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Abstract

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse
lung injury, which results in increased pulmonary vascular permeability and loss
of aerated lung tissue. This causes bilateral opacity consistent with pulmonary
edema, hypoxemia, increased venous admixture, and decreased lung
compliance such that patients with ARDS need supportive care in the intensive
care unit to maintain oxygenation and prevent adverse outcomes. Recently,
advances in understanding the underlying pathophysiology of ARDS led to new
approaches in managing these patients. In this review, we want to focus on
recent scientific evidence in the field of ARDS research and discuss promising
new developments in the treatment of this disease.
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Introduction

Normal lung function requires dry alveoli situated closely to
perfused capillaries to perform sufficient gas exchange. The
capillary endothelium controls the balance between fluids by its
selective permeable membrane. This allows serum proteins to
stay intravascular and to hold back fluids by oncotic forces. Only
small amounts of fluid make it into the interstitium, where it
gets reabsorbed by the oncotic gradient or the interstitial lymphatic
system.

In acute respiratory distress syndrome (ARDS), acute diffuse
lung injury leads to the release of pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNFo) and interleukin 1 beta
(TIL-1PB), IL-6, and IL-8, which in turn recruit components of the
innate immune system'™. Activated neutrophils produce toxic
mediators such as reactive oxygen species (ROS) and proteases
damaging the endothelium and alveolar epithelium’. Proteins can
effuse from the vascular space, which results in the loss of the
oncotic gradient between capillaries and the air space, facilitat-
ing the advance of fluid into the interstitium and air space®. This
protein-rich fluid inactivates surfactant, resulting in the collapse
of alveoli. This leads to impaired gas exchange, increased dead
space, reduced lung compliance, and decreased carbon dioxide
(CO,) elimination’.

These acute physiological changes force the patient into a life-
threatening situation, making it impossible to maintain the
oxygenation and decarboxylation needed. These patients need
immediate supportive care in the intensive care unit (ICU).
Invasive mechanical ventilation (IMV) is applied in most
patients® with ARDS to guarantee sufficient ventilation and tissue
oxygenation, especially for the brain, heart, and kidneys.
Although IMV can improve the patient’s condition, IMV itself can
damage the vulnerable lung. This ventilator-induced lung injury
(VILI) has been known since the beginning of mechanical
ventilation in the 1960s and has three major aspects of injury:
(1) volutrauma/barotrauma, (2) atelectrauma, and (3) biotrauma.

Volutrauma describes alveolar membrane damage due to over-
distention, especially with high tidal volumes rather than high
inspiratory pressure (barotrauma), leading to the rupture of the
alveoli along with lung edema, cell death, macroscopic pneu-
mothorax, pneumomediastinum, and subcutaneous emphysema’.
Atelectrauma, on the other hand, occurs when ventilation with
low tidal volumes results in cyclic recruitment and de-recruitment
of lung segments. Studies showed that total end-expiratory
collapse and reopening of distal airways are accompanied by
significant shear stress'’ and regional hypoxia followed by cell
damage, surfactant dysfunction, inflammation, and pathologi-
cal progression of the already-injured lung. These mechanical
factors of damage are accompanied by the consecutive release
of pro-inflammatory mediators, ROS generation'""”, neutrophil
infiltration, immune cell activation", and, finally, owing to the
impaired alveolar—capillary barrier, a translocation of bacteria,
toxins, inflammatory cytokines, and activated inflammatory
cells into the systemic circulation. This can cause end-organ
dysfunction and even death by multiple organ system failure'*"".
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This concept is termed biotrauma and may be the primary cause
of death in patients with ARDS, as respiratory failure is rarely
lethal and most of the time can be sufficiently treated with
IMV and extracorporeal decarboxylation and oxygenation. Thus,
the management of these patients often represents a tradeoff
between maintaining oxygenation and preventing excessive
tissue damage.

Recent advances in ventilation

Patients with ARDS rarely die from respiratory failure'® but
rather from the underlying cause during the early period and from
pneumonia or sepsis with consecutive multiple organ system
failure in the late period'’. Although global mortality is still high
(40%), survival has improved over the years”. The reasons for
the decreasing mortality remain uncertain. Better supportive
care, improved ventilation strategies and protocols such as low
tidal volume ventilation (LTVYV), and the inclusion of trauma-
induced ARDS (patients with trauma-induced ARDS have
significantly better outcomes than patients with sepsis-induced
ARDS) could contribute to the effect observed?.

