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Abstract

Motivation: Computational prediction of the effect of mutations on protein stability is used by

researchers in many fields. The utility of the prediction methods is affected by their accuracy and

bias. Bias, a systematic shift of the predicted change of stability, has been noted as an issue for

several methods, but has not been investigated systematically. Presence of the bias may lead to

misleading results especially when exploring the effects of combination of different mutations.

Results: Here we use a protocol to measure the bias as a function of the number of introduced muta-

tions. It is based on a self-consistency test of the reciprocity the effect of a mutation. An advantage of

the used approach is that it relies solely on crystal structures without experimentally measured

stability values. We applied the protocol to four popular algorithms predicting change of protein

stability upon mutation, FoldX, Eris, Rosetta and I-Mutant, and found an inherent bias. For one program,

FoldX, we manage to substantially reduce the bias using additional relaxation by Modeller. Authors

using algorithms for predicting effects of mutations should be aware of the bias described here.

Availability and implementation: All calculations were implemented by in-house PERL scripts.

Contact: ivankov13@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

Note: The article 10.1093/bioinformatics/bty348, published alongside this paper, also addresses the

problem of biases in protein stability change predictions.
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1 Introduction

Protein stability, a feature largely defined by protein sequence

(Anfinsen et al., 1961; Tanford, 1968), is one of the most important

factors that defines the function of globular proteins (Tanford,

1968). Experimental measurements of change of protein stability

caused by mutations are laborious and feasible only for proteins that

can be purified (Stevens, 2000). Therefore, the computational pre-

diction of the effect of amino acid changes on protein structure and

stability has become vital to many fields, including medical applica-

tions (Kiel and Serrano, 2014), protein design (Goldenzweig et al.,

2016) and evolutionary biology (Shah et al., 2015; Tokuriki et al.,

2007) to name a few key fields.

Several computational methods for prediction of the effect of

amino acid changes on protein stability are available, which differ in

processing time and accuracy (Benedix et al., 2009; Capriotti et al.,

2005b; Gilis and Rooman, 2000; Guerois et al., 2002; Rohl et al.,

2004; Seeliger and de Groot, 2010; Yin et al., 2007). The molecular

dynamics protocol that uses alchemical free energy simulations is

the most time-consuming method that shows the highest correlation

with experimental data, up to r¼0.86 (Seeliger and de Groot,

2010). Programs such as FoldX (Guerois et al., 2002; Schymkowitz

et al., 2005), Eris (Yin et al., 2007) and Rosetta (Rohl et al., 2004)

manipulate structures more quickly, resulting in correlations with

experimental change in free energy in independent tests of r¼0.50

for FoldX and r¼0.26 for Rosetta (Eris was not assessed) (Potapov

et al., 2009). Machine-learning methods such as I-Mutant (Capriotti

et al., 2005a,b) work even faster; I-Mutant achieves correlation of

r¼0.54 (Potapov et al., 2009) based solely on the original protein

structure or sequence, without requiring construction of the mutant

protein structure.

Accuracy is usually used as the main and only descriptor of a

method’s utility. Developers and testers of the programs for predic-

tion of the change in protein stability attempt to maximize and

quantify accuracy (Potapov et al., 2009). Although it has been

reported that some methods are biased, the datasets used to detect

the bias were small (Capriotti et al., 2008; Christensen and Kepp,

2012; Frappier et al., 2015; Thiltgen and Goldstein, 2012), and it

has not been systematically investigated.

A straightforward approach to detect the bias in the measure-

ments of protein stability is to rely on the principle of symmetry, a

common feature in several areas of physics. Specifically, for a state

function the values of the function for forward and reverse changes

sum up to zero. This idea was used by several authors to detect the

bias in different programs predicting the effect of protein substitu-

tions. First, Capriotti et al. (2008) noticed that the methods could

suffer from the bias without quantifying the effect. Frappier et al.

