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Abstract: Arboviruses remain a significant cause of morbidity, mortality and economic cost across the
global human population. Epidemics of arboviral disease, such as Zika and dengue, also cause signif-
icant disruption to health services at local and national levels. This study examined 2014–2016 Zika
and dengue epidemic data at the sub-national level to characterise transmission across the Dominican
Republic. For each municipality, spatio-temporal mapping was used to characterise disease burden,
while data were age and sex standardised to quantify burden distributions among the population. In
separate analyses, time-ordered data were combined with the underlying disease migration interval
distribution to produce a network of likely transmission chain events, displayed using transmission
chain likelihood matrices. Finally, municipal-specific reproduction numbers (Rm) were established
using a Wallinga–Teunis matrix. Dengue and Zika epidemics peaked during weeks 39–52 of 2015 and
weeks 14–27 of 2016, respectively. At the provincial level, dengue attack rates were high in Hermanas
Mirabal and San José de Ocoa (58.1 and 49.2 cases per 10,000 population, respectively), compared
with the Zika burden, which was highest in Independencia and San José de Ocoa (21.2 and 13.4 cases
per 10,000 population, respectively). Across municipalities, high disease burden was observed in
Cotuí (622 dengue cases per 10,000 population) and Jimani (32 Zika cases per 10,000 population). Mu-
nicipal infector–infectee transmission likelihood matrices identified seven 0% likelihood transmission
events throughout the dengue epidemic and two 0% likelihood transmission events during the Zika
epidemic. Municipality reproduction numbers (Rm) were consistently higher, and persisted for a
greater duration, during the Zika epidemic (Rm = 1.0) than during the dengue epidemic (Rm < 1.0).
This research highlights the importance of disease surveillance in land border municipalities as
an early warning for infectious disease transmission. It also demonstrates that a high number of
importation events are required to sustain transmission in endemic settings, and vice versa for newly
emerged diseases. The inception of a novel epidemiological metric, Rm, reports transmission risk
using standardised spatial units, and can be used to identify high transmission risk municipalities to
better focus public health interventions for dengue, Zika and other infectious diseases.

Keywords: dengue; Zika; arbovirus; modelling; reproduction number; epidemic; outbreak; Dominican
Republic; early warning system; EWARS

1. Introduction

Arboviruses are an informal name for a group of viruses transmitted by arthropods
such as ticks, mosquitoes and sand-flies [1]—members of which include Rift Valley Fever,
Chikungunya and West Nile Virus [2]. Arboviruses are commonly zoonotic and are the
cause of increasing human disease burden worldwide. In recent years, the arboviruses
Zika and dengue have afflicted millions via endemic and epidemic transmission, in part
due to relatively few, effective means of control [3]. Indeed, current estimates suggest that
the total annual burden of dengue infections is 390 million, with 96 million manifesting
clinically [4]. Those at risk number 3.97 billion across 128 countries worldwide [5]. In the
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case of Zika, estimates of the global burden are not yet available; however, by the end of
2018, the Pan American Health Organisation (PAHO) had reported 19,020 suspected cases
of Zika, with 1379 laboratory-confirmed cases in Brazil alone [6].

Dengue and Zika are principally transmitted via Aedes mosquitoes. When a female
Aedes mosquito bites an infected human, the mosquito ingests a blood meal containing
the virus, at which point the virus enters the mosquito midgut, proliferates and finally
spreads to the salivary glands. Once the mosquito bites another person, the cycle is
complete [7]. However, vertical transmission can also occur, and while this is rare for
dengue [8] such transmission is more common with Zika; indeed, in a prospective cohort,
26% of maternal cases resulted in vertical transmission to the unborn foetus [9]. Importantly,
sexual transmission between humans is also a significant driver of Zika epidemiology [10].