In 1998, Amato et al. published a single-center randomized
controlled trial (RCT) (including 53 patients) showing that
ventilating ARDS patients with a tidal volume (V) of 6 mL/kg
predicted body weight (PBW), a positive end-expiratory pres-
sure (PEEP) above the lowest infliction point on a static pres-
sure—volume curve, and an inspiratory pressure of less than
20 ecm H,O above PEEP resulted in a significant reduction of
28-day mortality””. These data were validated in 2000 by the
Acute Respiratory Distress Syndrome Network (ARMA) trial,
which included 861 patients in a multicenter RCT. In this trial,
conventional ventilation (V_of 12 mL/kg PBW and plateau
pressure of less than 50 cm H,0) was compared with protec-
tive ventilation (V of 6 mL/kg PBW and plateau pressure of less
than 30 cm H,0)”. Protective ventilation resulted in significant
reductions in the duration of mechanical ventilation and
in-hospital mortality. The oxygen partial pressure/fraction of
inspired oxygen (paO,/FiO,) ratio was lower in the LTVV
group compared with conventional ventilation, showing that
oxygenation may be a bad surrogate for outcome in ARDS. LTVV
improves survival and other clinical outcome parameters by
reducing alveolar over-distention’*”. This beneficial effect is
corroborated by a recent meta-analysis of four RCTs* and a
subanalysis of the LUNG SAFE (Large Observational Study to
Understand the Global Impact of Severe Acute Respiratory
Failure) trial in patients with moderate to severe ARDS showing
that peak inspiratory pressure, besides other factors, is a modifi-
able risk factor for worse outcome’. Interestingly, a prospective
cohort study demonstrated that even by raising the V, from
6 to 7 mL/kg PBW, ICU mortality increased by as much as
23%°’. Despite this breakthrough, a prospective cohort study
showed that LTVV is under-utilized in clinical routine’. This
was demonstrated by Bellani er al. in 2016 in a multicenter
observational study (of 3,022 patients with ARDS) show-
ing a mean V, of 7.5 mL/kg PBW in patients fulfilling ARDS
criteria®. Also, only PEEP settings were significantly adapted
after ARDS recognition, whereas V, was not’.
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It has been discussed that the beneficial effect of protective
ventilation may be due to auto-PEEP rather than LTVV®. To
maintain minute ventilation in LVVT, the respiratory rate needs
to be adapted. Increasing the respiratory rate gives the patient
less time to complete expiration, creating auto-PEEP by “air
trapping”®’. A subanalysis showed that the quantity of auto-PEEP
in LTVV is negligible’'. However, there are not enough data to
judge the role of auto-PEEP on outcome in protective lung
ventilation. The ARMA trial investigated whether sedation
should be increased to prevent forced breathing work and
patient—ventilator asynchrony by using LTVV*. A post hoc
analysis showed no significant difference in days of sedation or
need of opioids or neuromuscular-blocking agents*. However, the
ACURASYS (ARDS et Curarisation Systematique) trial showed
a beneficial effect on 90-day mortality, incidence of barotrauma,
and ventilator-free days when neuromuscular relaxation with
cisatracurium was applied in the first 48 hours after onset of
ARDS**. The discussed benefits of neuromuscular blockade
in ARDS include avoidance of patient—ventilator asynchrony,
which lowers transpulmonary pressure and the resulting stress
on the lung. It further leads to reduced muscle work with
decreased pulmonary oxygen consumption, allowing further
reduction of ventilation targets, thereby mitigating VILI and
biotrauma. These studies showed that early neuromuscular
blockade was not accompanied by increased ICU-acquired
weakness. Cisatracurium has anti-inflammatory properties™-",
though fewer than those of potent anti-inflammatory drugs,
which per se did not sufficiently influence outcome in ARDS.
Though relatively expensive, cisatracurium seems to be the
paralyzing drug of choice in early ARDS, especially because
of its favorable pharmacokinetics. Futhermore, cisatracurium is
metabolized independently of renal or liver function.

Driving pressure

Although protective ventilation strategies all aim to reduce
stress on the lungs and to avoid volutrauma and barotrauma
(for example, LTVYV, increasing PEEP, or limiting plateau
pressure), changes in one parameter may negatively influence
others; for example, increasing PEEP will decrease V, when
plateau pressure is limited. Furthermore, V  titrated to PBW
may still lead to regional barotrauma, as functional lung size is
drastically reduced in patients with ARDS (‘baby lung’ concept)
with heterogeneous distribution of aerated and consolidated
lung segments. This is reflected in a lowered compliance of the
respiratory system (C,).