(2015) found the bias after application of the prediction methods to

a dataset containing 303 stabilizing and destabilizing mutations. To

estimate the bias quantitatively, Christensen and Kepp (Christensen

and Kepp, 2012) measured the deviation of the reverse change of

stability from that expected from the forward ones, where both

wild-type and mutant structures were produced by homology mod-

eling. Next, Thiltgen and Goldstein measured the bias on the small

dataset of 65 pairs (Thiltgen and Goldstein, 2012). Finally, Fariselli

et al. when developing the INPS method (Fariselli et al., 2015),

avoided the bias by adding symmetrical mutations to the training

dataset to make it ideally balanced.

Here we measure systematically and accurately the bias inherent

to methods predicting change of protein stability as a function of the

number of introduced mutations. Compared to previous realiza-

tions, our approach has one or more of the following advantages.

First, it does not use any experimental data on protein stabilities or

change of protein stability. Second, it uses protein crystal structures

and the computational method without requiring additional struc-

ture predictions or manipulations. Our dataset contains thousands

of protein structure pairs. Finally, it is independent of protein struc-

tures being wild-type because processing forward and reverse substi-

tutions are identical in terms of computational procedures. We

explored the presence of the bias for four of the most popular pre-

diction algorithms, FoldX (Guerois et al., 2002; Schymkowitz et al.,

2005), Eris (Yin et al., 2007), Rosetta (Rohl et al., 2004) and

I-Mutant (Capriotti et al., 2005a,b). We found that all four algo-

rithms have an inherent bias, whereby for many instances the effect

of the forward and the reverse substitution was predicted to be sub-

stantially different in magnitude. The value of the bias increases

with the number of introduced amino acid substitutions.

2 Materials and methods

2.1 Dataset
We created a high-quality dataset of the protein structures differing

by few amino acid residues (from one to ten). For that, we retained

from protein data bank (PDB, www.rcsb.org) (Berman et al., 2000):

1. X-ray determined structures with resolution lower than 2.5 Å;

2. monomeric structures (according to the REMARK 350 of PDB

header). If several chains were presented in the PDB file, we

selected the first one;

3. PDB structures without unresolved backbone atoms coordinates;

4. PDB structures without non-standard residues.

In the dataset built from the sequences of the selected PDB files we

found pairs of structures differing by one to ten amino acids (the

number of found pairs is given in the Supplementary Table S1) using

stand-alone version of BLAST (Altschul, 1997). From every set of

pairs differing by a given number of mutations, we selected all pairs

if their number was lower than 1000; otherwise, we chose 1000

pairs at random to minimize the computation time, the list is given

in the Supplementary Table S2.

2.2 FoldX
We used FoldX (Guerois et al., 2002; Schymkowitz et al., 2005) 4.0

version (http://foldxsuite.crg.eu/products), predictions are given in

Supplementary Table S2. At the moment, FoldX does not have a

web-server version.

During a single run of ‘BuildModel’ procedure, FoldX samples

different rotamers of the new amino acid residue from the rotamer

library to achieve a lower free energy. The recommendation is to

make one run; to check the convergence, multiple runs can be done

(FoldX manual, http://foldxsuite.crg.eu/command/BuildModel). We

found that the bias itself is not changed (both for the default proto-

col and for the modified one, see Section 3.4), while the standard de-

viation of the bias decreases with the number of models. So, to

increase the reliability of the presented results we used ten-run

modeling.

2.3 Eris
We used the stand-alone version v1.0 of Eris (Yin et al., 2007) with

default parameters. We renumbered amino acid residues in PDB files

starting with 1 and retaining only the first protein chain with small

molecules belonging to that chain. The web-version can be found at

http://redshift.med.unc.edu/eris/login.php.
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2.4 Rosetta
We used Rosetta (Rohl et al., 2004) version 32.58837. We renumbered

amino acid residues in PDB files starting with 1 and retaining only the

first protein chain with small molecules belonging to that chain. Then

we made five relaxed structures by ‘relax’ procedure of Rosetta pack-

age with parameters ‘-relax: dualspace true; -ex1; -ex2; -use_input_sc;

-flip_HNQ; -no_optH false; -relax: min_type lbfgs_armijo_nonmono-

tone; -ignore_unrecognized_res; -database $ROSETTA/main/database;

-nstruct 5; -nonideal’. Then we chose the structure with the lowest free

energy. In that structure we calculated change of stability using the

‘ddg_monomer’ procedure of Rosetta package with parameters ‘-

ddg::iterations 3; -ddg::dump_pdbs false; -ignore_unrecognized_res; -

ddg::local_opt_only false; -ddg::suppress_checkpointing true; -in::file::-

fullatom; -ddg: min_cst true; -ddg: mean false; -ddg: min true; -ddg:

sc_min_only false; -ddg: ramp_repulsive true; -ddg: opt_radius 12.0; -

score: fa_max_dis 9.0; -ddg::output_silent true’.