The basic reproduction number (R0) describes the average number of secondary in-
fections produced by a single infectious individual in a totally susceptible population [11].
Epidemics involving novel pathogens are best described using R0, due to the absence of ex-
isting population immunity [12]. By contrast, Reff, the effective reproduction number (also
known as the net reproduction number (Rn)), is most appropriate in endemic settings [11]
when part of the population is already immune [12]. In the absence of field data, mathemat-
ical modelling is used to average the expected number of new infections over all possibly
infected individuals. This idea can be represented by a matrix where the reproduction
number is recognised as the dominant eigenvalue of an operator, which is linear for every
pair of functions, and can be calculated through modelling whilst considering other factors
such as age stratification [13].

The simplest form of epidemiological modelling used is mechanistic, which deploys
compartments with interconnected per capita rates to describe the movement of individuals
in the population between diseased states [14]. This field has since been further expanded to
include network analysis. Wallinga and Teunis applied this approach [15] to estimate both
the serial interval distribution [16] and Reff of the severe acute respiratory syndrome (SARS)
epidemic. In similar research, Routledge et al., 2018, also used a network-based analysis
to predict malaria elimination time scales [17]. Together, these studies further developed
mathematical modelling used to calculate individual reproduction numbers [18] while
building on the established Reed–Frost model of epidemic transmission [19,20]. While
these approaches are powerful, they are reliant on granular data to infer geospatial disease
spread at fine scales, yet these data are not always available.

Accordingly, this research sought to further analyse data in Bowman et al., 2018 [21],
by describing the geospatial transmission of dengue and Zika using network reconstruction
and the R0 at the regional level.

2. Study Aims

This research sought to describe the spatio-temporal relationship of dengue and Zika
outbreaks between 2014 and 2016 at the sub-national level, by extending work by Bowman
et al., 2018, which performed analysis at the national level [21]. The project had two
broad aims: (1) to explore regions of high burden across the Dominican Republic; and
(2) to develop modelling research on reproduction numbers and network reconstruction by
constructing novel epidemic metrics that characterised the transmission contribution of
larger geographical units.

3. Country Context: Dominican Republic

The Dominican Republic is a country in the Greater Antilles region of the
Caribbean [22], sharing an island with Haiti, as shown in Figure 1. According to de-
mographic data released by the World Bank in 2016, the total population was 10.40 million
over an area of 48.4 km2 [23].
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Figure 1. Mapping the Central and South American geographic area. (A) The location of the
Dominican Republic on a continental scale. (B) Administrative municipal boundaries map of the
Dominican Republic and ten most populous cities (not in order) [24]. (C) Administrative municipal
boundaries map with 2016 population data, continuous colour scale from yellow (lowest) to red
(highest). The shapefiles used for realisation of the Americas taken from the ‘ggplot2’ package and
the Dominican Republic with administrative boundaries as they were in 2010, obtained from the
Humanitarian Data Exchange [25,26].

The Dominican Republic is endemic for dengue, and recent research showed that
98% of the Santo Domingo population was seropositive [27]. In 2014–2016, a dengue
and subsequent Zika outbreak occurred, during which large-scale control measures were
deployed across the country. A range of clinical and epidemiological data were collected,
providing an opportunity to study the progression of the outbreaks at the population level.

Bowman et al., 2018, used national surveillance data to generate descriptive statistics
about the epidemics and found that 75% of dengue infections were in individuals less
than 20 compared with a greater mean age of infection for Zika, largely as a function of
population susceptibility [21]. Attack rates were calculated for each outcome variable and
municipality—but it is not clear what effect over-reporting had, due to increased awareness
from community campaigns [21].

4. Methods
4.1. Datasets

Surveillance data capturing cases of dengue, severe dengue and Zika were extracted
from the Dominican Republic healthcare database, Sistema Nacional de Vigilencia Epidemi-
ologica, for the years 2014 to 2016. Variables in the dataset included suspected/probable/
confirmed cases, according to the 2009 WHO definition guidelines [28,29]; date of symptom
onset; epidemiological week of onset; and date of notification; this in addition to other
epidemiological variables of interest, such as age and sex. To capture aggregate dengue
disease states, the following outcome variable labels were used: dengue (uncomplicated
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dengue); severe dengue (complicated dengue); and total dengue (complicated and uncom-
plicated dengue combined). Suspected incident dengue and Zika cases were used to form
all outcome variables. Data were de-identified at the source, underwent quality control and
cleaned as described in Bowman et al., 2016 [30], and Bowman et al., 2018 [21]. Population
census data, stratified by age and sex for the years 2015–2017, were provided by the Oficina
Nacional de Estadística. These data were used to standardise the attack rate calculations
and to categorise the data into five-year age bins. All coding and analyses were performed
in RStudio, version 3.6.0. [31], and all figures produced using the ‘ggplot2’ package [26].

