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Abstract: Sphingolipids are not only crucial for membrane architecture but act as critical regulators
of cell functions. The bioactive sphingolipid ceramide 1-phosphate (C1P), generated by the action
of ceramide kinase, has been reported to stimulate cell proliferation, cell migration and to regulate
inflammatory responses via activation of different signaling pathways. We have previously shown
that skeletal muscle is a tissue target for C1P since the phosphosphingolipid plays a positive role
in myoblast proliferation implying a role in muscle regeneration. Skeletal muscle displays strong
capacity of regeneration thanks to the presence of quiescent adult stem cells called satellite cells that
upon trauma enter into the cell cycle and start proliferating. However, at present, the exact molecular
mechanism by which C1P triggers its mitogenic effect in myoblasts is lacking. Here, we report for
the first time that C1P stimulates C2C12 myoblast proliferation via lysophosphatidic acid (LPA)
signaling axis. Indeed, C1P subsequently to phospholipase A2 activation leads to LPA1 and LPA3

engagement, which in turn drive Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated
kinases 1/2) activation, thus stimulating DNA synthesis. The present findings shed new light on the
key role of bioactive sphingolipids in skeletal muscle and provide further support to the notion that
these pleiotropic molecules might be useful therapeutic targets for skeletal muscle regeneration.

Keywords: lysophosphatidic acid (LPA); ceramide 1-phosphate (C1P); lysophosphatidic acid
receptor (LPAR); skeletal muscle; myoblast proliferation

1. Introduction

Sphingolipids are not only crucial for membrane architecture but act as critical regulators of cell
functions and are involved in different pathological conditions [1,2]. The “sphingolipid rheostat”
was proposed more than 20 years ago; according to it, the levels of ceramide and sphingosine
1-phosphate (S1P), two interconvertible sphingolipid metabolites, determine the cell fate mediating
opposite signaling pathways [3]. Ceramide has indeed been demonstrated to induce cell growth
arrest and cell death [4]; on the other side, S1P has been linked to proliferation and survival [5].
Recently, to adequately address the complex role of sphingolipid metabolism in the regulation of
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cell behavior, the S1P/ceramide rheostat has been reconsidered also considering other sphingolipid
species and the precise localized production and secretion of these metabolites that may participate in
the regulation of cell fate [6]. For example, the fact that many of the effects of S1P are mediated by
its ligation to S1P receptors (S1PR) has added nuances to the model. S1P intracellularly generated
by the enzyme sphingosine kinase (SK), is released by the action of different S1P transporters in
the extracellular environment and, in an autocrine/paracrine manner, binds to five differentially
expressed G protein-coupled receptors, S1PR (S1P1–5), by the so-called “inside-out” signaling [7].
Moreover, ceramide can be phosphorylated by the action of ceramide kinase (Cerk) to generate another
bioactive sphingolipid named ceramide 1-phosphate (C1P). Cerk, the only enzyme so far identified to
be responsible for C1P biosynthesis in mammals, is localized in the cytosol, in the nucleus, in the Golgi
apparatus as well as at the plasma membrane. C1P has been reported to stimulate cell proliferation
of different cell types via activation of different signaling pathways such as ERK1/2 (extracellular
signal-regulated kinases 1/2), JNK (c-Jun N-terminal kinases), PKCα (protein kinase C-α), Akt (protein
kinase B) and mTOR (mammalian target of rapamycin) [8–13]. C1P is also a potent regulator of
cell migration and of inflammatory responses via direct or PKC-mediated activation of cytosolic
phospholipase A2 (cPLA2) [14–19]. Moreover, it has been demonstrated that C1P plays a role in the
inhibition of apoptosis mainly by inhibiting ceramide formation. Plasma concentrations of C1P can
vary up to 20 µM [20], being released mainly by macrophages and damaged cells [16,21].

Many experimental findings support a crucial role for sphingolipid signaling in the regeneration of
skeletal muscle [22,23]. Skeletal muscle is a tissue composed of myofibers, post-mitotic cells that derive
from the fusion of cells named myoblasts. Skeletal muscle displays a strong capacity of regeneration
thanks to the presence of resident muscle stem cells called satellite cells. This heterogeneous
population of adult stem cells is quiescent in uninjured muscle and becomes active upon a trauma that
induces its proliferation and differentiation. Appropriate activation of satellite cells is fundamental
to ensure a correct regenerative process. Upon injury, satellite cells in their niche are exposed to
extrinsic proliferative cues such as growth factors and cytokines secreted by muscle fibers and other
non-myogenic cells. The local microenvironment where satellite cells reside deeply changes with aging
and skeletal muscle pathology [24,25]. Understanding the precise molecular mechanisms of action of
skeletal muscle activating cues and their misregulation in aging and disease will highlight possible
pharmacological targets to improve the cure of currently incurable skeletal muscle pathologies.