2.5 I-Mutant
I-Mutant (Capriotti et al., 2005a,b) is a machine-learning method

trained to estimate free energy change of single mutations in two

modes: based on protein structure or protein sequence alone. The

algorithm was trained to rely on the character of the mutation and

the environment of the mutated position. For structural prediction

the neighboring residues in physical space are used (or their absence

in case of solvent-accessible position), and for sequence-based

prediction a sequence window of 69 residues is used (Capriotti

et al., 2005a,b). The web-version can be found at http://folding.bio

fold.org/cgi-bin/i-mutant2.0.cgi. We used stand-alone version of

I-Mutant 3.0 in PDB mode (i.e. predicting change of stability using

the protein crystal structure) with default options.

2.6 Relaxation of structure by Modeller
We used Modeller (Webb and Sali, 2014) version 9v4 following the

basic procedure for modelling a sequence with high identity to tem-

plate. For each protein structure in question we generated with

Modeller ten models of wild-type sequence and ten models of mu-

tant sequence. Then for each Modeller model we ran ten rounds of

FoldX RepairPDB and took final stability. Finally, we calculated the

difference between average stability of ten mutant models and ten

wild type models.

3 Results

3.1 Measurement of the bias
Using pairs of homologous proteins with known structure, we used

the following protocol for accurate measurement of the bias in

prediction of protein change of stability after mutation, which can

be described as follows [see also (Christensen and Kepp, 2012;

Frappier et al., 2015; Thiltgen and Goldstein, 2012)].

Suppose, we have protein structures A and B having free energy

change of folding DGA and DGB differing by one amino acid in the pos-

ition X: structure A has residue XA, while structure B has residue XB

(Fig. 1). Let DDGAB¼DGB – DGA be the free energy change of structure

A due to mutation XA ->XB, where DGA and DGB are folding

free energies of the structures A and B, respectively. Similarly,

DDGBA¼DGA – DGB is the free energy change of structure B due to

mutation XB ->XA. From the definition of DDGAB and DDGBA:

DDGAB¼ –DDGBA; or

DDGABþDDGBA ¼ 0:

However, calculations are not ideal: to obey this equation, programs

should generate the lowest energy structure B from the structure A

and vice versa, which may be hard, considering internal specific fea-

tures of the programs. FoldX, for instance, does not move backbone

chain upon mutation; it also does not move sidechains of all residues

but neighbors. As a result, we expect the modeled structure B to be

less stable than the crystal structure B by some value dAB. Similarly,

modeled structure A is expected to be less stable than the crystal

structure A by some value dBA:

DDGABþDDGBA¼ dABþdBA; or

DDGAB¼ – DDGBAþðdABþdBAÞ:

In this way, we can measure sum of the two delta values (dABþ dBA)

and calculate the average bias per mutation as <(dABþ dBA)/

2>¼<(DDGABþDDGBA)/2> considering all available protein pairs

A and B.

The used approach can be extended to pairs of structures that

differ by more than one amino acid substitution. The advantage of

the approach is that it does not depend in any way on the experi-

mental determination of the free energy of the protein structure.

Furthermore, it does not depend on the knowledge of which of the

two sequences, if any, is the wild type variant.

3.2 The bias for single and multiple substitutions
For single substitutions the average bias (DDGBAþDDGAB)/2 signifi-

cantly deviates from zero (Table 1 and Fig. 2), ranging from

0.74 6 0.05 kcal/mol for FoldX to 2.08 6 0.12 kcal/mol for Rosetta.