4.2. Mapping

National surveillance data and population census data were used to plot the spatial dis-
tribution of suspected cases for all outcome variables per 10,000 population by municipality
across the Dominican Republic. Maps were generated using shape files [25] with admin-
istrative boundaries from 2010. Maps plotted show the attack rate per 10,000 population
(Equation (1)).

Attack Rate =
Case Count (in population o f interest)

Population o f interest
× 10000 (1)

4.3. Statistical Analyses

Age- and sex-standardised attack rates by province were calculated using a previously
defined method [32]. The provincial populations were standardised to the population
characteristics of the Dominican Republic using data provided by the Oficina Nacional de
Estadística, with 95% confidence intervals (Equation (2)).

Standardised Attack Rate ± 1.96 × Standardised Attack Rate
# o f events

(2)

4.4. Disease Migration Interval Distribution

The disease migration interval is a novel parameter defined in this paper as the time
between the onset of symptoms of the first case of each municipality. To calculate the
distribution of potential intervals, a matrix of potential migration intervals was calculated
by determining the non-negative differences between the initial symptom onsets within
each municipality. The resultant distribution of the intervals then informed the probability
density of infector, i, transmitting infection to the infectee, j. This interval reflects a higher-
order version of the serial interval, which specifies the interval between symptom onset of
the infector and infectee individual pairs. The benefit of using the serial interval in estimates
is the ability to account for other important distributions of time in the transmission cycle,
including the time from symptom onset to infectiousness, intrinsic incubation period,
extrinsic incubation period and mosquito transmission rate [17]. The probability density of
the disease migration interval was fitted to an exponential distribution after visualisation
of the data strongly indicated an exponential trend. Fitting the distribution was achieved
using maximum likelihood estimation with the exponential maximum likelihood estimator,
seen below, where λ̂n is the maximum likelihood estimator, n is the number of independent
observations, x is a variable from an independent and identically distributed sample and
∑n

j−1 xj is the sum of all observations. The resultant simulated distribution was used to
calculate the Wallinga–Teunis matrix (Equation (3)).

λ̂n =
n

∑n
j−1 xj

(3)

4.5. Determining the Transmission Likelihood and Network

The cases with the earliest symptom onset of dengue or Zika recorded within each
municipality were identified, resulting in one case representing the earliest infection event
for each municipality. These were ordered by date of symptom onset for each municipality,
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with no indication of the transmission chain present. Combination of this time-ordered
data with a simulation of the underlying disease migration interval distribution produced
a network of the most likely transmission chain events. This was achieved by analysing a
network of all potential pairwise infector–infectee municipality pairs and their transmission
likelihoods to isolate the most likely chain of transmission events across municipalities. The
network of potential infector–infectee municipal pairs and their transmission likelihoods
make up the Wallinga–Teunis matrix [15], made with the ‘IDSpatialStats’ package [33].
The matrix itself represents likelihood-based estimation of who-infected-whom using the
observed dates of initial symptom onset of each municipality. Each square provides the
relative likelihood, pij, that the infector municipality, i, has infected an infectee municipality,
j, given the time difference in symptom onsets of each municipality, ti − tj. This time
difference is captured by the disease migration interval distribution. As such, the relative
likelihood that an infectee municipality, i, has been infected by an infector municipality, j, is
the likelihood of this pair, normalised by the likelihood that the infector municipality, i, is
infected by any other municipality, k. This analysis is based around the theory that infection
events between the potential pairs follow an independent cascade model [34], where the
upper triangular likelihood of the matrix equates total the realistic pairwise transmission
likelihoods of the infector–infectee municipal pairs [15].