S1P has been reported to mediate the entry of satellite cells into the cell cycle, suggesting that
the degradation of sphingomyelin observed upon cell activation leads to S1P production [26,27].
In addition, stimulation of cultured C2C12 myoblasts with S1P enhanced their differentiation into
myotubes via S1P2 [28] and the over-expression of SK1 isoform in murine myoblasts enhanced their
differentiation [29]. S1P has been involved in the modulation of the biological effects of cytokines,
such as TNFα (tumor necrosis factor-α) and TGFβ (transforming growth factor-β) and growth factors,
such as IGF-1 (insuline-like growth factor-1) and PDGF (platelet-derived growth factor) [30–33].
Moreover, we reported that lysophosphatidic acid (LPA), a potent bioactive lysophospholipid that
acts mainly via engagement of multiple G protein-coupled receptors (LPAR), significantly enhanced
migration of activated satellite cells through a cross-talk with SK and S1PR [34]. On the contrary,
ceramide appears to be negatively associated with myoblast differentiation [35]; indeed, when its
synthesis was blocked, the differentiation of rat myoblasts was enhanced [36].

We previously showed that skeletal muscle is a tissue target for C1P since the phosphosphingolipid
plays a positive role in myoblast proliferation implying a role in muscle regeneration [9]. However,
the exact molecular mechanism involved in the stimulation of proliferation by C1P is still lacking. Here,
we report for the first time that C1P stimulates C2C12 myoblast proliferation via LPA signaling axis.
Indeed, C1P subsequently to PLA2 activation leads to LPA1 and LPA3 engagement which in turn
drives Akt and ERK1/2 activation thus stimulating DNA synthesis.
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2. Results

We previously demonstrated that C1P induces proliferation of C2C12 myoblasts through the
activation of phosphatidylinositol 3-kinase/Akt and ERK1/2 signaling pathways [9]. Moreover,
in the same study, the mitogenic effect of the sphingolipid was found to be independent from
the Gi protein-coupled receptor specific for C1P, which instead mediated the migration of RAW
264.7 macrophages [15]. To characterize the molecular mechanism involved in the proliferative
action of C1P in C2C12 myoblasts, we examined whether C1P-induced activation of ERK1/2 and
Akt could be mediated by another G protein-coupled receptor. For this purpose, myoblasts were
transiently transfected with a plasmid encoding the N-terminally truncated version of Regulators of G
protein Signaling (RGS)-3 (RGS3CT) that acts as GTPase-activating protein for the Gαi (Gα adenylyl
cyclase inhibitor) and Gαq/11 (G protein subunit that activates phospholipase C) subfamilies [37,38].
The inactivation of Gαi and Gαq/11 significantly reduced the phosphorylation of ERK1/2 and Akt
induced by 5 min treatment with 15 µM C1P measured by Western blot analysis on myoblast lysates
(Figure 1A).

These data point to a major role for Gαq/11 in the signal transduction mechanism triggered
by C1P. In accordance, the overexpression of a carboxyl-terminal peptide of Gαq that inhibits
Gq-mediated signaling (GqI) [39], significantly decreased C1P-induced activation of ERK1/2 and
Akt (Figure 1B). The RGS3CT and GqI efficiency in inhibiting Gq downstream signaling in myoblasts
has been preliminarily verified in experiments where the membrane translocation of PKCα induced by
bradykinin, known to act via Gq-coupled receptor [40,41], was abrogated by the overexpression of
RGS3CT and GqI (Figure S1). The dependence of C1P signaling upon the engagement of a Gq-coupled
receptor was further proved by the specific down-regulation of Gαq/11 through RNA interference:
data shown in Figure 1C clearly show that the C1P-dependent activation of ERK1/2 and Akt was
strongly diminished by Gαq/11 specific down-regulation.

Notably, as depicted in Figure 2A, specific down-regulation of Gαq/11 significantly
affected C1P-induced-[3H]Thymidine incorporation into DNA, demonstrating that the engagement
of a Gαq/11-coupled receptor mediates, at least in part, the mitogenic action of C1P in
myoblasts. To characterize the putative receptor involved we performed radio-ligand binding
assay. However, as shown in Figure 2B, specific 3H-labeled C1P binding to cell membranes was
concentration-dependent and did not display a saturation kinetic up to 400 µM C1P. These findings
thus excluded the engagement of a specific C1P receptor in the regulation of proliferation by C1P in
C2C12 myoblasts.

It has been reported that C1P is able to bind and activate cPLA2 both in vitro and in vivo [42,43].
To gain insight into the mechanism by which C1P stimulates myoblast proliferation, we examined
whether the phosphosphingolipid could elicit its biological effect through the activation of cPLA2
that catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids thus releasing
arachidonic acid (AA), the precursor of eicosanoids. To examine the possible role of PLA2 in
C1P-mediated signaling, WB analysis of ERK1/2 phosphorylation was performed in C2C12 myoblasts
previously incubated in the presence of the cPLA2 selective inhibitor, MAFP (methyl arachidonyl
fluorophosphonate, 25 µM). As illustrated in Figure 3A, inhibition of cPLA2 strongly decreased the
activation of ERK1/2 induced by C1P suggesting that this enzyme is required for C1P-mediated
activation of this signaling pathway in myoblasts.

