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Abstract: Deep learning has demonstrated superior performance in image reconstruction compared
to most conventional iterative algorithms. However, their effectiveness and generalization capability
are highly dependent on the sample size and diversity of the training data. Deep learning-based
reconstruction requires multi-coil raw k-space data, which are not collected by routine scans. On
the other hand, large amounts of magnitude images are readily available in hospitals. Hence, we
proposed the MAGnitude Images to Complex K-space (MAGIC-K) Net to generate multi-coil k-
space data from existing magnitude images and a limited number of required raw k-space data to
facilitate the reconstruction. Compared to some basic data augmentation methods applying global
intensity and displacement transformations to the source images, the MAGIC-K Net can generate
more realistic intensity variations and displacements from pairs of anatomical Digital Imaging and
Communications in Medicine (DICOM) images. The reconstruction performance was validated
in 30 healthy volunteers and 6 patients with different types of tumors. The experimental results
demonstrated that the high-resolution Diffusion Weighted Image (DWI) reconstruction benefited
from the proposed augmentation method. The MAGIC-K Net enabled the deep learning network
to reconstruct images with superior performance in both healthy and tumor patients, qualitatively
and quantitatively.

Keywords: deep learning; data augmentation; DICOM; raw data

1. Introduction

Magnetic resonance imaging (MRI) is considered an important modality for clinical
diagnosis, due to its strong capability in revealing the anatomy with different soft-tissue
contrasts [1]. However, MRI is a slow acquisition process due to physical and physiological
constraints. Raw MRI data are acquired sequentially to traverse the whole k-space. The
prolonged scan time causes discomfort to the patients and results in severe motion artifacts
in the reconstrued images.

A variety of accelerating techniques have been therefore proposed to shorten the scan
time, among which Parallel Imaging (PI) [2,3] reduces the number of k-space samples
acquired and recovers the images from aliasing artifacts. Historically, PI methods were put
into two categories: approaches that operate in the image domain, inspired by SENSitivity
Encoding (SENSE), and approaches that operate in k-space, inspired by GeneRalized Auto-
calibrating Partial Parallel Acquisition (GRAPPA) [4]. SENSE [2] uses spatial information
from the coil sensitivity maps to solve the inverse problem recovering the images from
aliasing artifacts. GRAPPA [3] uses linear shift-variant convolutional kernels to interpolate
missing k-space lines using neighbouring acquired k-space lines. However, PI is limited
to acceleration factors of two to three since a higher undersampling factor increases the
noise level and residual aliasing artifacts [5]. Recently, deep learning has demonstrated
great capability in accelerating MRI scans with higher undersampling factors. Zhu et al. [6]
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proposed an AUTOmated transform by Manifold APproximation (AUTOMAP) attempts to
estimate the Fourier transform operation using fully connected layers, directly recovering
the image without ever interpolating the missing k-space data. Wang et al. [7] trained a
deep neural network to reconstruct aliasing-free images from undersampled ones in an
end-to-end way. Hwan et al. [8] introduced a shift-invariant operator into the U-net [9], and
obtained a mapping from under-sampled k-space to fully-sampled images. Lee et al. [10] ap-
plied prior knowledge from the phase-channel outcome into the reconstruction framework,
achieving superior performance for magnitude-channel reconstruction. Yang et al. [11]
incorporated k-space loss, content loss with adversarial loss, into a pix2pix [12] network
to enforce similarity in both the frequency and image domains for reconstruction. Ham-
mernik et al. [13] proposed a Variational Network (VN) to package image reconstruction
into a regularization framework. Salman et al. [14] combined deep learned priors with
SmooThness Regularization on Manifolds (SToRM) to capitalize local and population gen-
eralizable redundancies together with respiratory patterns. Aggarwal et al. [15] combined
the power of data-driven learning with the Model-based framework using a Deep Learned
prior (MoDL). Duan et al. [16] formulated the generalized PI reconstruction as an energy
minimization problem and derived a variable splitting optimization method. Lv et al. [17]
combined PI reconstruction with GAN to recover aliasing artifacts from undersampled
k-space data, with an acceleration factor as high as six.