4.6. Estimating Time-Varying Municipal-Specific Reproduction Numbers

Municipal-specific reproduction numbers (Rm) were established using the produced
Wallinga–Teunis matrix wherein each column represents an infector municipality and each
row represents an infectee municipality. To calculate the Rm for an infector municipality,
j, we sum over all infectee municipalities, i, weighted by the relative likelihood that the
infectee municipality, i, has been infected by the infector municipality, j. At a municipal
level, this reflects the average number of secondary infectee municipalities arising from a
primary infector municipality. This can be interpreted as follows: a municipality with an
Rm < 1 reflects a lower likelihood of infection to other municipalities, whereas an Rm > 1
represents increased likelihood of infection to other municipalities. The time-varying Rm
was plotted over time and a Generalised Additive Model smoothing spline was fitted to
the data to determine trends and smooth data noise.

4.7. Ethics

Ethical clearance was granted by the Pan American Health Organization Ethics Review
Committee (PAHO-ERC; Ref No. 2014-10-0023) and accepted by the Dominican Republic
Ministry of Health. De-identified and aggregated data were used throughout the study,
and no further ethical clearance was required.

5. Results
5.1. Geostatistical Mapping

Spatial mapping of Zika and dengue was used to determine the highest burden areas
for all disease outcomes across the Dominican Republic (Figure 2). Spatio-temporal map-
ping displays incidence per 10,000 population (non-standardised), while attack rates were
standardised according to age and sex with accompanying confidence intervals. These can
be seen in Supplementary Table S1 (by province) and Supplementary Table S3 (by munici-
pality), for total dengue, and Supplementary Table S2 (by province) and Supplementary
Table S4 (by municipality), for Zika.
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Figure 2. Aggregated spatial distribution of cases over the 2014–2016 epidemic period at the municipal
level: (A) uncomplicated dengue; (B) dengue; (C) complicated dengue; (D) Zika. Continuous colour
scale from white (lowest) through to red (highest) for all images; scales vary. Grey areas indicate no
data for those municipalities. All counts per 10,000 population.

The municipality of Cotuí recorded the highest burden for each dengue outcome:
583 (uncomplicated dengue), 39 (complicated dengue) and 622 (total dengue) cases per
10,000 population, respectively (Figure 2), the largest dengue burden of any municipal-
ity. Municipalities that also recorded high total dengue burden include Las Terrenas
(99 per 10,000 population), Jarabacoa (98 per 10,000 population) and Las Salinas (95 per
10,000 population) (Figure 2B). The burden of severe dengue was also high in Salcedo
(15 per 10,000 population), Las Salinas (13 per 10,000 population) and Villa Tapia (12 per
10,000 population) (Figure 2C). The highest burden of Zika incident cases was recorded in
the west of the country, Jimaní, with 32 cases per 10,000 population (Figure 2D).

Three outcomes were also displayed over time and space (Figure 3). Where the out-
come was dengue, the highest burden municipalities were Jarabacoa (26 per 10,000 popula-
tion), Ramón Santana (23 per 10,000 population) and (20 per 10,000 population) (Figure 3A),
which occurred between epidemiological weeks 39–52 in 2015. The highest burden of
complicated dengue incident cases was recorded in Las Salinas, Villa Tapia and Jarabacoa,
with 2 cases per 10,000 population each (Figure 3B) within the same time period.
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Figure 3. Breakdown of the aggregated spatial distribution of cases over the 2014–2016 epidemic
period by epidemiological week at the municipal level: (A) dengue cases over 2015 (top row) and
2016 (bottom row); (B) complicated dengue cases over 2015 (top row) and 2016 (bottom row); (C) Zika
cases over 2015 (top row) and 2016 (bottom row). Continuous colour scale from white (lowest)
through to red (highest) for all images. Scales vary as shown. Grey areas indicate absence of data. All
counts per 10,000 population. Dates are over epidemiological weeks 1–52 for each year, where the
year is split into weeks 1–14, 14–27, 27–39 and 39–52.
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The first suspected cases of Zika in 2015 were identified during epidemiological weeks
14–27 (2015) and reported in San Cristobal (Figure 3C), while the highest burden of Zika
disease was reported in Jimaní (16 cases per 10,000 population: epidemiological weeks
1–15, 2016). In 2016, the peak of Zika cases occurred between epidemiological weeks 1 and
27 (Figure 3C). Throughout weeks 14–27, the greatest burden of Zika disease was recorded
in Sabana Grande de Palenque, San José de Ocoa and Sabana Larga (13, 9 and 6 cases per
10,000 population, respectively) (Figure 3C).