It was then investigated whether cyclooxygenase (COX), the enzyme responsible for the
conversion of cPLA2-generated AA into prostanoids, was involved in C1P-mediated biological effect
in myoblasts. For this purpose, both the constitutive COX1 and the inducible COX2 isoforms were
blocked using specific pharmacological inhibitors. As depicted in Figure 3A, the specific inhibition of
COX2 with 100 µM Rofecoxib or 10 µM SC-236 did not affect ERK1/2 phosphorylation induced by
C1P. Similarly, pre-treatment with the COX inhibitor Indomethacin (50 µM) did not alter C1P-induced
ERK1/2 phosphorylation (Figure 3A). Analogous results were obtained with increasing concentrations
up to 200 µM of Indomethacin. Accordingly, Western blot analysis demonstrated that 15 µM C1P



Int. J. Mol. Sci. 2018, 19, 139 4 of 19

was unable to modulate the expression of COX2 at least up to 30 min of incubation (Figure 3B).
These findings suggest that COX-induced prostanoid generation was not involved in C1P-induced
ERK1/2 activation in myoblasts. In agreement with these data, 25 µM MAFP blunted the enhancement
of [3H]Thymidine incorporation into DNA elicited by C1P while 10 µM SC-2365 did not affect the
mitogenic effect of the bioactive sphingolipid (Figure 3C). Therefore, while the inhibition of cPLA2
significantly reduced the incorporation of radioactive thymidine into DNA induced by the sphingolipid,
COX2 inhibition was inefficacious.

Figure 1. C1P signaling relies on Gαq/11 engagement. C2C12 cells were transfected with
pcDNA3.1-RGS3CT tagged with: FLAG-tag M2 epitope or empty vector (A); transiently transfected
with pRK5-GqI or empty vector (B); or with scrambled (SCR)- or Gαq/11-siRNA (C). Cells were
overnight serum-starved prior to be stimulated with 15 µM C1P for 5 min. Left panels: ERK1/2 and Akt
activation was measured in total cell lysates by Western blotting analysis using anti-phospho-ERK1/2
and anti-phospho-Akt antibodies. In (A), the efficiency of transfection was checked by WB analysis of
the FLAG-tag. A blot representative of three independent experiments is shown. Right panels: Band
intensity was quantified by densitometric analysis and normalized to the expression of total ERK1/2
and total Akt, respectively. C1P activates ERK1/2 and Akt in a statistically significant manner by
Student’s t test (* p < 0.05); the effect of Gαq/11 down-regulation/inhibition was statistically significant
by two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05).
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Figure 2. The mitogenic effect of C1P relies on Gαq/11 engagement. (A) Scrambled (SCR-) or specific
Gαq/11-siRNA transfected C2C12 cells were treated or not with 15 µM C1P for 16 h. [3H]Thymidine
(0.5 µCi/well) was added during the last hour of incubation. Results are reported as fold change over
the control set as 1. Data are mean ± SEM of at least three independent experiments performed in
triplicate. [3H]Thymidine incorporation in SCR-siRNA transfected control cells was 7398 ± 14 dpm,
in Gaq/11 siRNA transfected cells was 1854.33 ± 487.28 dpm. C1P induces myoblast proliferation in a
statistically significant manner by Student’s t test (* p < 0.05); the effect of Gαq/11 down-regulation
was statistically significant by two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05).
(B) Competitive assay of specific binding of [3H]C1P to myoblast cell membranes with different
concentrations of C1P. Freshly prepared membranes were incubated with 10 µM [3H]C1P in the
presence of the indicated concentrations of unlabeled C1P at 37 ◦C with gentle mixing for 30 min, in a
total volume of 150 µL, in borosilicate tubes. Non-specific binding was measured with 10 µM [3H]C1P
in the presence of the indicated concentrations of unlabeled C1P in absence of myoblast membranes at
37 ◦C with gentle mixing for 30 min, in a total volume of 150 µL, in borosilicate tubes. Results are the
mean ± SEM of four independent experiments performed in triplicate. Radioactivity of filter-bound
radionuclide was quantified by liquid scintillation counting.
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Figure 3. The mitogenic effect of C1P requires PLA2 but not COX2 activation. (A) Serum-starved
C2C12 cells were pre-incubated for 30 min in the presence or absence of 25 µM MAFP or 100 µM
Rofecoxib or 10 µM SC-236 or 50 µM Indomethacin (Idon), before being stimulated with 15 µM
C1P for 5 min. ERK1/2 activation was measured in total cell lysates by Western blotting analysis
using anti-phospho-ERK1/2 antibody. A blot representative of three independent experiments is
shown. Right panels: Band intensity was quantified by densitometric analysis and normalized to
the expression of total ERK1/2. C1P activates ERK1/2 in a statistically significant manner by by
Student’s t test (* p < 0.05); the effect of PLA2 inhibition by MAFP, and not by Rofecoxib or SC-236 or
Indomethacin, was statistically significant by two-way ANOVA followed by Bonferroni’s post hoc test
(# p < 0.05). (B) Western blot analysis was performed using specific anti-COX2 antibody in cell lysates
prepared from serum-starved myoblasts treated with 15 µM C1P for the indicated time intervals. A blot
representative of at least three independent experiments with analogous results is shown. Right panel:
Band intensity was quantified by densitometric analysis and normalized to the expression of β-actin.
(C) Serum-starved C2C12 myoblasts were pre-incubated for 30 min in the presence or absence of 25 µM
MAFP or 10 µM SC-236 before being stimulated with 15 µM C1P for 16 h. [3H]Thymidine (0.5 µCi/well)
was added during the last hour of incubation. Data are mean ± SEM of at least three independent
experiments performed in triplicate. [3H]Thymidine incorporation in untreated control cells was
12,322.33 ± 2691.68 dpm, in MAFP-treated cells was 10,112.33 ± 916.04 dpm, and in SC-236-treated
cells was 2905.3 ± 379.44 dpm. The mitogenic effect of C1P was statistically significant by Student’s
t test (* p < 0.05); the effect of PLA2 inhibition by MAFP, but not by sc-236, was statistically significant
by two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05).
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Since PLA2 action on phosphatidic acid, besides generating AA, releases another crucial
pleiotropic bioactive lipid, namely LPA, known as potent inducer of cell proliferation in different
cell types via interaction with its specific LPAR, we checked whether this bioactive lysolipid might
represent the possible mediator of the mitogenic action of C1P in myoblasts.

