposite to G α/β-fold
Nth Oxidized pyrimidines HhH

MutY A opposite to G or 8-oxoguanine HhH
AlkA Ring-alkylated purines, hypoxanthine, 1,N6-ethenoA HhH
Tag Ring-alkylated purines HhH 1

Fpg 8-oxoguanine opposite to C H2TH
Nei Oxidized pyrimidines H2TH

1 Tag is distally related to the HhH group, lacking several key structural elements present in other
superfamily members.

Based on the structure of the core catalytic domain, most DNA glycosylases are divided
into three superfamilies: α/β-fold (uracil-DNA glycosylase homologs), HhH (containing
a helix–hairpin–helix DNA-binding motif), and H2TH (containing a helix–2 turns–helix
DNA-binding motif) (Table 1, Figure 1) [8]. On the other hand, some glycosylases are
sole members of narrower groups, such as human methylpurine–DNA glycosylase that
belongs to the FMT_C family (homologs of the C-terminal domain of methionyl-tRNA
formyltransferase). In certain cases, the catalytic function may be split between different
domains; for example, in all H2TH DNA glycosylases, the active site residues belong to
both the N-terminal β-sandwich domain, the H2TH domain, and the C-terminal zinc or
zincless finger [9,10]. The active site of OGG1 is mostly formed by the HhH domain, while
the critical interactions with the damaged base are mediated by the N-terminal domain [11].

Notably, many eukaryotic DNA glycosylases are different from their bacterial ho-
mologs in having additional sequences that have no role in catalysis (Figure 1); we hence-
forth call these sequences “noncatalytic domains” regardless of whether they are true
structured domains. Oftentimes, these sequences can be removed without affecting the
activity of the enzyme, and in many cases, their structure has not been solved. Neverthe-
less, the functions of these domains have been actively investigated by many biochemical
approaches. In this review, we discuss the present state of knowledge regarding the
noncatalytic domains of DNA glycosylases.



Int. J. Mol. Sci. 2022, 23, 7286 3 of 22Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 23 
 

 

 
Figure 1. Scheme of the domain organization of human and E. coli DNA glycosylases. Human 
proteins are marked with the prefix “h”, E. coli proteins, with “ec”. The domains are demarcated 
according to the Conserved Domains Database [4]. The shown domains are: pfam03167 and 
cd19374, α/β-fold domain; pfam01429, methyl-binding domain; cd00056, HhH domain; 
smart00525, iron–sulfur cluster; cd03431, NUDIX domain; pfam07934, OGG1 N-terminal domain; 
pfam06029,AlkA N-terminal domain; pfam02245, FMT-C-like domain; pfam03352, methyladenine 
glycosylase domain; pfam01149, β-sandwich domain of H2TH proteins; pfam06381, H2TH do-
main; pfam09292, zincless finger; pfam06827, Fpg/IleRS zinc fingers; pfam00641, RanBP zinc finger; 
pfam06839, GRF zinc finger. In the human proteins, only one major isoform is shown. 
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henceforth call these sequences “noncatalytic domains” regardless of whether they are 

Figure 1. Scheme of the domain organization of human and E. coli DNA glycosylases. Human
proteins are marked with the prefix “h”, E. coli proteins, with “ec”. The domains are demarcated
according to the Conserved Domains Database [4]. The shown domains are: pfam03167 and cd19374,
α/β-fold domain; pfam01429, methyl-binding domain; cd00056, HhH domain; smart00525, iron–
sulfur cluster; cd03431, NUDIX domain; pfam07934, OGG1 N-terminal domain; pfam06029,AlkA
N-terminal domain; pfam02245, FMT-C-like domain; pfam03352, methyladenine glycosylase domain;
pfam01149, β-sandwich domain of H2TH proteins; pfam06381, H2TH domain; pfam09292, zincless
finger; pfam06827, Fpg/IleRS zinc fingers; pfam00641, RanBP zinc finger; pfam06839, GRF zinc finger.
In the human proteins, only one major isoform is shown.
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2. Unstructured Tails and Loops