Although deep learning has proven potential in the field of medical image recon-
struction beyond conventional methods, the effectiveness and generalization capability
of deep learning-based reconstruction are highly dependent on the sample size and di-
versity of the training data. Severe overfitting problems may occur in cases of limited
training samples or insufficient sampling [18]. Several data augmentation techniques have
been proposed in the area of medical imaging. The most basic augmentation methods
include shifting, rotation, shearing, and intensity perturbations [19]. Certain improvements
were observed by introducing such variability in the training sets during lesion classifica-
tion [20,21] and segmentation [19,22]. More advanced techniques have also been proposed.
Using pix2pix translation GAN [19], Shin et al. [23] produced synthetic abnormal multi-
parametric MRIs for tumor segmentation. Rusak et al. [24] used partial volume maps to
guide a 3D GAN towards the generation of novel MRI volumes with more accurate tissue
borders. Registration-based augmentation [25] benefits from subtle displacement and
tissue characteristics captured in the existing dataset. Through modeling and applying de-
formation fields and additive intensity mask on existing labelled data, Chaitanya et al. [26]
succeeded in generating more cases for the cardiac segmentation task. Abolvardi et al. [27]
applied registration in a tumor case with a target from a healthy subject, thus generating
new tumor cases with smoothly added lesions. Deriving displacement and appearance
fields from pairs of brain images, Zhao et al. [22] developed a supervised deep learning
model for image segmentation using one source case with a label.

Although the abovementioned augmentation algorithms are considered to have posi-
tive impacts on deep learning tasks thereafter, the reconstruction requires multi-coil raw k-
space data. Existing studies mainly focused on magnitude image augmentations. However,
the above data are not suitable for k-space augmentation, which is “parallelly” acquired
with multiple coils and stored in a complex format. Collecting multi-coil complex data is
not performed in clinical routine exams, which limits the reconstruction performance in
most circumstances. On one hand, with the rapid development and popularization of MRI
scanners, magnitude Digital Imaging and Communications in Medicine (DICOM) images
are easily collected in hospitals.

Hence, we proposed the MAGnitude Images to Complex K-space (MAGIC-K) Net to
generate multi-coil raw k-space data from existing magnitude images and a limited number
of real k-space data to facilitate deep learning reconstructions. Taking reconstruction on
DWI as an example, we succeeded in generating diversity with a larger k-space dataset.
The MAGIC-K Net enabled the deep learning network for reconstruction to have superior
performance in both healthy and tumor patients, qualitatively and quantitatively.
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2. Materials and Methods
2.1. Data Acquisition

The current study was approved by the Institutional Ethics Review Board of our
local institution. Informed consent was obtained from all subjects. A total of 30 healthy
volunteers and 6 patients with different types of tumors, including lymphatic metastasis,
diffused glioma, adenocarcinoma metastasis, temporal-lobe glioma, lymphatic metastasis,
and benign acoustic nerve tumor, were recruited. All images as well as raw k-space data
were acquired on a 3.0 T MRI scanner (Ingenia CX, Philips Healthcare; Best, the Nether-
lands), equipped with a 32-coil head coil. Multi-Shot DWI (MSDWI) was performed with
a four-shot interleaved Echo Planar Imaging (EPI) sequence using the following parame-
ters: Echo Time (TE), 75 ms; Repetition Time (TR), 2800 ms; matrix size, 228 × 228; FOV,
228 × 228 mm2; slice number, 16; slice thickness, 4 mm; slice gap, 1 mm; partial Fourier
factor, 0.702; voxel size, 1.0 × 1.0 mm2. The MSDWI sequences consisted of b-values
of 0 s/mm2 and 1000 s/mm2. The MSDWI data were reconstructed using MUSE [28]
to eliminate phase aliasing. The Coil Sensitivity Maps (CSM) were estimated from the
central k-space regions of each slice using ESPIRiT [29]. For the purpose of data augmenta-
tion, the T1-weighted (T1w) three-dimensional, Fourier-transformed acquisitions require
Magnetization-Prepared 180 degrees radio-frequency pulses and RApid Gradient-Echo
(MPRAGE) sequence was scanned with the following parameters: TE, 3.58 ms, TR, 8.05 ms;
matrix size: 228 × 228; slice thickness, 1 mm; voxel size, 0.89 × 0.89 mm2.

Magnitude Digital Imaging and COmmunications in Medicine (DICOM) images from
26 healthy subjects were exported from the database of Fudan University. The MPRAGE
images were obtained using identical scan parameters, as mentioned above.