C2C12 cells were found to express LPA1, LPA2 and LPA3; LPA1 was the dominant receptor
subtype expressed while LPA2 and LPA3 were less represented (Figure S2). Each of these specific LPAR
is coupled to different G proteins, including Gq [44]. Interestingly, the pharmacological blockade of
LPA1 and LPA3 receptors by the specific antagonist Ki16425 (2.5 µM) significantly reduced both the
activation of ERK1/2 and Akt as well as the mitogenic effect elicited by C1P (Figure 4A,B).

Figure 4. The mitogenic effect of C1P relies on LPA1 and LPA3 engagement. (A) Overnight
serum-starved C2C12 myoblasts were pre-incubated for 30 min in the presence or absence of
2.5 µM Ki16425 before being stimulated with 15 µM C1P for 5 min. Left panel: ERK1/2 and Akt
activation was measured in total cell lysates by Western blot analysis using anti-phospho-ERK1/2
and anti-phospho-Akt antibodies. A blot representative of three independent experiments is shown.
Right panels: Band intensity was quantified by densitometric analysis and normalized to the expression
of total ERK1/2 and total Akt, respectively. C1P activates ERK1/2 and Akt in a statistically significant
manner by Student’s t test (* p < 0.05); the effect of LPA1/3 inhibition by Ki16425 was statistically
significant by two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05). (B) Serum-starved
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C2C12 myoblasts were pre-incubated for 30 min in the presence or absence of 2.5 µM Ki16425 before
being stimulated with 15 µM C1P for 16 h. [3H]Thymidine (0.5 µCi/well) was added during the last
hour of incubation. Data are mean ± SEM of at least three independent experiments performed in
triplicate. [3H]Thymidine incorporation in untreated control cells was 14,820.5 ± 891.36 dpm, and in
Ki16425 treated cells was 8959 ± 512 dpm. The mitogenic effect of C1P was statistically significant by
Student’s t test (* p < 0.05); the effect of LPA1/3 inhibition by Ki16425 was statistically significant by
two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05). (C) C2C12 cells transfected with
scrambled (SCR-) or with specific siRNA for individual LPA receptors were serum-starved prior to be
stimulated with 15 µM C1P for 5 min. Left panels: ERK1/2 and Akt activation was measured in total
cell lysates by Western blot analysis using anti-phospho-ERK1/2 and anti-phospho-Akt antibodies.
A blot representative of three independent experiments is shown. Right panels: Band intensity was
quantified by densitometric analysis and normalized to the expression of total ERK1/2 and total
Akt, respectively. C1P activates ERK1/2 and Akt in a statistically significant manner by Student’s
t test (* p < 0.05); the effect of LPA1 or LPA3 down-regulation was statistically significant by two-way
ANOVA followed by Bonferroni’s post hoc test (# p < 0.05). (D) C2C12 cells transfected with scrambled
(SCR-) or with specific siRNA for individual LPA receptors were serum-starved prior to be stimulated
with 15 µM C1P for 16 h. [3H]Thymidine (0.5 µCi/well) was added during the last hour of incubation.
Data are mean ± SEM of at least three independent experiments performed in triplicate. [3H]Thymidine
incorporation in SCR-siRNA transfected cells was 54,265.67 ± 2870.51 dpm, LPA1-siRNA transfected
cells was 40,903 ± 4714.41 dpm, LPA2-siRNA transfected cells was 63,503 ± 5802.95 dpm, LPA3-siRNA
transfected cells was 41,470.33 ± 5792.39 dpm. The mitogenic effect of C1P was statistically significant
by Student’s t test (* p < 0.05); the effect of LPA1 or LPA3 down-regulation was statistically significant
by two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05).

To further confirm these findings, RNA interference technology was used: cell transfection with
specific siRNAs strongly down-regulated individual LPA receptor subtypes (Figure S3). As depicted in
Figure 4C, down-regulation of LPA1 or LPA3 significantly diminished C1P-induced ERK1/2 and Akt
activation as well as C1P proliferative effect (Figure 4D), while the silencing of LPA2 was ineffective
(Figure 4C,D). Collectively, these data demonstrate that LPA1 as well as LPA3 play a crucial role on
C1P proliferative effect in myoblasts, supporting the hypothesis that C1P evokes its mitogenic effect in
C2C12 myoblasts through the engagement of LPA1 and LPA3 and the subsequent activation of ERK1/2
and Akt. To corroborate the role of LPA as mediator of C1P action, we first tested whether the lysolipid
could stimulate proliferation in myoblasts.