5.2. Transmission Dynamics

The results indicate an exponential distribution between the probability density of
secondary municipality symptom onset (infectee) and the time of symptom onset in the
infector municipality (Figure 4) for both dengue and Zika. Probability of transmission
from infector to infectee municipalities was elevated (~0.1) for both dengue and Zika at
the beginning of the epidemic. Probabilities for dengue remained elevated for the first
~50 days before tailing off, whereas probabilities for Zika were high for the first ~125 days
before a gradual decline.
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Figure 4. Disease migration interval distribution fitted to an exponential distribution: (A) dengue
cases; (B) Zika cases. Probability density histograms plotted of the disease migration interval represent
the distribution of time differences between initial symptom onset within each municipality. Red line
represents the maximum likelihood estimation of the exponential distribution describing the data.
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The mean disease migration interval, probability of transmission per day (expressed
as a rate), standard deviations and log likelihoods for the fitted distributions can be seen in
Table 1.

Table 1. Fitted disease migration interval distribution parameters.

Parameter Disease

Mean disease migration interval (days) Total dengue Zika
99.55 63.28

Rate (probability of transmission/day) 0.01004 0.01580
Standard deviation 0.00009095 0.0001793

Log likelihood −66,950 −39,670

The disease migration intervals were used to produce the Wallinga–Teunis matrices
(Figure 5) along with the transmission network between infector–infectee municipal pairs
for total dengue and Zika (Figure 6).
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cases; (B) Zika cases. The heatmap X axis represents all possible infector municipalities ordered by
time of initial symptom onset date; the Y axis represents all possible infectee municipalities ordered
by time of symptom onset. Each square represents the transmission likelihood for said infector–
infectee pair. Continuous scale from white (0) to red (1) represents the normalised likelihood of
transmission, with white squares indicating no likelihood of transmission. Dark grey lines represent
where infectee municipalities were unlikely to be infected by other observed municipalities, and so
infection occurred by unobserved disease migration.
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cases. Rm is the number of municipalities a given infector municipality is likely to infect. Red line
represents the fitted Generalised Additive Model with smoothing splines and the 95% confidence
interval seen as a shaded grey area. Dashed line represents an Rm = 1.

During the exponential phase of the outbreak, the transmission likelihood matrix
for dengue was populated by lower likelihood transmission events compared with the
downward curve of the outbreak (i.e., the end of the transmission chain seen in the matrix)
(Figure 5A). The matrix also identified seven transmission events with a 0% likelihood of
transmission between the infector and infectee, all of which occurred in the latter half of the
transmission network. By comparison, the Zika transmission likelihood matrix (Figure 5B)
displayed two transmission events with a 0% likelihood of transmission between infector
and infectee, both of which also occurred at the end of the transmission network. The
transmission chain itself, however, was populated with many high-likelihood transmission
events, with few pairwise infector–infectee likelihoods below 50%. In other words, the
likelihood of transmission between infector and infectee municipalities increased over time
for both dengue and Zika, although the probabilities were higher and earlier for Zika.

To obtain the time-varying Rm, the sum of the transmission likelihoods for each infectee
municipality was calculated and plotted over time, so the Rm values were calculated for
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each transmission event (Figure 6). For total dengue (Figure 6A), there was a linear trend
starting at an Rm of ~1.0 in January 2015, which decreased to a value of approximately
0.7 by April 2016. Zika (Figure 6B) showed a consistent Rm of approximately 1 until just
after April 2016 when it began to decline. By September 2016, the Rm was ~0.4. Grey areas
in Figure 6 represent the 95% confidence intervals, which increase in size over time and
correlate with greater uncertainty as the caseload declines.