The normalized V, to actual C,  is termed driving pressure
(AP = V/C,) and is calculated as the difference between end-
inspiratory plateau pressure and PEEP in mechanically ventilated
patients. AP was significantly associated with increased survival
in a pooled retrospective analysis of RCTs focusing on optimal
PEEP and V, settings in ARDS. Interestingly, the beneficial
effects of restrictive V or increased PEEP were present only
when accompanied by a reduced AP*. Whether AP is a better
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predictor for mortality than plateau pressure” or V  during
mechanical ventilation in ARDS needs further clarification.

Open lung ventilation

Open lung ventilation combines LTVV with optimal PEEP.
This results in a decreased over-distension of the alveoli and
a reduction of cyclic atelectrauma. Gattinoni et al. showed
that, even at PEEP levels as high as 45 mm Hg, the percentage
of potentially recruitable lung is extremely variable”. Find-
ing the optimal PEEP level for each individual patient may be
challenging.

Three major trials compared high versus low PEEP in combina-
tion with LTVV with respect to outcome. In the Assessment
of Low Tidal Volume and Elevated End-Expiratory Pressure to
Obviate Lung Injury (ALVEOLI) trial in 2004, no difference
between high and low PEEP was observed’. The Lung Open
Ventilation Study (LOVS) trial in 2008 showed improved
oxygenation and less need of rescue strategies in the high PEEP
group, but no difference in mortality was found”. The Expira-
tory Pressure (EXPRESS) trial demonstrated more ventilator-free
days and more organ failure-free days in the high PEEP group
but no difference in mortality*. Currently, there is no universally
accepted protocol for open lung ventilation. A meta-analysis of
the ALVEOLI, LOVS, and EXPRESS trials in 2010 showed a
beneficial effect of high PEEP versus low PEEP only in patients
with moderate to severe ARDS*.

In a post hoc analysis of the LOVS and EXPRESS trials***,
Goligher et al. demonstrated that mortality was reduced in
patients who were PEEP-responsive compared with patients
who were not”. Oxygenation change due to increased PEEP was
associated with reduced hospital mortality. The relationship of
Pa0, to FiQ, is also related to cardiac output, oxygen consump-
tion, extrapulmonary shunt, hypoxic pulmonary vasoconstriction,
and fractional inspiratory oxygen. The influence of a number of
potentially confounding variables on PaO,/FiO, may explain
the difficulty of LOVS and EXPRESS to demonstrate a signifi-
cant effect of PEEP on mortality. The appropriate selection of
patients (responders and non-responders to PEEP) for RCTs
testing PEEP in patients with ARDS may bring new insights.

A trending method to find the optimal PEEP is to calculate the
transpulmonary pressure (P[p = alveolar pressure — pleural pres-
sure) by using an esophageal balloon catheter to measure esopha-
geal pressure as a surrogate for pleural pressure. As the pressure
to open the lung must overcome chest, abdominal, and alveolar
pressure, P is representing the force affecting lung distention and
stretch. Titrating the PEEP to P and maintaining end-inspira-
tory P of less than 25 cm H,O reduce cyclic atelectasis and
over-distension®®. This approach was evaluated by comparing
Plp-guided PEEP with ARMA trial protocol-guided PEEP. The
goal of the study was to maintain the PaO, at 55-120 mm Hg or
peripheral capillary oxygen saturation (SpO,) at 88-98%.
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Ptp—guided PEEP titration resulted in higher PEEP levels and
improved PaO,/FiO, ratios after 72 hours. No differences in
ventilator-free days, ICU stay, or 28-day mortality were found*.

Cyclic atelectrauma

Rapid changes of oxygen partial pressure caused by cyclic
recruitment and derecruitment of atelectasis (CA) during IMV
may contribute to lung damage’’. Within-breath CA results in
varying shunt fractions and altered gas exchange, thereby causing
rapid respiratory-dependent alveolar PaO, changes™. These partial
pressure of oxygen (PO,) oscillations likely cause intermittent
hypoxia/hyperoxia injury to the lungs and therefore could
represent an additional mechanism of lung and remote organ
biotrauma®. Numerous studies have provided evidence for the
existence of rapid PaO, changes during respiratory failure’*".
The changes originate in the diseased lungs and are forwarded
with the circulation to the arterial system**>***. This might promote
injury in end organs such as the brain™. Further investigations
are needed to validate this separate mechanism of biotrauma in
ARDS.