2.2. MAGIC-K Net Architecture

The architecture of the proposed MAGIC-K Net is shown in Figure 1, which con-
tains three parts: (a) training of a geometrical model from source images to target ones,
(b) training of an intensity model from source images to target ones, and (c) application of
the pre-trained displacement and intensity flow fields to multi-coil complex images, for
generating N × N raw images for reconstruction.
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Figure 1. The architecture of the proposed MAGIC-K Net. The displacement and intensity flow
fields were learned from pairs of T1w images. Then, the intensity and displacement flow fields were
applied to the magnitude and phase of DWI with b = 1000 s/mm2, generating data sets with different
contrasts and anatomical structures.
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2.2.1. MAGIC-K Net Training

Let (ST , TT) be two DICOM T1w data, defined over a 3D displacement domain
ST , TT ⊂ R3.

The displacement flow is in the form of a voxel-wise displacement field [30] of
Φ = I + u, where u, the nonlinear misalignment between the volumes, can be learned, and
Φ ⊂ R4. To generate different brain structures, we warped ST to the ith target image Ti

T
using the following function:

Φi = Cd(ST , Ti
T) (1)

where Cd represents the CNN to learn the displacement. After training the displacement
network, it can be applied to the source images with the displacement flow field:

τi
d(ST) = ST ◦Φi (2)

where τi
d stands for the displacement transformation from the source to the target.

Then, the inverse displacement flow of C−1
d was trained to transform the target to

ST , with the same anatomical structure but a different intensity. The pixel-wised intensity
variation can be then trained using:

Ψi = Ci(ST , C−1
d (ST , Ti

T)) (3)

After training the intensity network, it can be applied to the source images as follows:

τi
i (ST) = ST + Ψi (4)

In this study, the architecture of the CNN was selected to be 3D-Unet [22]. The loss
functions were defined as the Mean Squared Error (MSE) between the target and the
outcome of the network:

Ld(ST , Ti
T) = ‖Ti

T − ST ◦Φi‖2 (5)

Li(ST , Ti
T) = ‖Ti

T ◦Φ−i − ST + Ψi‖2 (6)

where Φ−i is the inverse displacement flow to transform the target to the source, Ld stands
for loss of the displacement network, and Li is the intensity loss.

2.2.2. MAGIC-K Net Application

During the application of the MAGIC-K Net, DICOM T1w images were used for
training. Since raw DWI images to be reconstructed are scanned in the same exam with
T1w images, once the MAGIC-K Net has been trained, it can be directly applied to DWI
images as well as CSMs. The intensity flow Ψi and displacement flow Φi were applied
to raw DWI source data SD and CSMs SC, where SD, SC ⊂ C3. The data in the complex
format were separated into magnitude and phase components:

SC = SCM · ei·SCP (7)

SD = SDM · ei·SDP (8)

where SCM, SCP, SDM, SDP ⊂ R3. Only the displacement flow was applied on SCM, SCP, SDP
to keep the original intensities unchanged:

τi
d(SCP) = SCP ◦Φi (9)

τi
d(SCM) = SCM ◦Φi (10)

τi
d(SDP) = SDP ◦Φi (11)

For the magnitude components of DWI, Ψi and Φi were applied on SDM subsequently:

τi
d(τ

i
i (SDM) = (SDM + m·Ψj) ◦Φi (12)
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where i and j stand for the ith and jth targets, m ⊆ R stands for different scales of the
intensity flows. In this study, m = 0.9, 1.1, 1.2, and 1.3, respectively, were used. Finally, the
raw DWI sample size could be enlarged by N × N ×m through this framework.

2.3. Training Data Augmentation

To better illustrate the value of the proposed MAGIC-K Net, only one case from a
healthy volunteer was used as source images, including DICOM T1w images and the
corresponding complex multi-coil DWIs. Another dataset containing DICOM T1w images
from 26 subjects were used to train the MAGIC-K Net. For comparison, we applied basic
and MAGIC-K Net augmentations as follows:

A. shearing by 5%, 10%, −5%, and −10%;
B. rotations of 20◦, 40◦, 60◦, 80◦, 100◦, 120◦, 140◦, and 160◦;
C. translations along the x and y axes with 12, −12, 24, and −24 pixels;
D. brightness with 5 scales (i.e., 0.8, 0.9, 1, 1.1, and 1.2 times of the average image intensity);
E. MAGIC-K Net with displacement deformations (26 geometries) only;
F. MAGIC-K Net with intensity variations (26 contrasts) and 4 scales (0.8, 0.9, 1.1,

and 1.2).