Results illustrated in Figure 5A clearly show that LPA robustly stimulated DNA replication,
determined as [3H]Thymidine incorporation into DNA in C2C12 cells. The mitogenic effect of
LPA was statistically significant at any of the concentrations tested (0.01–10 µM) and resulted to
be concentration dependent.

It was then examined whether LPA could activate the signaling pathways found to be implicated
in C1P-induction of cell growth. Data reported in Figure 5B demonstrated that 100 nM LPA potently
stimulated ERK1/2 and Akt phosphorylation which peaked at 5 min and remained increased in respect
to control up to 60 min of treatment.

To examine the possible role of ERK1/2 and Akt in LPA-mediated myoblast proliferation,
[3H]Thymidine incorporation experiments were performed in myoblasts previously incubated in
the presence of specific pharmacological inhibitors of these pathways. The inhibition of PI3K with
5 µM LY294002 or blockade of ERK1/2 with 5 µM U0126 did not significantly affect the mitogenic
action of LPA while the simultaneous inhibition of both signaling pathways abolished the mitogenic
response triggered by LPA (Figure 5C). These data suggest that the mitogenic effect exerted by LPA
is mediated both by ERK1/2 and Akt activation, each signaling pathway being sufficient for the
transduction of the proliferative action of the lysolipid.



Int. J. Mol. Sci. 2018, 19, 139 9 of 19

Figure 5. LPA induces cell proliferation via ERK1/2 and Akt in myoblasts. (A) Serum-starved C2C12
myoblasts were treated with LPA at the indicated concentrations (0.01–10 µM) for 16 h. [3H]Thymidine
(0.5 µCi/well) was added during the last hour of incubation. Data are mean ± SEM of at least
three independent experiments performed in triplicate. The mitogenic effect of LPA was statistically
significant by one-way ANOVA followed by Bonferroni’s post hoc test (* p < 0.05). (B) Western blot
analysis was performed using specific anti-phospho-ERK1/2 and anti-phospho-Akt antibodies in
cell lysates prepared from serum-starved myoblasts treated with 100 nM LPA for the indicated time
intervals. A blot representative of at least three independent experiments with analogous results
is shown. Right panels: Band intensity was quantified by densitometric analysis and normalized
to the expression of total ERK1/2 and total Akt, respectively. LPA activates ERK1/2 and Akt in a
statistically significant manner by one-way ANOVA followed by Bonferroni’s post hoc test (* p < 0.05).
(C) Serum-starved C2C12 myoblasts were pre-incubated for 30 min in the presence or absence of 5 µM
U0126, 5 µM LY294002 or 5 µM U0126 together with 5 µM LY294002 before being stimulated with
100 nM LPA for 16 h. [3H]Thymidine (0.5 µCi/well) was added during the last hour of incubation.
Data are mean ± SEM of at least three independent experiments performed in triplicate. [3H]Thymidine
incorporation in untreated control cells was 21,181.25 ± 417.19 dpm, in U0126 treated cells was
6252.67 ± 319.27 dpm, in LY294002 treated cells was 2438.66 ± 221.66 dpm in U0126 and LY294002
treated cells was1594.33 ± 91,30 dpm. The mitogenic effect of LPA was statistically significant by
Student’s t test (* p < 0.05). The effect of both ERK1/2 and Akt inhibition was statistically significant by
two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05).

To elucidate the molecular mechanism by which exogenously added LPA exerts its mitogenic action,
we analyzed whether the activation of ERK1/2 and Akt relies on LPA1 and LPA3 engagement. As shown
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in Figure 6A, the inhibition of LPA1 and LPA3 by Ki16425 (2.5 µM) blocked the phosphorylation of
ERK1/2 and Akt induced by 100 nM LPA for 5 min. In agreement, the LPA-dependent activation
of ERK1/2 and Akt was significantly diminished when LPA1 or LPA3 were down-regulated by
RNA interference, whereas was unaffected by LPA2 silencing (Figure 6B). Moreover, siRNA-induced
down-regulation of Gαq/11 significantly reduced the activation of ERK1/2 and Akt driven by LPA,
demonstrating that LPA signaling relies, at least in part, on Gq-coupled receptors (Figure 6C).

Figure 6. LPA-induced activation of ERK1/2 and Akt requires LPA1/LPA3 and Gαq/11. Overnight
serum-starved C2C12 myoblasts were pre-incubated for 30 min: in the presence or absence of
2.5 µM Ki16425 (A); transfected with scrambled (SCR-) or with specific siRNAs for individual LPA
receptors (B); or transfected with SCR- or Gαq/11-siRNA (C), before being stimulated with 100 nM
LPA for 5 min. Left panels: Western blot analysis performed using specific anti-phospho-ERK1/2
and anti-phospho-Akt antibodies in myoblast cell lysates. A blot representative of three independent
experiments is shown. Right panels: Band intensity was quantified by densitometric analysis and
normalized to the expression of total ERK1/2 and total Akt, respectively. LPA activates ERK1/2 and
Akt in a statistically significant manner by Student’s t test (* p < 0.05); the effect of LPA1/3 inhibition by
Ki16425 (A); the effect of LPA1 or LPA3 down-regulation (B); or the effect of Gαq/11 down-regulation
(C) was statistically significant by two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05).