Prone position

Prone position can be considered to improve oxygenation
in patients with ARDS. It optimizes the blood flow to the
dependent lung, reduces atelectasis, facilitates secretion
drainage, increases functional residual capacity, and reduces
plateau pressure. Gattinoni et al. showed that patients with
ARDS had improved oxygenation when in the prone position™.
In this RCT, response to prone position led to a decreased
need for PEEP and FiO,. Recently, the Proning Severe ARDS
Patients (PROSEVA) trial showed a mortality benefit in patients
with severe ARDS (16% versus 32.8%)°’. In 2010, a further
meta-analysis of 10 RCTs demonstrated that there was a
significant reduction in mortality in patients with severe ARDS™.
However, some trials did not see a beneficial effect of prone
position on mortality, especially in patients with moderate
or mild ARDS”. PROSEVA excluded patients with mild or
moderate ARDS. This might be the reason why PROSEVA could
show a survival benefit whereas others could not. Despite some
limitations (2,015 patients were not screened, differences in
baseline characteristics, and excluding patients if PaO,/FiO, was
reduced by 20% while in prone position, and so on), the trial
indicates the potential benefits of early long proning of patients
with severe ARDS in experienced centers.

Lung imaging

For decades, chest radiographs and computed tomography
(CT) have been essential tools in diagnosing and monitor-
ing ARDS. These solid techniques were complemented in
recent years with new approaches of functional lung imaging,
such as positron emission tomography (PET), lung ultrasound,
and electrical impedance tomography (EIT), especially for
ventilator adaptation and recruitment during IMV or research
purposes®©!,

At the bedside, lung ultrasound can be used to non-invasively
assess pleural effusion, alveolar interstitial syndrome, pneumot-
horax, lung consolidation, and phenotyping of ARDS and may
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help to rule out cardiogenic pulmonary edema in the early
stages”. It is a cost-effective and easy-to-repeat examination
and is more accurate than supine chest radiographs. Cianchi
et al.”® showed in a small sample of patients with ARDS (12) that
the use of lung ultrasound reduced the number of chest radio-
graphs and CT scans, thereby lowering radiation exposure as
well as disconnection of ventilators and the potential of adverse

events when leaving the ICU*%,

PET is helpful in understanding pathophysiologic processes
of different phenotypes of ARDS and has been used in numerous
clinical® and experimental®’ studies of VILI. Inflammatory and
metabolic distribution and activity as well as regional perfusion
and function of the lung can be examined by the application of
radioactively labeled molecules such as 2-[18F]-fluoro-2-deoxy-
D-glucose (["F]FDG) or [“N]nitrogen (“N,). Still, an imple-
mentation of PET as a routinely used diagnostic addition to CT
scans is limited by availability, especially for modern PET/CT
or PET/magnetic resonance imaging scanners.

EIT is a functional imaging technique with great potential in
mechanically ventilated patients®’. This radiation-free bedside
tool measures changes in impedance from differing regional
density. It can be used for regional ventilation analysis with
dynamic changes in real time.

Subphenotypes in acute respiratory distress syndrome
A new approach to ARDS defines subphenotypes within
ARDS and puts less emphasis on PaO,/FiO, ratio and the Berlin
definition of ARDS. The heterogeneity of ARDS may contribute
to the poor track record of phase 2 and 3 trials of novel therapeu-
tics. It seems that some subgroups of patients benefit more from
specific therapeutic approaches than others (for example, early
relaxation and low PEEP versus high PEEP). Calfee et al.
identified subphenotypes within ARDS by applying latent class
modeling on two National Heart, Lung, and Blood Institute
ARDS RCTs (ARMA and ALVEOLI)®”. Phenotype 2 is char-
acterized by higher plasma levels of inflammatory biomarkers, a
higher prevalence of vasopressor use, lower serum bicarbonate
levels, and higher prevalence of sepsis. Patients with phenotype
2 ARDS had increased mortality and fewer ventilator-free and
organ failure-free days. Response to treatment in a randomized
trial of PEEP strategy differed on the basis of the subphenotype.
Applying high PEEP to phenotype 2 patients resulted in a
reduction in mortality. The identification of ARDS subpheno-
types may be useful to select patients for specific therapies and

assign them to future RCTs®.

New therapeutic targets

Currently, there are no specific pharmacotherapies evaluated and
recommended routinely. Treatment modalities involve supportive
care combined with protective ventilation strategies.