Hence, we obtained 6 different augmentation types, as follows:

1. (s) BASIC: 4 (A) × 5 (D) = 20;
2. (r) BASIC: 8 (B) × 5 (D) = 40;
3. (t) BASIC: 16 (C) × 5 (D) = 80;
4. (s + r + t) BASIC: 4 (A) × 8 (B) × 16 (C) × 5 (D) = 2560;
5. (d) MAGIC-K: 26 (E) × 5 (D) ×16 (C) = 2080;
6. (d + i) MAGIC-K: 26 (E) × 26 × 4 (F) = 2730.

For each group, the training dataset contained 43,680 slices (16 slices for each case in
the original dataset) after data augmentation for reconstruction. It is worth noting that no
patients were included in the training dataset.

2.4. Deep Learning Reconstruction

MSDWIs from 30 healthy subjects and 6 patients with different tumor types were
tested. The state-of-art VS-Net [16] was used for image reconstruction. Briefly, the VS-
Net contained three blocks, including a denoiser block, a data consistency block, and a
weighted average block, based on the multi-variable energy minimization process. Based
on the notion of compressed sensing, VS-Net introduced auxiliary splitting variables to
help enhance the fidelity of multi-coil data and simplify matrix inversion calculation.

We applied both uniform and variable density sampling trajectories with different un-
dersampling rates (i.e., R = 4 and 6) for validation. The conventional iterative reconstruction
SENSE [29] was also performed for comparison.

2.5. Performance Assessments
2.5.1. Evaluation Metrics

The reconstruction performance was evaluated by the Peak Signal-to-Noise Ratio
(PSNR) and Structure SIMilarity index (SSIM) [31].

2.5.2. Apparent Diffusion Coefficient (ADC) Fitting

The ADC map [32] was obtained by fitting a pixel-wise mono-exponential function
using DWI with different b-values:

Sb/S0 = e−b×ADC (13)

where Sb is the magnitude signal of the high b-value DWI and S0 is the magnitude signal
with b-value = 0 s/mm2. The Brain Extraction Tool (BET) [33] was applied on DWI images
and CSMs to strip the skull.
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2.6. Model Implementation

We implemented the affine alignments between the paired data using SPM Co-
registration and the DARTEL Toolbox [34].

Training and testing were implemented with Tensorflow [35] using 4 GPUs (4 cores
P100, each with 16 GB memory). The network parameters were updated using the ADAM
optimizer [36] with a fixed learning rate of 10−3 and a batch size of 40. The training
iterations were set to 2000 for the (s) BASIC, (r) BASIC, and (t) BASIC groups, and to
10,000 for the (s + r + t) BASIC, (d) MAGIC-K, and (d + i) MAGIC-K groups. The training
time was around 10 hours for the proposed (s + r + t) BASIC, (d) MAGIC-K and (d + i)
MAGIC-K groups.

3. Results

Cross-augmented high resolution DWIs with b = 1000 s/mm2 and the corresponding
CSMs are provided in Figure 2. The size of the training samples was increased, as well as the
diversity of image distribution, which are crucial for the subsequent deep learning-based
reconstruction network.

Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 2. Cross-augmented high resolution DWIs with b = 1000 s/mm2 and the corresponding CSMs. 
The iTrans-N represents the intensity transformation from the Nth target. dTrans-N refers to the 
displacement from the Nth target. 

The reconstruction results trained by different augmentation approaches are pre-
sented in Figures 3–10. Tests on the healthy subjects are shown in Figures 3–5 and tumor 
patients are shown in Figures 6–10. 

 
Figure 3. Comparison of the reconstructed images by different image augmentation strategies using 
uniform undersampling in a healthy volunteer. The SSIM is listed at the bottom-right of each recon-
structed image. The error map was ×10 amplified for better visualization. The MSE is listed at the 
bottom-right of each ADC map. The aliasing artifacts are depicted by the yellow arrows. 

Figure 2. Cross-augmented high resolution DWIs with b = 1000 s/mm2 and the corresponding CSMs. The iTrans-N
represents the intensity transformation from the Nth target. dTrans-N refers to the displacement from the Nth target.

The reconstruction results trained by different augmentation approaches are presented
in Figures 3–10. Tests on the healthy subjects are shown in Figures 3–5 and tumor patients
are shown in Figures 6–10.