Many eukaryotic DNA glycosylases possess considerably long tails or internal frag-
ments outside the established domains. Those are often referred to as “disordered” because
of their generally low complexity (Figure 2). However, it is important to realize that the
experimental evidence of the disorder exists only for a handful of these protein regions.
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Figure 2. Predicted disorder and sites of post-translational modifications in human DNA glycosylases.
The disorder probabilities were calculated using the ESpritz neural network [12]. The colored bar
corresponds to ESpritz predictions: ordered (blue) and disordered (red). The sites of post-translational
modifications are labeled by circles (Ser/Thr/Tyr phosphorylation), diamonds (Lys acetylation),
triangles (Lys ubiquitylation), and reverse triangles (Lys sumoylation). The sites of modifications are
taken from the PhosphoSitePlus proteomic database [13] and low-throughput studies discussed in
the main text.
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Uracil–DNA glycosylases, the first DNA glycosylases discovered in the 1970s, provide
an essential example of the tails’ functions in DNA glycosylases. Uracil–DNA glycosylase
removes uracil bases (Ura) from DNA. Ura, a canonical nucleobase in RNA, appears in
DNA through deamination (spurious or targeted) of Cyt, or through incorporation of dUMP
from the nucleotide pool, the latter source believed to be quantitatively more important [14].
Ura in genomic DNA can be mutagenic and disruptive for cell regulation, necessitating its
quick repair [15,16]. Uracil–DNA glycosylases are termed Ung in E. coli, UNG in humans,
and Udg in some other species; here, we will use Ung as a general name for the bacterial
enzymes and UNG for eukaryotic ones. These enzymes can be found in all domains of
life, including some viruses. Many of them are compact monomeric proteins, consisting
essentially of a catalytic core. However, some UNG homologs acquired specific functions, as
discussed below, and many eukaryotic UNGs possess likely disordered extensions entailed
with regulatory and possibly mechanistic roles.

The human UNG gene produces two mRNA isoforms, UNG1 and UNG2, which use
alternative transcription start sites (reviewed in [17]) and are translated into polypeptides
with different N-termini. UNG1 codes for the UNG1 mitochondrial isoform (which also
can be partly found in the nucleus), while the UNG2 protein isoform is exclusively nuclear.
Accordingly, the unique N-terminal part of UNG1 carries a strong canonical amphiphilic
helix mitochondrial targeting sequence [18,19]. The nuclear localization signal of UNG2
is less well defined, containing both a short basic residue-rich element from the unique
N-terminus and some unspecified sequences from the noncatalytic part of the polypeptide
common for UNG1 and UNG2 [18,19]. In addition, the N-terminal tail of UNG2 har-
bors protein–protein interaction sites with proliferating cells nuclear antigen (PCNA) and
replication protein A (RPA) [20,21]. Moreover, the N-terminal tail of UNG2 is rich in the
residues that undergo site-specific post-translational modifications. Many of these, such as
Ser/Thr phosphorylation at Ser9, Ser12, Ser14, Thr31, Ser63, or Ser67, acetylation at Lys5, or
ubiquitylation at Lys5, Lys49, Lys50, Lys78, Lys100, or Lys108 of UNG2 (Figure 2), are only
observed in high-throughput functional proteomic experiments, and their exact function is
unclear, although they overlap with protein–protein interaction sites [13]. Others have been
studied in more detail. For example, phosphorylation of UNG2 at Thr6, Tyr8, and Thr126
following UV irradiation uncouples UNG from its complex with PCNA and RPA and
promotes BER, while its dephosphorylation by PPM1D protein phosphatase suppresses
BER [22,23]. Phosphorylation by cyclin-dependent kinases at Ser23, Thr60, and Ser64 is cell
cycle regulated, with phospho-Ser23 promoting the recruitment of UNG2 to replication
forks and increasing the enzyme turnover to allow quick U excision, and phospho-Thr60
and phospho-Ser64 targeting UNG2 for degradation upon entry to the G2 phase [24–28].

The N-terminal tail of human UNG2 appears to be truly unstructured in the isolated
protein. Disorder in the residues 1–60 was established by NMR in the full-length pro-
tein, and the isolated 1–92 fragment appears to be almost completely disordered [29]. In
a homologous protein, UNG from Acanthamoeba polyphaga mimivirus, a comparison of
far-UV circular dichroism spectra of the full-length protein and a deletion mutant with
residues 1–94 removed suggests that the N-terminal tail is predominantly random coil [30].
Interestingly, the tail of human UNG2 becomes more ordered under the conditions of
macromolecular crowding, suggesting that the disorder may be restrained in the densely
packed nuclear environment [31].

Two other families of the α/β-fold DNA glycosylase superfamily have been exten-
sively studied. SMUG1 proteins, mostly limited to the Deuterostomia clade including ver-
tebrates, are compact, constitutively expressed uracil–DNA glycosylases with the substrate
specificity closely resembling UNG proteins but somewhat more permissive with respect to
the nature of a substituting moiety at C5, e.g., capable of excising 5-hydroxymethyluracil in
addition to U [32]. The catalytic domain constitutes most of the SMUG1 length (Figure 1).
In contrast, the architecture of another family featuring eukaryotic TDG and bacterial
Mug DNA glycosylases is similar to UNG/Ung; the bacterial protein does not have much
beyond the catalytic domain, whereas TDG proteins possess long N- and C-terminal tails
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(Figure 1). As the primary role of TDG is in active epigenetic demethylation rather than
genome protection from damage, these tails have multiple functions in the interactions
with chromatin remodeling machinery and transcription factors (recently reviewed in [33]).
Acetylation of TDG at several lysines in the N-terminal tail by CBP/p300 histone acetylase
decreases the affinity of TDG for DNA, reduces its activity on T:G mispairs, and prevents
its association with APEX1, the next enzyme in the BER pathway [34,35]. On the contrary,
phosphorylation of Ser/Thr residues in the same region by protein kinase Cα does not
affect the enzyme’s activity but is mutually exclusive with the acetylation [35]. NMR data
also indicate a high degree of disorder in the N- and C-terminal tails of human TDG [36,37].