Aspirin

Multiple studies investigated strategies to prevent ARDS in
high-risk patients after stratification by the Lung Injury
Prediction Score (LIPS). In murine models of acid aspiration-
induced lung injury, aspirin could increase oxygenation and
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decrease neutrophil recruitment and edema. These findings were
translated into the LIPS-A trial, a multicenter, double-blinded,
placebo-controlled clinical trial. After random assignment,
patients with a LIPS of more than 4 received either 325 mg
loading dose and 81 mg/day aspirin or placebo for 7 days. The
primary endpoint of this trial was the development of ARDS by
day 7. The secondary endpoints were ventilator-free days,
hospital and ICU length of stay, and 28-day and 1-year survival.
There was no significant decrease in the incidence of ARDS at
day 7 or in any of the secondary endpoints. This phase 2b trial
did not support the continuation to a longer phase 3 trial”’.

p2 agonists

Similar to LIPS-A, the LIPS-B trial investigated whether
aerosolized P2-agonists can prevent the development of ARDS.
In this multicenter, randomized, double-blinded, placebo-
controlled trial, patients with a LIPS of more than 4 received
budenosid and formoterol or placebo for 5 days. The primary
endpoint was the change in SpO,-to-FiO, ratio”. LIPS-B could
demonstrate the feasibility of inhaled budenosid and formot-
erol in patients at high risk for ARDS. Patients who received
treatment had improved oxygenation, lower rates of ARDS,
and shorter hospital length of stay. LIPS-B is the first preven-
tion trial to suggest efficiency of the intervention for preventing
ARDS.

Stem cells

A further approach to enhance lung tissue repair is the use of
stem cells. Animal models showed that stem cells secrete growth
factors and cytokines modulating inflammation, promoting
tissue repair, and increasing bacterial clearance’”. They also may
differentiate into mature cells to replace injured tissue. A phase
1 RCT including 12 patients who received allogenic adipose-
derived stem cells” showed an amelioration of epithelial cell
injury. The authors claimed that the clinical effect with the doses
used was weak and that further optimization is needed. The
treatment arm showed a trend toward reduced IL-6 levels at
day 5. However, these results were not statistically significant
(p =0.06).

AP301

The nano-peptide AP301 is a promising new agent in treat-
ing ARDS. The structure of the synthetic peptide is based on the
lectin-like domain of human TNFo/*. AP301 activates the
pulmonary epithelial and endothelial sodium channel ENaC that
promotes the alveolar liquid clearance””. The beneficial effect
of AP301 was demonstrated in animal models of pulmonary
edema’®. Recently, a phase 1 single-center randomized clinical trial
including 48 male volunteers was assessed’’. Oral inhaled
AP301 was well tolerated by all participants and no adverse
effects were reported’’. Krenn et al. performed a double-blind,
placebo-controlled trial including 40 patients with ARDS treated
with inhaled AP301 or placebo for 7 days’. There was no differ-
ence in mean baseline-adjusted extravascular lung water index
between the groups. An exploratory post hoc subgroup analysis
indicated reduced extravascular lung water index in patients
with Sequential Organ Failure Assessment (SOFA) scores of at
least 11 receiving AP3017%.
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SB-681323

SB-681323 is a further agent directly targeting the pathophysi-
ological process underlying ARDS. This selective p38 alpha
inhibitor may dampen the inflammatory response by interfer-
ing with the mitogen-activated protein kinase (MAPK) pathway.
This pathway is subsequently involved in the activation of
cytokines. A phase 2a multicenter study is investigating the
safety and tolerability of intravenous SB-681323 in patients at risk
of developing ARDS and evaluates its efficiency by measuring
biomarkers linked to the p38 alpha regulatory mechanisms’.

Interferon beta-1a

Interferon beta-la induces the upregulation of cluster of
differentiation 73 (CD 73). This molecule is responsible for
the endothelial barrier function and leads to the prevention of
vascular leakage, the main pathophysiological event in ARDS.
Treatment with interferon beta-la was associated with an 81%
reduction in odds of 28-day mortality®’. However, these findings
need to be validated in larger prospective RCTs. Currently, a
phase 3 clinical trial comparing the efficiency of interferon
beta-1a compared with placebo control is underway.