Compared with the (s) BASIC, (r) BASIC and (t) BASIC groups with data sizes of 20,
40, and 80, respectively, the (s + r + t) BASIC, (d) MAGIC-K and (d + i) MAGIC-K groups
with data sizes of more than 2000 displayed higher PNSR and SSIM. (d) MAGIC-K, with a
data size of 2080, displayed comparative outcomes to (s + r + t) BASIC, with a data size of
2560. Only local displacement transformations were applied to the original images. The
(d + i) MAGIC-K Net achieved the highest PSNR (23.93 dB at R = 4, and 20.30 dB at R = 6)
and SSIM (0.893 at R = 4, and 0.770 at R = 6). Moreover, aliasing artifacts remained using
SENSE, as well as all the basic augmentations under uniform undersampling when R = 6,
as depicted by the yellow arrows in Figure 3. However, both (d) MAGIC-K and (d + i)
MAGIC-K succeeded in eliminating those aliasing artifacts.



Diagnostics 2021, 11, 1935 7 of 16

Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 2. Cross-augmented high resolution DWIs with b = 1000 s/mm2 and the corresponding CSMs. 
The iTrans-N represents the intensity transformation from the Nth target. dTrans-N refers to the 
displacement from the Nth target. 

The reconstruction results trained by different augmentation approaches are pre-
sented in Figures 3–10. Tests on the healthy subjects are shown in Figures 3–5 and tumor 
patients are shown in Figures 6–10. 

 
Figure 3. Comparison of the reconstructed images by different image augmentation strategies using 
uniform undersampling in a healthy volunteer. The SSIM is listed at the bottom-right of each recon-
structed image. The error map was ×10 amplified for better visualization. The MSE is listed at the 
bottom-right of each ADC map. The aliasing artifacts are depicted by the yellow arrows. 

Figure 3. Comparison of the reconstructed images by different image augmentation strategies using
uniform undersampling in a healthy volunteer. The SSIM is listed at the bottom-right of each
reconstructed image. The error map was ×10 amplified for better visualization. The MSE is listed at
the bottom-right of each ADC map. The aliasing artifacts are depicted by the yellow arrows.

Diagnostics 2021, 11, x FOR PEER REVIEW 8 of 20 
 

 

 

 
Figure 4. Comparison of the reconstructed images by different image augmentation strategies, using 
variable density undersampling in a healthy volunteer. The SSIM is listed at the bottom-right of 
each reconstructed image. The error map was ×10 amplified for better visualization. The MSE is 
listed at the bottom-right of each ADC map. 

Figure 4. Comparison of the reconstructed images by different image augmentation strategies, using
variable density undersampling in a healthy volunteer. The SSIM is listed at the bottom-right of each
reconstructed image. The error map was ×10 amplified for better visualization. The MSE is listed at
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Figure 5. PSNR and SSIM of reconstructed images using different data augmentation strategies in healthy volunteers. U
stands for the uniform undersampling strategy and V stands for the variable density undersampling strategy, and 4 and 6
stand for different acceleration factors, respectively.

When the undersampling trajectory was set to variable density, (d + i) MAGIC
still displayed the highest SSIM (0.853) for reconstructed images and the smallest MSE
(1.361 × 10−5) for ADC maps at R = 4, as well as the highest SSIM (0.838) for reconstructed
images and smallest MSE (1.512 × 10−5) for ADC maps at R = 6 in Figure 4.