Another example of isoform-dependent tail function is presented by OGG1, a protein
from the HhH structural superfamily. Alternative splicing of OGG1 pre-mRNA produces
two groups of isoforms, OGG1-1 and OGG1-2, using exons 7 and 8, respectively, differing in
their C-terminal tails ([38,39] and recently reviewed in [17]). The structure of the extensively
studied nuclear protein isoform, OGG1-1a, shows that the isoform 1-specific sequence
forms part of the lesion-binding site and ends in the last disordered 20 amino acid residues
where a nuclear localization signal is located [11]. The N-terminal peptide that bears a
mitochondrial import sequence common for all isoforms also appears to be disordered, as
judged from its sensitivity to limited proteolysis [11]. In contrast, information on the major
mitochondrial isoform OGG1-2a or any other group 2 isoforms is very limited, and no
structure is available. OGG1-2a lacks the glycosylase activity when expressed in E. coli [40].
Yet, in human cells, it interacts with the inner mitochondrial membrane NADH:ubiquinone
oxidoreductase 1 β subcomplex 10, a component of respiratory Complex I, and apparently
participates in the mitochondrial 8-oxoguanine repair [41]. As the mitochondrial DNA is
associated with the inner membrane [42], it is tempting to speculate that the C-terminal tail
of OGG1-2a could form an alternative active site when bound to Complex I and participate
in the repair right at the location where damaging reactive oxygen species leak from the
respiratory chain. The functions of the mitochondrial OGG1 isoforms are certainly worth
more attention.

In the H2TH structural superfamily, NEIL1 is predicted to have a significantly disor-
dered C-terminal tail (Figure 2). Circular dichroism spectra of the isolated last 78 residues
of human NEIL1, as well as small-angle X-ray scattering data from the full-length and
C-terminally truncated protein confirm that this part is mostly disordered but is still
able to fold back on the protein’s catalytic core, increasing the stability of the whole
molecule [43–45]. Interestingly, the presence of osmolytes seems to induce folding of the
C-terminal tail, which may suggest that NEIL1′s activity or localization could be regulated
by liquid–liquid phase separation. This behavior resembles the crowding-induced ordering
of the UNG2 N-terminal tail discussed above. As suggested by fluorescence spectra of
full-length and truncated NEIL1, its tail might fold back onto the catalytic domain and
stabilize its native conformation [43]. Additionally, the C-tail is involved in multiple NEIL1
interactions with downstream BER factors, poly(ADP-ribose) polymerase 1, and the nuclear
and mitochondrial replication machinery [45–53], while the acetylation of the lysines in
the tail by CBP/p300 is required for NEIL1 anchoring to nuclear chromatin [54]. Another
H2TH protein, NEIL2, carries a long insert in its N-terminal domain, which is disordered
in the X-ray structure of NEIL2 from gray short-tailed opossum Monodelphis domestica [55].
Hydrogen/deuterium exchange mass spectrometry experiments show very fast exchange
of amido protons in this fragment, confirming its intrinsic disorder [56]. The role of this
insert, unique among the H2TH family members, remains enigmatic.

The disordered tails are often regarded as modulators of glycosylases interaction
with DNA. This role is supported by the measurements of glycosylase processivity, i.e.,
their ability to search for the damaged site by sliding along DNA without releasing it [57].
The N-terminal tail of human UNG2 was reported to enhance the enzyme’s processivity
under physiological salt and crowding conditions [58–60] and to anchor the enzyme near
ssDNA/dsDNA junctions, resembling replication forks and transcription bubbles [61].
The importance of the presumably disordered N-terminal tail for the processive lesion
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search was also shown for human MPG [62]. On larger distance scales, based on coarse-
grained molecular modeling, disordered tails have been suggested to facilitate protein
intersegment transfer between sites separated by a large distance along the DNA contour
but brought together in 3D space [63,64]. However, when followed experimentally for
MPG, intersegment transfer did not require the tail [65], so this mechanism remains only
an attractive possibility thus far. Another role of the tails in the enzyme–DNA interactions
may rely on selective tuning of the substrate or product binding affinity. The N-terminal
tail of MPG seems to be involved in the enzyme turnover regulation; it strongly decreases
the affinity of MPG for the AP site-containing DNA, allowing for faster product release [66].
Deletion of the N-terminal tail moderately decreased substrate cleavage by UNG from
mimivirus [30]. An opposite effect was observed for the N-terminal tail of NTHL1: the
truncated enzyme demonstrated much higher turnover [67,68]. Notably, the N-terminal
tail of NTHL1 can directly interact with the AP site if the enzyme–product complex is
stabilized on DNA by mutations uncoupling the glycosylase and AP lyase activities [69].