In accordance with these data, the mitogenic effect of LPA in myoblasts was found to be dependent
on the engagement of LPA1 and LPA3 (Figure 7). Indeed, the enhancement of [3H]Thymidine
incorporation into DNA elicited by 100 nM LPA was significantly reduced when myoblasts were
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previously incubated with 2.5 µM Ki16425 (Figure 7A) or when LPA1 and LPA3 were significantly
down-regulated by RNA interference (Figure 7B). Furthermore, the proliferative action of exogenously
added LPA was significantly reduced by specific down-regulation of Gαq/11 (Figure 7C) supporting a
key role of Gq-mediated signaling in the proliferative effect of the bioactive lipid.

Figure 7. LPA-induced proliferation relies on LPA1/LPA3 and Gαq/11 engagement. Serum-starved
C2C12 myoblasts were pre-incubated for 30 min: in the presence or absence of 2.5 µM Ki16425 (A);
transfected with scrambled (SCR-) or with specific siRNA for individual LPA receptors (B); or transfected
with SCR- or Gαq/11-siRNA (C) before being stimulated with 100 nM LPA for 16 h. [3H]Thymidine
(0.5 µCi/well) was added during the last hour of incubation. Data are mean ± SEM of at least
three independent experiments performed in triplicate. [3H]Thymidine incorporation in untreated
control cells was 14,820.5 ± 891.36 dpm, in Ki16425 treated cells was 8959 ± 512 dpm, in SCR-siRNA
transfected cells was 54,265.67 ± 2870.51 dpm, LPA1-siRNA transfected cells was 40,903 ± 4714.41 dpm,
LPA2-siRNA transfected cells was 63,503 ± 5802.95 dpm, LPA3-siRNA transfected cells was
41,470.33 ± 5792.39 dpm, in SCR-siRNA transfected control cells was 7398 ± 14 dpm, and in Gaq/11
siRNA transfected cells was 1854.33 ± 487.28 dpm. The mitogenic effect of LPA was statistically
significant by Student’s t test (* p < 0.05). The effect of LPA1/3 inhibition by Ki16425 (A); the effect of
down-regulation of LPA1 or LPA3 (B); or the effect of down-regulation of Gαq/11 (C) was statistically
significant by two-way ANOVA followed by Bonferroni’s post hoc test (# p < 0.05).
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In summary, the here obtained results demonstrate that C1P exerts its mitogenic effect through
LPA1 and LPA3 engagement which drive ERK1/2 and Akt activation thus stimulating myoblast
proliferation (Figure 8).

Figure 8. C1P stimulates C2C12 myoblast proliferation. The dashed arrow and question marks indicate
unexplored pathways that could be partially implicated in C1P mitogenic action in myoblasts.

3. Discussion

Skeletal muscle is a post-mitotic tissue composed of myofibers that accounts for 30–50% of body
mass in humans. The tissue retains the ability to regenerate thanks to the presence of resident muscle
stem cells named satellite cells capable of self-renewing and differentiating into myoblasts, which
then fuse one to each other to form myofibers. The niche where satellite cells reside is composed of
myofibers, extracellular matrix proteins, macrophages and regulatory T-cells that form a multifaceted
microenvironment crucial for an effective regenerative response following skeletal muscle trauma [25].
Since muscle as well as non-myogenic cells secrete growth factors and cytokines that influence satellite
cell behavior, the full comprehension of the molecular mechanisms by which diverse signals ensure
the complete potential of skeletal muscle precursors is the ultimate goal for therapeutic approaches
aimed at restoring skeletal muscle function.

The bioactive sphingolipid C1P has recently emerged as a positive cue for muscle regeneration
since it has been shown to significantly stimulate skeletal muscle cell proliferation [9]. Here,
we identified a totally novel mechanism of action by which C1P stimulates myoblast proliferation.
Namely, C1P via PLA2 activation drives the engagement of LPAR, LPA1/LPA3, which are in turn
responsible for Akt and ERK1/2 activation and cell proliferation induced by the bioactive sphingolipid.

The mitogenic action of C1P has been reported for different cell types such as fibroblasts [12]
and macrophages [10]. Interestingly, C1P stimulated proliferation of fibroblasts was found to be
independent on ERK1/2 activation as well as c-myc or c-fos expression [12], while in quiescent
primary macrophages, in agreement with our findings, the mitogenic action of C1P was mediated by
ERK1/2 and Akt activation [10]. Moreover, proliferation of lung adenocarcinoma cells induced by
EGF has been shown to rely on CerK, responsible for C1P generation, which subsequently leads to
ERK1/2 and Akt activation [45].