6. Discussion

This research set out to explore the spatio-temporal trends of both dengue and Zika
epidemics between 2014 and 2016, and better define disease progression at a municipality
level across the Dominican Republic. Retrospective analysis of incident case data was used
to map the spatio-temporal distribution of cases. Transmission likelihood matrices for
infector–infectee pairs were generated, and the temporal trend in Rm was calculated to
better understand transmission dynamics over time.

Dengue and Zika attack rates over the entire epidemic period varied substantially
across the country, likely a result of known transmission drivers, such as socio-economic
conditions and land use [35]. As shown in Figure 3A, the peak of the dengue epidemic
occurred during epidemiological weeks 39–52 of 2015, which coincided with the implemen-
tation of control efforts, such as fogging and public health campaigns [36], that may have
stymied transmission [37]. By contrast, the peak of the Zika epidemic occurred between
weeks 14 and 27 of 2016 (Figure 3C). Uncomplicated dengue attack rates were highest
in the municipality of Cotuí, at 622 cases per 10,000 population. No other municipality
recorded >100 cases per 10,000 population. By contrast, the highest Zika attack rate was
recorded in the municipality of Jimaní, at 32 per 10,000 population, and equates to a ~20-
fold difference in incidence, demonstrating the serious continuing burden of dengue in the
Dominican Republic.

That Jimaní recorded the highest Zika burden in the country is important not only
due to the relatively high caseload. Jimaní has a population of 400,000 and shares a land
border with Haiti. It has undergone rapid expansion in recent decades and is a hub for the
movement of people and goods across the border [38]. Considering the detection of Zika
in Haiti as early as 2014 [39], and that Jimaní has become a gateway for larger campaigns
in Haiti [40], it is plausible that a number of Zika importation and re-importation events
occurred across both sides of the border. This narrative is hypothetically confirmed by
spatio-temporal mapping of Zika, showing that the western-most municipalities were
affected greatly in the early phases of the epidemic, while the central and eastern regions
were affected later. In light of this, increased disease surveillance capacity in Jimaní could
offer valuable early warning for disease events across both sides of the border.

6.1. Human Mobility and Infrastructure

Human movement between neighbourhoods and commuter cities is known to inten-
sify dengue transmission [41,42]. Indeed, those provinces (Hermanas Mirabal, Sánchez
Ramirez and La Vega) that share these characteristics reported relatively high uncom-
plicated dengue attack rates of 58, 48 and 38 cases per 10,000 population, respectively
(standardised for age and sex) (Supplementary Table S1). For Hermanas Mirabal and La
Vega, high standardised attack rates correlate with their geographical location. They are
connected by primary roads DR-132 and DR-1 to San Francisco de Macoris and Santiago
De Los Caballeros, respectively, two of the ten largest cities by population in the Dominican
Republic [24,43]. The Sánchez Ramirez province, which includes the Cotuí municipal-
ity, is also placed on one of the Dominican Republic’s primary roads (DR-17) between
Santo Domingo and San Francisco de Macoris [43]. Accordingly, municipalities and towns
along major commuter belts would likely benefit from greater surveillance and public
health capacity.
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6.2. Transmission Chains

The disease migration interval, seen in Figure 4, describes the likelihood of secondary
(municipality) infection as a function of the distribution of disease migration intervals for
dengue and Zika. This reflects both the infectious period and human mobility. For dengue,
the migration interval was heavily skewed towards the first 50 days after symptom onset,
in contrast to Zika, which showed a broader distribution over the first 125 days. Given that
both pathogens are transmitted via the same Aedes vectors, this suggests a more significant
role for sexually transmitted Zika [44], at least in terms of transmission drivers throughout
the first half of the epidemic.