3. Zinc-Binding Structural Motifs

H2TH superfamily DNA glycosylases comprise two domains connected by a flexible
linker; the active site is formed by residues from both domains [9]. The C-terminal half
of the catalytic domain of many H2TH glycosylases (E. coli Fpg and Nei, human NEIL2
and NEIL3) is equipped with a prominent structural feature identified as a Cys4-type zinc
finger in earlier works [70,71]. The X-ray structures [72,73] show that this part belongs
to the β ribbon class of zinc fingers [74] (Figure 3A). NEIL2 proteins possess a Cys3His
tetrad of Zn2+-coordinating residues, but otherwise, their zinc finger is very similar to
those of Fpg, Nei, and NEIL3 [55,75]. However, later some members of the superfamily
were identified (e.g., Arabidopsis MMH and human NEIL1) that bear an almost identical
β-hairpin lacking Zn-coordinating residues [76,77], dubbed a “zincless finger” (Figure 3A).
Interestingly, phosphoproteomic studies have identified phospho-Tyr263 in the zincless
finger of NEIL1 (Figure 3A), and the corresponding phosphomimetic mutation Y263E
completely inactivates the protein [78].
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Plant genomes code for several unusual DNA glycosylases, DEMETER (DML) and 
its homologs ROS1 (DML1), DML2, and DML3, which participate in active epigenetic 
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Figure 3. Zinc-binding motifs and their structural analogs in DNA glycosylases. (A) Superimposed
zinc finger of E. coli Fpg (green; PDB ID 1K82 [72]) and zincless finger of human NEIL1 (cyan, PDB ID
5ITT [79]). (B) Zinc snap motif of E. coli Tag (PDB ID 1NKU [80]). (C) Zinc linchpin motif of mouse
MUTYH (PDB ID 7EF8 [81]). The Zn2+ ion is shown as a gray ball. Zinc-binding residues are shown
as sticks; the rest of the protein is omitted for clarity.

Unlike many conventional zinc fingers that recognize specific sequences in DNA and
are often present as clustered units in the protein, the H2TH glycosylases’ fingers are solitary
and contribute a single absolutely conserved Arg residue to the active site (Figure 3A) where
it participates in a clamp pinching two phosphates that flank the damaged nucleoside. This
pinching is a necessary step in the damaged nucleoside eversion mechanism required to
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flip the lesion out of the double helix and into the enzyme’s active site [73,75,82]. Except
for this Arg, the analysis of intramolecular residue coevolution [83] and protein structure
vibrational modes [84] in Fpg shows that the zinc finger is largely uncoupled from the rest
of the protein, thus being a domain in the strict sense.

The closest sequence relatives of H2TH glycosylases’ zinc fingers are found in isoleucyl
tRNA synthetases; however, they adopt a quite different structure with four short β-strands
followed by an α-helix, do not interact with the nucleic acid [85], and probably should not
be regarded as structural analogs.

NEIL3, the largest protein in the superfamily, possesses a long C-terminal extension
that carries three additional β-ribbon zinc fingers different from the DNA-binding finger
discussed above: a RanBP-type zinc finger and two GRF zinc fingers. GRF zinc fingers are
present in many DNA-binding proteins, including another BER-related protein, APEX2,
which hydrolyzes oxidatively damaged DNA in the 3′ → 5′ direction [86]. RanBP zinc
fingers are mostly regarded as protein–protein-interacting units, as in the Ran-binding
proteins in which they are involved in binding Ran/GDP [87]. The GRF zinc-finger-
containing part of human NEIL3 has been crystallized, revealing a β-ribbon structure
well suited for binding single-stranded DNA [88]. Interestingly, in the mouse protein, the
GRF zinc fingers of NEIL3 efficiently bind single-stranded and forked DNA but inhibit the
glycosylase activity, perhaps competing with the catalytic domain for substrate binding [88].
Forked DNA is a preferred substrate for NEIL3, possibly reflecting its role in the repair of
stalled replication intermediates [89], and zinc-finger-mediated protein–protein and protein–
DNA interactions within the replication fork might be critical for the correct positioning of
NEIL3 to repair the lesions encountered during the replication.

Plant genomes code for several unusual DNA glycosylases, DEMETER (DML) and
its homologs ROS1 (DML1), DML2, and DML3, which participate in active epigenetic
demethylation through the direct incision of 5-methylcytosine (mC) from DNA [90,91].
The C-terminal part of these enzymes possesses a permuted CXXC-type zinc-finger ho-
mologous to zinc fingers present in several DNA methylation-related proteins such as
MeCP2 mC-binding protein, MLL1 histone methyltransferase, and DNMT1 cytosine-5-
methyltransferase [92]. The removal of the C-terminal part leads to ROS1 inactivation
and loss of interactions with the H3 histone [93,94], but besides the zinc finger, this part
of the protein contains an RNA recognition motif (discussed in Section 7) that may also
participate in DNA binding. In the absence of the structure, the function of the zinc finger
in DML-like DNA glycosylases remains unclear.