Our findings enlarge the knowledge on the crucial role of bioactive sphingolipid metabolism
and signaling, vital for skeletal muscle function. In particular, the proliferative action of C1P in
myoblasts appear to be precise and distinct from that of other sphingolipids. For example, S1P has
been reported to exert a pro-myogenic and an anti-proliferative effect in myoblasts being able of
reducing the mitogenic action of serum [28], while ceramide [35,36] and sphingosine [46] have been
shown to inhibit myogenic differentiation.
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Interestingly, treatment with PTx did not influence C1P-induced myoblast proliferation ruling
out the involvement of a Gi coupled C1P receptor in myoblasts [9], differently from macrophages,
where C1P-induced migration was shown to depend on the presence of a specific Gi-coupled C1P
receptor that caused phosphorylation of ERK1/2 and Akt [15]. Here, the possible involvement of C1P
specific receptors coupled to G proteins different from Gi was excluded by performing C1P binding
experiments in C2C12 myoblasts.

However, the fast time-course of ERK1/2 and Akt activation induced by C1P, compatible with
receptor-mediated events, and the involvement of Gq proteins in the observed biological effect, forced
to look for alternative explanations. Inhibition of PLA2 by MAFP demonstrated that this enzyme is
required for C1P induced proliferation in myoblasts, confirming the well-established role of C1P as
activator of PLA2 both in vitro and in vivo [42,43]. Nevertheless, inhibition of COX1 and COX2 by
pretreatment with Indomethacin, Rofecoxib as well as SC-236 proved that prostanoid generation from
arachidonate generated by PLA2 action was not involved in C1P mediated myoblasts proliferation.
Intriguingly, the here reported mechanism of action by which C1P exerts its proliferative effect supports
the notion that C1P, in addition of playing a crucial role as mediator of inflammatory reactions [47] can
regulate diverse fundamental cellular processes. Whether C1P-induced PLA2 activation in myoblasts,
besides driving mitogenesis, is involved in inflammatory responses remains to be clarified.

PLA2 hydrolyzes the sn-2 (sn-1) ester bond of phosphatidic acid (PA) to generate LPA. LPA is not
only a metabolite involved in the synthesis of membrane phospholipids but also a crucial bioactive cue
capable of influencing a broad variety of biological processes such as growth, survival, chemoresistance
by binding to G protein-coupled receptors [48]. Different PLA2 isoforms display an exclusive or relative
selectivity for PA [49], however, the contribution of each PLA2 to LPA synthesis is not precisely known.
cPLA2 is localized in the soluble fraction of the cell and translocates to membranes as consequence
of activation. Whether C1P activates cPLA2 directly [18,43] or via PKC [17] as shown in other cell
contexts, and where exactly this signaling occurs within the cell, remains to be investigated. Recently,
intracellular targets for LPA have been highlighted; LPA was indeed shown to bind to the nuclear
hormone receptor peroxisome proliferator-activated receptor that regulates genes involved in energy
metabolism control [50].

LPAR couple to members of three major G protein families, the Gi, Gq and G12 family [44]. C2C12
myoblasts express LPA receptors [51]; LPA1 and LPA2 are known to interact with all three G protein
families while LPA3 interacts with Gi and Gq, but not with G12 proteins; and LPA4 also couple the
Gs family [44]. Since the here presented data showed that the effect of C1P was incompletely blocked
by Ki16425, the involvement of other LPAR expressed in myoblasts cannot be presently excluded.
It has been previously reported that LPA phosphorylates ERK1/2 and Akt in C2C12 myoblasts thus
activating mitogenic cascade [51]. The here reported findings support a role also for LPAR coupled to
Gq proteins since the blockade of Gq signaling significantly reduced thymidine incorporation as well
as ERK1/2 and Akt phosphorylation induced by LPA.

Unfortunately, attempts to measure increased levels of LPA following C1P treatment either inside
the cells or in the extracellular medium by LS/MS mass spectrometry failed, at least at the investigated
time points, leaving open alternative molecular mechanisms other than LPA signaling axis instrumental
for C1P action. Very limited information is available in the literature on the time-dependence of LPA
production inside the cells in comparison to abundant reported findings on autotaxin-mediated
generation of extracellular LPA [52,53]. Consistently, LPA levels in cellular membranes are very
low [54] since LPA is expected to be rapidly metabolized by the action of LPA acyltransferase, which
convert LPA back to PA, and by PA phosphohydrolases and lysophospholipases that rapidly degrade
the lysophospholipid [54].

Questions also arise on whether and how LPA, intracellularly produced, is released outside the
cell. Little is known about how this transport would happen compared for example to the export of the
bioactive sphingolipid S1P through ABC transporters or the specific transporter Spinster homologue 2
(SPNS2) [55]. LPA levels are elevated in plasma from oncologic patients: phorbol 12-myristate
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13-acetate stimulates LPA secretion from different cancer cell lines in a dose and time-dependent
manner only when cultured in the presence of serum, suggesting that tumor cells do not produce LPA
when growth factors are depleted [56].