Wallinga and Teunis [15] first proposed transmission likelihood matrices to identify
breaks in transmission chains. In real terms, this equates to the importation of cases, better
known as importation events [17]. The international and intra-national movement of
people, and the influence of asymptomatic or unreported individuals, can be captured
using this methodology, which can help identify both the index case and the source of
importations/reintroductions [17]. Using absolute dengue cases, this study identified seven
events that had 0% likelihood of transmission between infector and infectee municipalities;
in other words, seven importation events (Figure 5A). These occurred during the latter
half of the outbreak and constituted a greater number of importation events than the two
events observed for Zika. While it is not possible to tease out the origin of each event, the
relative frequency of importation events between diseases is not unexpected, given the
assumed largely Zika seronegative international population (due to the novel nature of the
virus) vs. the global endemicity of dengue [4]. However, it is also possible that these events
are related to intra-national introductions, where individuals become infected through
inter-municipal contacts, reinforcing the importance of human mobility as a transmission
driver, but also potentially through asymptomatic or unreported infections. The implicit
assumption here is that a lower Rm requires a greater number of importation events to
sustain transmission, and vice versa.

The likelihood of transmission increased with time from symptom onset for both Zika
and dengue. Heatmaps for dengue (Figure 5A) showed increasing likelihood of trans-
mission between infector–infectee pairs, as a function of symptom onset over time, likely
indicating multiple smaller importation events in pockets of less-connected municipalities
in rural areas. By contrast, Zika heatmaps demonstrated a more consistent chain of trans-
mission, most likely reflecting a continuous supply of susceptibles infected by two modes
of transmission. This is not atypical for Zika, and has been observed in Rio de Janeiro,
Brazil, where multiple introductions over a short space of time led to a national crisis [45],
since corroborated by phylogenetic analysis linking the strain to French Polynesia [46].

6.3. Municipal Reproduction Number (Rm)

Defining transmission chains and generating time-varying reproduction numbers can
provide epidemiologists with valuable information that inform surveillance, control and
response. Methodologies used to generate these metrics are established [47,48] and have
been used to determine the impact of cattle culls on the transmission dynamics of foot-
and-mouth disease in the UK [47]. However, only a small proportion of such probabilistic
studies have focussed on arboviruses, with Salje et al., 2016, looking specifically at the
transmission dynamics of chikungunya [49]. Independent cascade models [34] have also
been used to determine interactions across networks for infectious disease outbreaks, yet
these focussed on individuals’ data [17] or were used in the context of social network
modelling [50]. Where this study expands the field is in the use of widely available data at
a standard geospatial unit—the municipality—to understand the transmission dynamics of
infectious diseases, using a newly defined variant of the basic reproduction number: Rm.

In this study, dengue Rm was recorded as ~1.0 at the start of the epidemic, but imme-
diately and steadily declined throughout (Figure 6A), likely reflecting two factors: (1) that
there was a relatively small pool of susceptibles among a highly mobile population in the
early phases of the outbreak; and (2) that this pool depleted fairly rapidly as transmission
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spread from major urban areas before fading throughout less-mobile populations. By con-
trast, the Zika Rm (Figure 6B) remained constant at a value of 1.0 for four months between
January and April, pointing to a large pool of susceptibles [51] that were infected steadily
as the infection spread throughout the population. Then in May, the Rm steadily declined
below 1.0, suggesting both a declining pool of susceptibles and a lower force of infection,
perhaps as the virus reached less-connected rural areas. This transmission pattern has been
observed previously in French Polynesia and the Federated States of Micronesia, where
high seroprevalence of IgM antibodies in the local population suggested an acute outbreak
that infected three quarters of the population over a similar time scale: four months, from
April to July 2007 [52], before tailing off.

The dengue Rm observed in this study provides evidence that vector-borne disease
spread between administrative locations, and so between populations, can still occur
when the effective municipal reproduction number is below 1. While not unusual for
endemic diseases, it is surprising that, despite a huge pool of susceptibles and two modes
of transmission, Zika transmission never exceeded an Rm of 1.5. There may be a number
of factors affecting this finding, such as underreporting of infections and geographic
misreporting of infections. Nevertheless, the relatively low Rm suggests that public health
authorities may have more time to respond to novel vector-borne disease outbreaks than
initially anticipated. Moreover, the inherent value of Rm as a tool to identify high-risk
municipalities, as opposed to high-risk neighbourhoods, has practical value given that
much of disease reporting is often captured at this larger spatial unit.