MicroRNA

MicroRNAs (miRNAs) are small non-coding RNAs involved in
the post-transcriptional regulation of various genes’ expression®'.
Recently, Cardinal-Ferndndez et al. suggested a few miRNAs
as disease biomarkers and therapeutic agents in ARDS®.
In 2012, Cai et al. investigated the effect of miRNA in a lipopol-
ysaccharide (LPS)-induced acute lung injury mouse model®.
The miRNA miR-16 was significantly downregulated in
LPS-induced lung injury. Cell culture experiments demonstrated
that miR-16 binds to the 3’-untranslated region (3’-UTR) of
IL-6 and TNFo and significantly downregulates their expression
levels®. Further investigations revealed that miR-16 was down-
regulated in mice exposed to hyperoxia®. The authors exposed
A549 cells to hyperoxia and overexpressed miR-16. This resulted
in increased ENaCP levels and the suppression of transforming
growth factor-beta (TGF-B), an inhibitor of ENaC. This study
suggests that miR-16 promotes the resolution of pulmonary
edema in ARDS by enhancing the expression of ENaC.

In a further study, miR-127 was downregulated in
LPS-induced lung injury. An in vivo lung injury model showed
that overexpression of miR-127 leads to reduced pulmonary
vascularpermeability, inflammatory cell infiltration, cytokine
levels, and activation of complement and STAT3 (signal trans-
ducer and activator of transcription 3) signaling™.

As mentioned above, granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF) enhances the repair mechanisms in injured
lung tissue and increases the alveolar macrophage function®.
In response to hyperoxia, epithelial cells express high miR-133
levels*, leading to the suppression of GM-CSF. Manipulations on
miR-133 may provide novel interventions to reduce lung injury.

In addition to pulmonary endothelial and epithelial tissue

damage, macrophages play an important role in promoting and
resolving inflammation®. Alternatively, activated macrophages
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can participate in the resolution of inflammation in ARDS by
GM-CSF¥. miRNAs may control signaling pathways con-
tributing to macrophage phenotypes. miR-155, miR-127, and
miR-429 regulate their targets to promote a pro-inflamma-
tory macrophage phenotype’™”'. Let-7e, miR-127, miR-320b,
and miR-146a promote an immunosuppressor macrophage
phenotype®™”*.  Interestingly, miR-429 promotes the pro-
inflammatory macrophage phenotype by the inhibition of the
dual specificity protein phosphatase 1 (DUSP-1) protein. Like
SB-681323 mentioned earlier, DUSP-1 protein is a key player in
p38 MAPK signaling pathways.

Furthermore, circulating miRNAs could represent novel
biomarkers for ARDS. Sun et al. demonstrated that circulating
miR-181b levels were reduced in ARDS patients compared with
controls”. The authors also showed that the substitution of
miR-181b reduced lung injury and mortality in a mouse lung
injury model”. A further study concluded that miR-125b may
be a promising biomarker in patients with ARDS. Increased
miR-125b levels resulted in an improvement of lung function in
LPS-injured mice™. Despite these findings, the prognostic value
of circulating miRNAs in ARDS remains unexplored.

C5a

C5a is a complement cleavage product acting as a potent
anaphylatoxin promoting the appearance of neutrophil extra-
cellular traps (NETs). NETs consist of nuclear chromatin, con-
taining histones and other nuclear proteins. These extracellular
histones may trigger the release of TGF-B via granules of
platelets and therefore be involved in tissue remodeling
during ARDS. NETs mediate apoptosis in epithelial and
endothelial cells and the production of inflammatory media-
tors during ARDS”. Interception of NETs showed promis-
ing beneficial effects in different lung injury models. Admin-
istering neutralizing antibodies directed against NETs reduced
pulmonary vascular permeability and the volume of extravascu-
lar lung water™. In a murine lung injury model, the degradation
of NET structures with DNAsel reduced lung injury and
mortality”. Eculizumab is a monoclonal anti-C5 antibody
approved for the treatment of hemolytic uremic syndrome and
paroxysmal nocturnal hemoglobinuria”. Eculizumab may
block C5-induced NET release in ARDS, leading to improved
outcomes.

Conclusions

Recent advances in understanding the pathophysiology of
ARDS have led to improved outcomes. LTVV combined with
open lung strategies are the hallmarks of ARDS management and
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have contributed to new insights in understanding lung injury.
Prone position and neuromuscular relaxation may be beneficial in
selected patients. Currently, no pharmacological treatments exist,
although promising ongoing trials are being assessed. Study-
ing the regulatory roles of miRNAs may contribute to a better
understanding of how to control inflammatory target gene
expression in ARDS. Modulation of miRNA expression could
represent a novel therapeutic approach to treat the underlying
cause of ARDS.
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