The clouds in Figure 2a–d consist of pairs near the non-biased line

DDGBA¼ –DDGAB that do not contribute to the bias and a dispersed

group of points that comprises the bias. We investigated influence of

different factors for one of the program, FoldX. We found that

mutations in more buried positions and mutations with more

dramatic change in the amino acid size tend to give larger bias

(Supplementary Fig. S3). The change in hydrophobicity, change in

charge of the mutated residues, and other factors have little or no in-

fluence on the bias (Supplementary Fig. S3).

We also investigated the bias for multiple mutants (Fig. 3) for

FoldX, Eris and Rosetta (I-Mutant was not studied because it does

not allow input of multiple mutations). The bias increases with the

Fig. 1. Design of the protocol. Two example protein structures, A and B, differ-

ing by one amino acid residue are shown on the left. If we measure free en-

ergy change for the forward and reverse mutations, their sum must be zero:

DDGABþDDGBA¼0 (arrows on the left). For predicted destabilizations (shown

on the right), their sum may not be zero due to errors. Here, the case is given,

when DDGABþDDGBA>0

Programs systematically mispredict the impact of mutations on stability 3655

http://folding.biofold.org/cgi-bin/i-mutant2.0.cgi
http://folding.biofold.org/cgi-bin/i-mutant2.0.cgi
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty340#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty340#supplementary-data


number of introduced mutations (from two to ten); however, the in-

crement becomes less pronounced with additional mutations.

3.3 Influence of additional parameters on the bias for

FoldX
We took one program, FoldX, as an example, and introduced some

modifications in its default protocol to reduce or eliminate the bias.

To reduce the running time of the modeling, we sampled 100

random pairs from the original pool of pairs differing by the one

to ten substitutions. For reference, the bias for the default protocol

of FoldX for 100-pairs subsample for single substitution was

0.80 6 0.16 kcal/mol.

3.3.1 Initial relaxation of protein structure

Most programs manipulating protein structures as the first step of

the algorithm prepare the protein structure to avoid artifacts

coupled with the initial unrelaxed structure. In FoldX this procedure

is called ‘RepairPDB’. First, it recovers all absent atoms and residues

in the protein, then flips Asp, Gln and His side chains to avoid incor-

rect 180-degree rotation. Then, for amino acid residues with high

free energy it tests different rotamers from the rotamer library to ob-

tain a better free energy estimation. The recommendation of the

FoldX manual is to use RepairPDB once (http://foldxsuite.crg.eu/

command/RepairPDB), as we have done to obtain the data shown in

the previous section.

In a computational experiment, one may want to consider

changes of free energy of completely different proteins in one pool.

To avoid possible artifacts coupled with unequal relaxation of dif-

ferent proteins, one may require the full relaxation of protein struc-

tures, i.e. the free energy after the relaxation should reach a plateau

(within a reasonable threshold, we chose here 0.1 kcal/mol). We

found that FoldX reaches a plateau only after 7–10 rounds of

RepairPDB (Supplementary Fig. S4).

Thus, a possible concern for the default FoldX procedure is that

an incomplete initial relaxation influences the predicted values of

stability change and the bias. To test this possibility, we made ten

rounds of RepairPDB instead of the default single round. We found

that, on average, change of stability (r¼0.99, slope¼1.01 when

intercept fixed at zero) and the bias (r¼0.99, slope¼0.97 when

intercept fixed at zero) were the same (Supplementary Fig. S5). So,

full initial relaxation of the structures, although being physically rea-

sonable, does not reduce the bias.

3.3.2 Additional relaxation after introducing mutations

The residues are mutated in FoldX by the procedure called

‘BuildModel’. In the mutated position, BuildModel removes the ori-

ginal residue and assigns different rotamers for the new residue from

the rotamer library. Simultaneously, BuildModel reconsiders the

side-chain of the residues neighboring the mutated residue in physic-

al space since the new amino acid residue may bump into its

Fig. 2. The bias for single substitutions for FoldX, Eris, Rosetta and I-Mutant. (a–d) The relationship between predicted changes of stability DDGAB and DDGBA for

the forward and reverse mutations, where the structures A and B differ by a single substitution. The ‘ideal’ relationship DDGABþDDGBA¼0 is shown as a solid line.