The Rm, as a novel metric, clearly has a benefit; it operates at a scale that broadly
aligns with existing geospatial data collection, thus addressing the fundamental issues
surrounding data and spatial heterogeneity described elsewhere [30,53,54]. Operationally,
the Rm can be used to identify high-burden and high-risk municipalities that necessitate
intervention, thereby aligning with early warning and response systems that operate on
similar spatial scales [30,55]. However, it should be cautioned that the Rm should be
used as a floating metric to guide intervention, rather than a binary threshold used to
trigger intervention.

6.4. Limitations

Estimation of the time-varying Rm across the Dominican Republic required the heuris-
tic determination of an optimal distribution to describe the disease migration interval
distribution. We used the maximum likelihood estimation of an exponential distribution
fit to the data, as seen in Figure 4, which required the assumptions that the data were
identical, independent and discrete, and fitted the interval probability density distribution
well. This was supported by the log likelihood for each of these models, which were
significantly negative, as shown in Table 1, implying a good fit to the data. However, this
and the standard deviation for Zika were lower than in dengue, implying the model fitted
the dengue epidemic data better than for Zika. This could have been a product of more
uncertainty in the exact distribution for Zika due to the smaller sample size of disease
migration intervals.

As suspected cases were used in all analyses, there was the potential for misclassifica-
tion between not only dengue and Zika, but also within the clinical spectrum of dengue,
as well as misreporting. All rates were calculated using 2016 census data, so there will be
small discrepancies in precision when standardising earlier datasets. Data paucity was an
issue for those over 80 years of age, resulting in increased noise and less reliability across
results within this age group.

Differences in surveillance intensity and reporting across municipalities may have
biased the Rm; for example, due to weaker surveillance in one municipality vs. another, and
where individuals worked and resided in different municipalities. In these scenarios, the
Rm would have been reduced; however, the impact on these results is reasonably assumed
to be small given nationally standardised case definitions and surveillance programmes,
and the small proportion of populations who commute large daily distances.
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Wallinga–Teunis matrices rely on the temporal product of the disease migration
interval distribution, so for these analyses, the distribution was reasonably assumed to be
exponential. Furthermore, the matrices themselves are dependent on the completeness
of the dataset regarding asymptomatic and unreported infections. Consequently, the
clarity of the transmission chain could be honed by incorporating predictions on rates of
asymptomatic or unreported cases, and ensuring reporting harmony across geographic
sub-units to reduce the biases often present in real-time datasets.

The production of time-varying reproduction numbers assumed complete susceptibil-
ity to the viruses within the population, which was valid for Zika, but less so for dengue
due to longstanding endemicity.

7. Conclusions

The results of this study characterised the Zika and dengue burden at the municipality
level in the Dominican Republic across 2014–2016. Concentrated disease burden within
specific municipalities is hypothesised as likely due to the presence of significant transport
arteries, both within the Dominican Republic and across the border to Haiti, as a conduit
for increased human movement and disease dispersal. Therefore, increased surveillance
and targeted public health measures in these municipalities is warranted.

Furthermore, this research highlights the inception of a novel metric used to quantify
and determine transmission chains at the municipal level, which can be used to characterise
municipality risk, in terms of secondary transmission to neighbouring municipalities. This
approach can be generalised to countries worldwide, for multiple infectious diseases, to
refine public health responses by targeting municipalities that are significant contributors
to disease spread. Finally, this study further reinforces the importance of importation
events that drive transmission where Rm is below one, and conversely the significance of
immune-naïve populations in facilitating disease spread, which require fewer importation
events to sustain transmission. Future research should be focused on the refinement of
these novel metrics, and then the application of these to characterise municipalities based
on a risk system, reflecting variation in Rm outputs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v14010162/s1, Table S1. Age and sex standardised attack rates of dengue by province.
Respective lower and upper 95% confidence intervals are shown. Table S2. Age and sex standardised
attack rates of Zika by province. Respective lower and upper 95% confidence intervals are shown.
Table S3. Age and sex standardised attack rates of total dengue by municipality. Respective lower
and upper 95% confidence intervals are shown. Table S4. Age and sex standardised attack rates of
Zika per municipality. Respective lower and upper 95% confidence intervals are shown.
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