A representative patient with lymphatic metastasis is presented in Figures 6 and 7.
When the undersampling trajectory was set as uniform, (d + i) MAGIC-K provided the
highest SSIM (0.876) at R = 4. Although displaying lower SSIM (0.720) at R = 6, (d + i)
MAGIC-K performed better in eliminating aliasing artifacts in tumor regions compared
with (d) MAGIC with a SSIM of 0.728, as depicted by the yellow arrows. Moreover, the MSE
(5.396 × 10−5) between ADC maps calculated from the original and (d + i) MAGIC-K data
was the smallest. For the variable undersampling trajectory that caused image blurring,
(d + i) MAGIC-K displayed the highest SSIMs (0.908 at R = 4 and 0.781 at R = 6) for the
reconstructed images.
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Figure 6. Comparison of the reconstructed images by different image augmentation strategies using
uniform undersampling in a tumor patient with lymphatic metastasis. The SSIM is listed at the
bottom-right of each reconstructed image. The error map was ×10 amplified for better visualization.
The MSE is listed at the bottom-right of each ADC map. Aliasing artifacts are depicted by the yellow
arrows. The tumor is depicted by a red arrow.
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Figure 7. Comparison of the reconstructed images by different image augmentation strategies,
using variable density undersampling in a tumor patient with lymphatic metastasis. The SSIM is
listed at the bottom-right of each reconstructed image. The error map was ×10 amplified for better
visualization. The MSE is listed at the bottom-right of each ADC map. The tumor is depicted by a
red arrow.
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Figure 8. Comparison of the reconstructed images by different image augmentation strategies using
uniform undersampling in a tumor patient with glioblastoma. The SSIM is listed at the bottom-right
of each reconstructed image. The error map was ×10 amplified for better visualization. The MSE is
listed at the bottom-right of each ADC map. Aliasing artifacts are depicted by the yellow arrows.
The edema is depicted by a red arrow.
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Figure 9. Comparison of the reconstructed images by different image augmentation strategies using
variable density undersampling in a tumor patient with glioblastoma. The SSIM is listed at the
bottom-right of each reconstructed image. The error map was ×10 amplified for better visualization.
The MSE is listed at the bottom-right of each ADC map. Aliasing artifacts are depicted by the yellow
arrows. The edema is depicted by a red arrow.
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Another representative tumor case with glioblastoma is presented in Figures 8 and 9.
Under the uniform undersampling trajectory, the (s) BASIC and (r) BASIC groups with
small training data sizes failed to exceed the performance of SENSE (SSIM = 0.392 and 0.464
vs 0.525), demonstrating reduced generalization for tumor cases. At R = 6, the aliasing
artifacts remained in all groups, as depicted by the yellow arrows. (d + i) MAGIC-K
displayed the highest SSIM of 0.726 for the reconstructed images, with the corresponding
lowest MSE (6.958 × 10−5) in ADC maps. The variable density undersampling induced
blurring to low-resolution images, but (d + i) MAGIC achieved the highest SSIM of 0.961
at R = 6.

4. Discussion

In this study, we proposed a data augmentation solution to improve the image re-
construction task with limited amounts of training raw data, leveraging the diversity of
DICOM images in hospitals. Different from other image processing tasks like segmenta-
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tions or classifications, multi-coil raw k-space data were required to train a reconstruction
network. However, it is often difficult to collect raw k-space data since they are not rou-
tinely obtained clinically. On the other hand, a large number of DICOM images are readily
available in hospitals. The proposed MAGIC-K Net was able to generate large amounts
of multi-coil raw k-space data based on DICOM images for reconstruction. Experimental
results proved that the high resolution DWI reconstruction benefited from the proposed
augmentation method; this can be explained by how the generalization performance of
deep learning-based reconstruction relies heavily on the diversity of the training dataset.
Although source images were from a healthy subject, the performance was quite stable in
tumor patients.

Despite the availability of several public datasets of multi-coil raw data [37,38], the
latter only focus on specific modalities (e.g., T1w, T2w, and T1w contrast-enhanced images).
In contrast, the proposed MAGIC-K Net can enlarge datasets from any modality as long as
anatomical DICOM images are acquired, which is applicable to most hospitals.

Compared with the basic data augmentation methods that apply global intensity and
displacement transformations to the source images, the MAGIC-K Net can generate more
realistic intensity variations and displacements from pairs of anatomical DICOM images.
The training sample can be enlarged by N × N using N DICOM images. In addition,
the MAGIC-K Net can be jointly used with basic global transformations to augment the
training samples exponentially.

In this study, different sampling strategies have been studied. As the conventional
sampling process in MRI, uniform undersampling poses a barrier to reconstruction since
the associated low frequencies are not fully retained to preserve the overall structure;
whereas, variable density undersampling creates incoherent aliasing artifacts, so that noise-
like artifacts could be mitigated without degrading the structures. Compared the recoveries
using the (d + i) MAGIC-K Net between UR6 and VR6, the tumor is still apparent in the
reconstruction in UR6 (Figure 6) with SSIM = 0.720, while the structure reconstructed in
VR6 (Figure 7) is well preserved with SSIM = 0.871. The SSIM of all testing patients using
UR6 is 20.8% higher than the one of VR6 (0.854 vs. 0.707); hence, variable density sampling
should be the preferable sampling strategy. However, for some special sequences, which
are only practical using uniform undersampling, such as EPI, the proposed MAGIC-K Net
is still sensible.