Two other DNA glycosylases were discovered to possess unusual zinc-binding sites,
which was quite unexpected since neither one depends on Zn2+ for the enzyme activity. E.
coli 3-methyladenine-DNA glycosylase I (Tag) was found to harbor a “zinc snap” motif [80]:
two Cys and two His residues coming from the N- and C-terminal protein tails (Figure 3B).
The Zn2+ ion is tightly coordinated and can be removed only after protein denaturation,
suggesting that the zinc snap is a genuine metal-binding site. The coordinating residues are
highly conserved, and the Zn2+ occupation is maintained in the structures of Tag homologs
from Salmonella enterica [95] and Staphylococcus aureus [96]. Presumably, the zinc snap motif
plays the structural role, helping to fold the protein chain, but too little experimental data
is available to define its functions more confidently.

Another unanticipated Zn2+-binding DNA glycosylase is MUTYH, a eukaryotic ho-
molog of the bacterial adenine–DNA glycosylase MutY. Both MUTYH and MutY contain
three domains: a six-barrel domain and a FeS domain together constituting the catalytic
core, and a C-terminal NUDIX-like domain that confers specificity for 8-oxoguanine op-
posite to the excised A [97,98]. However, the linker connecting the core and the NUDIX
domain is much longer in MUTYH than in MutY. Three conserved Cys residues are located
in the linker of human and mouse MUTYH, and the preparations of MUTYH contain sub-
stoichiometric amounts of Zn2+, which become negligible after the cysteines are replaced
with serines [99,100]. This Zn2+ binding site was termed a “zinc linchpin” [99]. The nature
of the fourth Zn2+ ligand is somewhat ambiguous: it was identified as Cys230 (human
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MUTYH numeration) from the quantum mechanics/molecular mechanics model coupled
with site-directed mutagenesis data [100], while in the recently solved structure of mouse
MUTYH, the fourth ligand is His56 (His71 in human MUTYH) [81] (Figure 3C). However,
this region of the protein seems to be particularly structurally pliable, with even the two
crystallization forms of mouse MUTYH showing different organization of the Zn2+ ligand
shell (fully intramolecular vs. ligands coming from two protein molecules in the crystal
cell) [81]. Mutations of the unambiguous Zn2+-coordinating Cys residues reduce the affinity
of MUTYH for 8-oxoguanine-containing DNA and its ability to prevent mutagenesis when
expressed in E. coli [99,100]. However, the truncated human MUTYH 65–350 lacks Zn2+

yet retains activity [101], and MutY homologs from bacteria and fission yeast lack the zinc
linchpin motif altogether. The interdomain linker in MUTYH has been shown to mediate its
interactions with APEX1, the next enzyme in the BER pathway, the 9-1-1 adapter complex,
and SIRT6 protein deacetylase [101–105], although the role of Zn2+ in the protein partner
binding has not been investigated. Thus, the zinc linchpin motif, while not required for the
catalytic activity, might be important for specific tuning of MUTYH activity towards some
substrates or for protein–protein interactions.

4. Iron–Sulfur Clusters

Many important proteins of cell metabolism, including nucleic acid metabolism, con-
tain iron–sulfur clusters (FCL) [106,107]. These structural units have different stoichiome-
tries ([2Fe–2S], [4Fe–3S], [3Fe–4S], and [4Fe–4S]), are usually electrochemically active, and
often participate in redox reactions. Several DNA glycosylases possess [4Fe–4S] FCLs. The
best studied of those are endonuclease III (Nth) and MutY, both belonging to the HhH
structural superfamily [8]. Micrococcus luteus UV endonuclease and Methanothermobacter
thermautotrophicus T:G DNA glycosylase (Mig.Mth) are two other examples of HhH DNA
glycosylases containing an FCL; they are similar to Nth in their structure but have different
substrate specificities [108,109]. The HhH superfamily also includes plant DME-like, which
have a unique split Nth-like catalytic core with an FCL [91]. Besides the HhH superfamily,
FCLs are present in two families of uracil–DNA glycosylases, namely Families 4 and 5,
which mainly come from extremophilic species [110–112].