Because of symmetry of the protocol, every pair of structures A and B is plotted as (A; B) and (B; A), so the plot is symmetric relative to the y¼x line. ‘prR’ and ‘p’

are the Pearson correlation coefficient and the associated P-value. (e–h) The histograms of the sum of two changes of stability DDGABþDDGBA for the forward and

reverse mutations for FoldX, Eris, Rosetta and I-Mutant, respectively

Table 1. Bias for single substitutions

Program Bias, kcal/mol r (P-value) Binary fraction of errors

FoldX 0.74 6 0.05 �0.15 (10�11) 0.35

Eris 1.25 6 0.11 �0.39 (2 � 10�49) 0.27

Rosetta 2.08 6 0.12 �0.06 (0.04) 0.51

I-Mutant 0.80 6 0.01 �0.13 (3 � 10�8) 0.74

Note: Bias is given for an individual substitution, i.e. bias¼ (DDGABþDDGBA)/

2, with the standard error of mean. r, Pearson correlation coefficient with the asso-

ciated P-value. Binary fraction of errors is the fraction of errors in binary classifica-

tion. A pair was considered as correctly classified if the signs of forward and

reverse change of stability were opposite.

Fig. 3. The bias for multiple mutations for FoldX, Eris and Rosetta. The indi-

vidual value of the bias depending on the number of amino acid substitutions

separating protein variants A and B in pair of structures. The error bars repre-

sent 3 standard errors of mean
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neighbors. The final prediction of the free energy change is

calculated as the difference in free energy between the mutant

structure and the reference wild-type structure. For better

prediction, BuildModel moves ‘the same neighbours in the WT

and in the mutant producing for each mutant PDB a corresponding

PDB for its WT’ (FoldX manual, http://foldxsuite.crg.eu/command/

BuildModel).

FoldX changes only the mutated position and several neighbors

keeping the rest of the protein structure the same, which may seem

like a biologically unrealistic requirement. We checked if the inde-

pendent relaxation of the rest of the structure of mutant and the cor-

responding wild-type protein can decrease the bias. The additional

relaxation indeed helps, and ten rounds are needed again to achieve

full relaxation (Supplementary Fig. S6) decreasing the bias to

0.61 6 0.13 kcal/mol for single mutations (Fig. 4, gray bars), or

�25% lower than before. For multiple mutants, the reduction was

even more significant (Fig. 4, white and gray bars).

3.4 Using Modeller to decrease the bias of FoldX
FoldX does not move the backbone upon mutation, which may be

the reason for the bias found here. To test this hypothesis, after

mutation we used Modeller (Webb and Sali, 2014) to relax the

structure including the backbone. After that, we applied ten-fold re-

laxation by FoldX, because the Modeller force-field could not be op-

timal for FoldX force-field.

We found that using Modeller for single mutants of FoldX

removes the bias (Fig. 4, black bars) but at a cost of increasing the

noise of the predictions (Supplementary Fig. S7). For multiple

mutants using Modeller did not eliminate the bias; nevertheless, it

was reduced significantly for structures differing by as many as eight

substitutions. For sequences with eight to ten mutations Modeller

did not reduce the observed bias (Fig. 4).

All physically reasonable modifications to the default protocol

suggested here require additional computations; however, for more

careful analysis one might prefer a more accurate but slower proto-

col, with the necessary computations, which can be performed in a

feasible timeframe on a computational cluster.

4 Discussion

We accurately and systematically measured the bias for programs

predicting the effect of substitutions on protein stability, for one to

ten substitutions. The design of the protocol allows its application

without knowing any experimental data on protein free energy

change (Christensen and Kepp, 2012; Frappier et al., 2015; Thiltgen

and Goldstein, 2012). The protocol uses two protein structures dif-

fering by one or several mutations. A program predicts protein free

energy change upon mutations in the forward and reverse directions,

and the bias is detected if the sum of free energy changes deviates,

on average, from zero. We used the protocol on four representative

programs, FoldX (Guerois et al., 2002; Schymkowitz et al., 2005),

Eris (Yin et al., 2007), Rosetta (Rohl et al., 2004) and I-Mutant

(Capriotti et al., 2005a,b), and showed that they have an inherent

bias in the prediction of the mutation effect. For single mutants, the

bias was 0.74 6 0.05 kcal/mol for FoldX, 1.25 6 0.11 kcal/mol for

Eris, 2.08 6 0.12 kcal/mol for Rosetta and 0.80 6 0.01 kcal/mol for

I-Mutant (Table 1).