We also evaluated the generalization of the proposed method on the dataset of fMRI.
The clinical acquisition for fMRI mainly depends on the EPI collection, which is the
same as DWI. Hence, we tested the proposed methods on the dataset of b = 0 s/mm2

DWIs for validation. The sampling strategy of uniform and variable density under a
higher acceleration factor of 6 (UR6 & VR6) was tested. Theoretically, experiments on
lower acceleration factors should have similar findings. The proposed method (d + i)
MAGIC-K outperformed the basic method (s + r + t) BASIC in regard to PSNR and SSIM
(Table 1 and Figure 11).

Table 1. PSNR and SSIM of the reconstructed images using data augmentation strategies of (s + r + t)
BASIC and (d + i) MAGIC-K. The tests were applied on the healthy subjects and tumor patients. R
stands for the acceleration factor.

Uniform Undersampling with R = 6. PSNR (dB) SSIM

Healthy Subjects (s + r + t) BASIC 21.093 ± 0.789 0.694 ± 0.044
(d + i) MAGIC-K 23.901 ± 0.632 0.764 ± 0.043

Patients
(s + r + t) BASIC 19.234 ± 0.734 0.683 ± 0.031
(d + i) MAGIC-K 21.417 ± 0.693 0.715 ± 0.043

Variable Density Undersampling with R = 6 PSNR (dB) SSIM

Healthy Subjects (s + r + t) BASIC 30.432 ± 0.453 0.859 ± 0.033
(d + i) MAGIC-K 32.954 ± 0.581 0.903 ± 0.028

Patients
(s + r + t) BASIC 29.043 ± 0.734 0.844 ± 0.031
(d + i) MAGIC-K 31.890 ± 0.843 0.913 ± 0.024
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Figure 11. Comparison of the reconstructed images by data augmentation strategies of (s + r + t) BASIC and (d + i)
MAGIC-K, using uniform undersampling with an acceleration factor of 6 (UR6) and variable density undersampling with
an acceleration factor of 6 (VR6). The SSIM is listed at the bottom-right of each reconstructed image. The error map was ×10
amplified for better visualization.

The limitations of this study should be mentioned. First, basic augmentation and
MAGIC-K Net based only on displacement transformation displayed similar quantitative
metrics (VR4, SSIM = 0.838 vs. 0.850 in healthy volunteers, with 0.889 vs. 0.899 in tumor
patients). This emphasizes the undeniable role of basic methods in data augmentation.
Since the augmentation only contains the displacement transformation, generalization
of the network is limited. However, we observed a superior ability from the recovery of
error maps (Figure 3). Second, for the variable density undersampling trajectory, which
induces image blurring, the recovery ability of the network was quite similar. We may
increase the acceleration factor [15] to differentiate the recovery ability of the networks. We
tested the performance only under the acceleration factor of 4 and 6. To further evaluate
the performance of the proposed data augmentation method, more tests under different
acceleration factors [15] can be applied.

Several technical developments are still required in future studies. The number of
source cases could be increased to further increase the training samples. Besides number
increase, noise and motion could also be considered to improve the accuracy of the images.
For a sequence with a long scan time, patient motion during the acquisition would affect
the interpretability of images and degrade the performance of the algorithms. To better
approximate non-ideal scenarios, both noise [39,40] and motion [41] could be incorporated
into the images to better estimate the distribution of real MR data. Incorporating the
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uncertainty and generating heterogeneous data may add appearance variability and make
deep learning methods more robust and generalizable to unknown data.

Augmentation of images from different patients is necessary to further improve the
generalization performance. It is possible to validate the proposed method in other organs,
e.g., abdomen [42], cardiac [43], knees [17], etc. It is also possible to apply the proposed
augmentation method to unsupervised learning-based reconstructions when ground truth
images are difficult to obtain.

5. Conclusions

This study proposed a new data augmentation method to generate multi-coil k-space
data for deep learning-based image reconstruction. Leveraging high magnitude DICOM
images in hospitals, we succeeded in increasing the size and diversity of the training
dataset. The reconstruction trained with the data generated by the proposed MAGIC-K Net
outperformed routine data augmentation methods and demonstrated better generalization
to patients with different types of brain tumors. The MAGIC-K Net can be further applied
to accelerate the detection and diagnosis of brain tumor patients.
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