For a long time, FCL in DNA glycosylases were regarded as redox-inactive and having
only a structural role, since the cluster damage by oxidation inactivates Nth, the prototypic
FCL-containing glycosylase [113,114]. However, since the mid-2000s, a seminal series of
studies by Barton and colleagues revealed that FCLs in Nth, MutY, Archeoglobus fulgidus
Family 4 uracil–DNA glycosylase, and several repair proteins outside the BER pathway
are not only redox-active, but their redox potential is similar to that observed in high-
potential [4Fe–4S] ferredoxins, the bacterial proteins that participate in anaerobic electron
transport [115–124]. The cluster cycles between the charge states [4Fe–4S]2+ (reduced, the
ground state in the free protein) and [4Fe–4S]3+ (oxidized). However, the redox activity is
only revealed upon DNA binding, which activates the cluster towards oxidation. Strikingly,
in the oxidized state, FCL-containing proteins bind DNA 2–3 orders of magnitude more
tightly than in the reduced state, presumably due to strengthened electrostatic interac-
tions [125]. As a result of these studies, a hypothesis of DNA damage remote sensing
emerged (summarized in [106]). In this model, an oxidative DNA lesion can oxidize the
nearest randomly bound FCL-containing repair protein within a distance of up to a few
hundred base pairs through π-stacking-mediated DNA charge transport. This oxidized
protein molecule remains tightly bound to DNA and can in turn oxidize an FCL in another
repair protein, and the process may be continued with the repair proteins gradually ap-
proaching the site of the damage. Notably, as the charge transport depends only on the
presence of a redox-active FCL in the protein molecule, the oxidized nucleotide can thus
attract not only BER enzymes, but also proteins from other DNA repair pathways, e.g., the
nucleotide excision repair endonuclease UvrC [126] or the replication-coupled repair DNA
helicase DinG [125]. Yet, many proteins participating in the removal of oxidized bases, such
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as E. coli Fpg and Nei and human OGG1 and NEILs, lack FCLs and are redox-inert, so the
remote sensing model clearly cannot explain the full spectrum of oxidative damage repair.

One rather surprising exception from the behavior of FCL repair proteins is an Nth
homolog from Deinococcus radiodurans. This bacterium, highly resistant to ionizing radiation
and other kinds of abiotic stress, possesses three Nth homologs, of which two (Nth1 and
Nth3) have been structurally characterized, whereas the third homolog, Nth2, shows the
highest similarity to E. coli Nth of them all [127]. However, unlike in E. coli Nth and MutY,
direct measurements of the FCL redox potential in D. radiodurans Nth2 revealed cycling
between [4Fe–4S]2+ and [4Fe–4S]+ charge states, which was essentially independent of
DNA binding [128,129]. The reasons for such discrepancy in the redox behavior of E. coli
and D. radiodurans homologs presently remain unclear.

5. NUDIX Domain

MutY/MUTYH proteins provide a good example of a domain that had likely evolved
as a functional protein on its own and was then grafted onto a pre-existing catalytic scaffold.
These proteins are quite similar to Nth/NTHL1 but possess an additional domain that
belongs to the NUDIX hydrolase (i.e., cleaving NUcleoside DIphosphates linked to X, where
X is any moiety) superfamily. NUDIX enzymes hydrolyze a large variety of substrates
of both nucleoside and non-nucleoside nature, such as NADH, CoA, diadenosine tetra-
and hexaphosphates, ADP-ribose, metabolic nucleoside–sugars, mRNA caps, isopentenyl
diphosphate, etc. [130,131]. Damaged dNTPs are an important group of substrates for
NUDIX hydrolases [132]. E. coli MutT and human MTH1 (NUDT1) are members of the
NUDIX superfamily that primarily hydrolyze 8-oxo-2′-deoxyguanosine (oxodGTP) to pre-
vent its incorporation into DNA from the oxidized dNTP pool [133]. MutT and MTH1
participate in the so-called GO system, a subpathway within BER dedicated to cell protec-
tion against the mutagenic 8-oxoguanine (oxoG). This abundant oxidized purine presents
its Hoogsteen face to DNA polymerases thus directing misincorporation of A during
replication. The GO system, in addition to MutT/MTH1, involves an 8-oxoguanine–DNA
glycosylase (Fpg, also known as MutM, in bacteria, OGG1 in eukaryotes) that removes oxoG
from oxoG:C but not oxoG:A pairs, and adenine–DNA glycosylase MutY/MUTYH specific
for A:oxoG and, to a lesser degree, A:G pairs [134,135]. The specificity of MutY/MUTYH
enzymes for oxoG opposite the excised A base is provided by the C-terminal domain of
the protein, which is not catalytic but is homologous to NUDIX enzymes, most closely
to MutT proteins (Figure 4) [136,137]. Strikingly, despite this well-established role of the
NUDIX domain in the MutY/MUTYH substrate specificity and the presence of a deep
pocket suitable for nucleotide binding, the structures of Geobacillus stearothermophilus MutY
(BstMutY) and mouse MUTYH bound to their cognate DNA show that the mode of inter-
actions of the glycosylase NUDIX domain and MutT/MTH1 with oxoG is quite different
(Figure 4) [81,138–140]. The oxoG base remains fully intrahelical, assumes a syn conforma-
tion, and contacts the NUDIX domain only through N7 and O8 atoms making hydrogen
bonds to a conserved Ser residue in a loop between two β-strands. However, the crystal
structures may represent the later, low-energy recognition complex, and both stopped-flow
kinetic experiments with a fluorescent reporter and chemical- or photo-crosslinking suggest
that oxoG could be extrahelical at earlier stages of its recognition by MutY [141,142]. The
structural nature of such an intermediate, if it actually exists, remains to be established.
In a complex with undamaged DNA, the NUDIX domain of MutY assumes multiple con-
formations and cannot be clearly resolved by X-ray crystallography, although small-angle
X-ray scattering data suggest that it still contacts DNA [143].
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bases at their respective binding sites are shown as stick models with carbon atoms colored the same
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The NUDIX domain is dispensable for MutY/MUTYH catalytic activity, but its re-
moval impairs the substrate properties of A:oxoG pairs that become similar to A:G in terms
of the processing efficiency [146,147]. Structurally, the elimination of oxoG contacts with
the NUDIX domain causes oxoG to be in an anti conformation just like the undamaged G,
consistent with the kinetic effect [143].