The bias was noticed before. For example, Christensen and Kepp

(2012) in their investigation of beta-lactamase mutants estimated

the bias for FoldX equal to �0.5 kcal/mol. It is close to our results

for single mutants; however, their estimate characterizes both single

and multiple mutants together, making it impossible to differentiate

between the influence of single mutations and their interactions.

Moreover, to estimate the bias they used protein models obtained by

homology modeling. These manipulations lead to additional uncer-

tainty about the nature of the observed bias. In the work (Thiltgen

and Goldstein, 2012) the authors found the values for the bias,

which agrees to our results, but only for single mutations and using

only 65 protein pairs.

The exact reasons for the observed bias and reduced accuracy on

a balanced dataset remain largely obscure. One of the reasons, gen-

eral to all the programs, could be that programs are trained on ex-

perimental datasets which have much more destabilizing mutations

than stabilizing ones, as discussed in (Capriotti et al., 2008).

Therefore, if such programs are given a balanced dataset (as we use

here), then the algorithm will predict more destabilizing mutations,

reflecting the tendencies of the training dataset.

The reason specific to FoldX could be that FoldX fixes the back-

bone when making the mutant structure. Obviously, the fixed back-

bone is optimal for the starting structure, not the mutated one,

which is expected to estimate the prediction to be more destabiliz-

ing. When applying FoldX to a balanced dataset of 84 mutations

(42 forward and 42 reverse) in the original paper (Guerois et al.,

2002) the authors used additional relaxation by WHATIF program

(Vriend, 1990) for the mutation increasing the sidechain. In that

way, they were able to obtain unbiased results [see Fig. 3 in Guerois

et al. (2002)]. Using WHATIF program was similar to our usage of

Modeller in the present work.

For I-Mutant, the specific factor could be that it considers the se-

quence/structure context of the mutated position. The context con-

tribution is the same both for forward and reverse mutations. Being

trained on a dataset containing more destabilizing mutations it may

erroneously predict that some context on average creates more

destabilized predictions.

The identification of the bias does not immediately lead to a bet-

ter prediction of experimental mutation effects because it is not clear

if the bias results from misestimating the impact of the forward or

the reverse mutation. For example, in independent tests I-Mutant

showed the strongest correlation between experimental and

predicted effects of mutations (Potapov et al., 2009); however,

I-Mutant was also the noisiest method in our test (Fig. 2d). This sug-

gests, that in our work we tested for different parameters of quality

of prediction programs than are explored by test for agreement

with experimental data. Hopefully, the bias explored here may be

addressed in the course of development of new approaches [as in

Fig. 4. The bias for different modifications of the default protocol of FoldX.

The error bars represent standard error of mean
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INPS (Fariselli et al., 2015)], or modification of the existing methods

for prediction of free energy change (Christensen and Kepp, 2013,

2012). For example, the protocol used here can be utilized as an in-

dependent training part of new programs, when a program requires

the forward and reverse mutations to have opposite effects.

There are situations when the bias does not influence the inter-

pretation of the results. One of them is when we compare protein

variants that have the same number of mutations and are generated

from the same template structure. In this case the bias is, on average,

the same for all mutants (Sarkisyan et al., 2016; Tokuriki et al.,

2007). Otherwise, mutant structures obtained from the same refer-

ence structure but with different number of substitutions will have

different bias, which will make them hard to compare.

To summarize, we measured accurately and systematically the

bias in prediction of change in protein structure stability, both for

single and multiple substitutions, utilizing the protocol based on

self-consistency. The users might evaluate if the bias can influence

the interpretation of their results. The developers could reduce or re-

move the bias from the predictions by using artificially completed

balanced datasets or by requiring the method to predict the same

but opposite in sign effects for forward and reverse mutations. Our

findings have important applications in the studies involving the

protein structure destabilization predictions.
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