Human MUTYH is a known tumor suppressor, and homozygous or compound het-
erozygous inactivating mutations in the MUTYH gene greatly increase the risk of colorectal
cancer [97,148]. One of the mutations commonly found in human tumors is Gly382Asp
located in the NUDIX domain. Biochemically, the mutant protein has lower activity than
the wild-type one, although it is not completely inactivated; in fact, the cleavage of A:G
substrates is affected to a greater degree than of A:oxoG [148–150]. In the BstMutY/DNA
and mouse MUTYH/DNA structures, the main chain amide of the homologous Gly residue
coordinates the phosphate of the nucleotide located 5′ next to oxoG [81,138], so substitution
of the negatively charged Asp for Gly likely disrupts this apparently important interaction.
Thus, the NUDIX domain does not only participate in the recognition of oxoG but helps to
mold the DNA into a bent shape observed in the pre-catalytic complex.

Phosphorylation of Ser524 in the NUDIX domain has been detected in cellulo, but its
significance is unclear since both phosphomimetic and phosphoablating mutants have
similar enzymatic properties [151].

6. Methyl-Binding Domains

Methyl-CpG-binding domain protein 4 (MBD4) is a DNA glycosylase consisting of an
HhH superfamily catalytic domain and a methyl-CpG-binding domain (MBD) [152,153].
MBD is a small domain not found in other glycosylases but present in several DNA-
binding proteins (MeCP2, MBD1, MBD3, MBD4) that regulate chromatin condensation
and transcription status, often as parts of large multiprotein complexes involving histone
deacetylases [154–156]. In fact, MBD4 also represses transcription from hypermethylated
promoters in a histone-deacetylase-dependent manner, apparently independently of its
DNA repair function [157,158]. Additionally, binding of MBD4 to mC-rich heterochromatin
recruits a E3 ubiquitin ligase UHRF1 and a deubiquitylase USP7, both of which regulate
the stability of DNMT1, the maintenance C5-methyltransferase [159].

Possible transcription regulation notwithstanding, MBD in MBD4 is mostly regarded
as a domain that targets its DNA repair function to methylated CpG sequences. Full-length
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MBD4 preferentially excises T and U from mispairs with G in the 5′-(T/U)G-3′/3′-GC-5′

and 5′-(T/U)G-3′/3′-GmC-5′ contexts. The removal of MBD does not affect the enzyme’s
activity [160,161]. A natural splice isoform skipping MBD and most of the interdomain
linker was reported to retain its uracil glycosylase activity but lose the ability to excise
mismatched T [162]. Interestingly, plant homologs of MBD4 lack an MBD but retain the
long N-terminal extension [163]. Alternative splicing in this region produces protein
isoforms with different intranuclear localization and different redistribution response to
heat stress [164].

NMR and X-ray data on the structure of human and mouse MBD provide rationaliza-
tion for the mechanism of methylated DNA recognition [165,166]. The key interactions are
made through two Arg residues that both donate Nη1/2[Arg] . . . N7[Gua] and Nη1/2[Arg]
. . . O6[Gua] hydrogen bonds to both guanines in the CpG dinucleotide (Figure 5). This
interaction presses the guanine bases deeper towards the minor groove, allowing the π

system of the arginines’ guanidine groups to stack with the adjacent pyrimidines. Appar-
ently, the larger area of stacking provides binding preference for mC compared with C
and allows the protein to recognize CpGs containing other modified pyrimidines such as
5-hydroxycytosine or T.
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How MBD-driven localization of MBD4 to mCpG-rich regions is mechanistically
coupled with the DNA repair function is still an open question. Inhibition of full-length
MDB4 by isolated MBD on substrates containing a single methylated target site has been
reported [167], suggesting that MBD may compete with the catalytic domain for the
damaged CpG site but may be diverted by the presence of an undamaged methylated
CpG site nearby. However, in a naked 60-bp fragment bearing seven fully methylated
CpG dinucleotides and a central T:G mismatch, no activity enhancement was observed
compared with nonmethylated DNA [168].

Most protein–protein interactions of MBD4 are mediated by the interdomain region,
which, unlike the disordered tails of many DNA glycosylases, is predicted to be mostly
structured (Figure 2). MBD4 forms a complex with the DNA mismatch repair protein
MLH1 and Fas-associated death domain protein (FADD), and these interactions are appar-
ently required to promote mismatch repair-directed apoptosis initiated by certain types
of DNA damage, e.g., extensive 5-fluorouracil incorporation [153,169,170]. 5-Fluorouracil
as well as N-methyl-N-nitrosourea and cisplatin induce sumoylation of MBD4 at lysines
137, 215, and 377 in the interdomain linker, which stimulates the enzyme’s activity [171].



Int. J. Mol. Sci. 2022, 23, 7286 13 of 22

Phosphorylation of the Ser165 and Ser262 in the interdomain linker by protein kinase C is
also stimulatory [172].

7. RNA-Binding Elements

The intersection between the cellular RNA milieu and BER is an area of acute in-
terest, although many more questions than answers remain at present [173–175]. The
only group of DNA glycosylases in which RNA-binding domains are identified is com-
posed of DME-like plant epigenetic 5-methylcytosine–DNA glycosylases (Figure 6, see also
Section 3) [92,176,177]. They possess a C-terminal domain designated as an RNA recogni-
tion motif (RRM_DME), although the homologous structural elements in different proteins
recognize not only RNA, but also single-stranded DNA [178]. No data on its function
or structure are available, except for studies of ROS1 with the deleted C-terminal part
spanning both RRM_DME and the permuted CXXC zinc-finger domains; such a truncation,
as mentioned above, inactivates ROS1 and interferes with nucleosome binding [93,94].
However, as the establishment of DNA methylation at many loci in the plant genome is
targeted by small RNAs [90] and ROS1 preferentially demethylates these sites rather than
those methylated in an RNA-independent manner [179], it is tempting to speculate that
RRM-DME might somehow mediate active demethylation targeting through interactions
with small RNAs.
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In animals, the role of RNA in BER-dependent active demethylation is even less clear.
Unlike in plants, demethylation in vertebrates depends on mC oxidation by TET family
dioxygenases followed by processing via the BER pathway, in which TDG is the main
initiating glycosylase [180]. Early reports on a TDG-like activity in chicken cells claimed that
it also can directly remove mC [181,182], but this is now believed to be due to a co-purifying
demethylation complex [183–185]. Notably, the active demethylation complex purified
from the cells was reported to contain an unidentified RNA that targeted demethylation,
together with an RNA helicase [186–189]. Later, the presence of RNA in a TDG–DNMT3b
complex was confirmed in human cells [190]. Finally, the recent identification of TETILA, a
long noncoding RNA directly interacting with TDG in a human TET2–TDG complex [191],
resurrected the idea that active demethylation in animals might indeed recruit RNA as
one of the active components, even if not for complementarity-based targeting. It is still
unknown, however, what part of TDG binds RNA; given that the N-terminal tail is required
to efficiently cleave T:G but not U:G substrates by TDG [192] and that the associated RNA
stimulates T:G cleavage [190], the interaction could involve the N-tail.

8. Conclusions

DNA glycosylases present a multitude of functions associated with the noncatalytic
domains, both structured and not. In some cases, such as the methyl-binding domain of
MBD4 or FeS clusters, these functions are both expected from the role of the glycosylase
and conserved structurally in proteins outside of DNA repair. In other cases (zinc fingers,
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NUDIX domains), the function may be expected, but its structural implementation is unique
for DNA glycosylases, suggesting that an ancient fold was adopted and evolved to play a
role different from its original purpose. Intriguingly, some noncatalytic domains of DNA
glycosylases are clearly related to folds of a known function, but that function has not been
confirmed for the glycosylases. For example, OGG1 and AlkA have an N-terminal domain
that resembles the structure of TATA-box binding protein (TBP), but the reason for this
similarity is totally obscure. Finally, a group of unstructured tails appears to be important
for DNA glycosylase localization, cell cycle regulation, protein–protein interactions, and
DNA binding, but their disordered nature complicates the analysis of their functions. These
elements seem to be responsive to macromolecular crowding, suggesting that they might be
involved in the regulation of subcompartment localization through liquid phase separation,
a process that has drawn much attention recently. Overall, noncatalytic domains of DNA
glycosylases represent a rich source of functionalities that can be targeted by drugs or serve
as parts for protein engineering.
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