Here, for the first time, we provide evidence that the bioactive sphingolipid C1P uses the signaling
axis of another pleiotropic and structurally simple lipid, LPA, to exploit its action. Cross-talk between
LPA and sphingolipid signaling has been previously reported: we demonstrated that the migratory
effect of LPA in murine skeletal muscle activated satellite cells requires S1P signaling axis since when
both SK isoforms, SK1 and SK2, and S1P1/S1P4 were blocked, the pro-migratory action of LPA was
significantly reduced [34]. Moreover, it has been shown that the proliferative action of LPA in cancer
gastric cells is mediated by the SK1 isoform upregulation via activation of the LPA1 [57] and that
down-regulation of SK1 attenuated LPA-stimulated migration and invasion of MKN1 gastric cells.

Our results shed new light on the key role of bioactive sphingolipids in skeletal muscle and
provide further support to the notion that these pleiotropic molecules might be useful therapeutic
targets for skeletal muscle regeneration.

4. Materials and Methods

4.1. Materials

All biochemicals, TRI reagent, cell culture reagents, Dulbecco’s Modified Eagle Medium (DMEM),
fetal bovine serum, protease inhibitor cocktail, bovine serum albumin (BSA), Ki16425, Rofecoxib,
Indomethacin and natural C1P (from bovine brain, containing predominantly stearic and nervonic
acids) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1-Oleoyl Lysophosphatidic
Acid (LPA), Methyl Arachidonyl Fluorophosphonate (MAFP) and SC-236 were purchased from
Cayman Chemical (Ann Arbor, MI, USA). Mouse skeletal muscle C2C12 cells were obtained from
the American Type Culture Collection (Manassas, VA, USA). LY294002 hydrochloride and U0126
were from Tocris Cookson Limited (Bristol, UK). Phospho-ERK1/2 and pan ERK1/2 antibodies
were from Cell Signaling Technology, Inc. (Beverly, MA, USA). siRNA duplexes were obtained
from Sigma-Proligo (The Woodlands, TX, USA). Lipofectamine RNAiMAX was purchased from
Invitrogen (Carlsbad, CA, USA). Enhanced chemiluminescence reagents was obtained from GE
Healthcare Europe (Milan, Italy). Pan-Akt (H-136), phospho-pan-Akt (Ser 473), monoclonal
anti-β-actin, anti-COX2 and anti-PKCα antibodies as well as secondary antibodies conjugated to
horseradish peroxidase were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
All reagents and probes required to perform real-time PCR were from Applied Biosystems (Foster
City, CA, USA). [3H]Thymidine (20 Ci/mmol) was from Perkin Elmer (Waltham, MA, USA). [3H]C1P
(Ceramide-D-erythro-1-phosphate [N-stearoyl-9,10-3H]) was purchased from American Radiolabeled
Chemicals, Inc. (ARC) Saint Louis, MO, USA.

4.2. Cell Culture

Murine C2C12 myoblasts were routinely grown in DMEM supplemented with 10% fetal
bovine serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C
in 5% CO2. For the experiments, cells were seeded and, when approximately 50% confluent, they were
serum-starved in DMEM without serum containing 1 mg/mL BSA. When requested, cells were
incubated with inhibitors 30 min before challenge with agonists.

4.3. Cell Transfection

Cell transfection was performed using Lipofectamine RNAiMAX according to the manufacturer’s
instructions as previously reported [30,58]. Experiments were performed within 48 h from the
beginning of transfection. For Gαq/11 inhibition, C2C12 cells were transiently transfected with
pcDNA3.1-RGS3CT [38] or pRK5-GqI [39]) vector using Lipofectamine 2000 reagent (1 mg/mL),
as described previously [31].



Int. J. Mol. Sci. 2018, 19, 139 15 of 19

4.4. Cellular Fractionation

C2C12 cells were washed twice with ice-cold PBS and scraped in 10 mM HEPES, pH 7.4, 1 mM EDTA,
1 mM EGTA, 250 mM sucrose, 5 mM NaN3 and protease inhibitors (1 mM 4-(2-aminoethyl)
benzenesulfonyl fluoride, (AEBSF), 10 µg/mL leupeptin, 10 µg/mL pepstatin, and 0.3 µM aprotinin).
Lysates were achieved disrupting the cells using a Dounce homogenizer (100 strokes). Cytosolic and
total particulate fractions were obtained by centrifugation as previously described [30,33].

4.5. Western Blot Analysis

To prepare total cell lysates, C2C12 cells were incubated for 30 min at 4 ◦C in 50 mM Tris, pH 7.5,
120 mM NaCl, 6 mM EGTA, 1 mM EDTA, 20 mM NaF, 15 mM Na4P2O7, 1% Nonidet and protease
inhibitor cocktail (1.04 mM AEBSF, 0.02 mM leupeptin, 0.08 µM aprotinin, 15 µM pepstatin A, 0.04 mM
bestatin and 14 µM E-64) before being centrifuged for 15 min at 10,000× g at 4 ◦C. Samples resuspended
in Laemmli’s SDS (sodium dodecyl sulphate) sample buffer were subjected to SDS-PAGE before transfer
of proteins to PVDF (polyvinylidene difluoride) membranes. Membranes were incubated overnight
with the primary antibodies at 4 ◦C and then with secondary antibodies for 1 h at room temperature.
Chemiluminescence was used to detect bound antibodies.

4.6. Cell Proliferation

Cell proliferation was determined by [3H]Thymidine incorporation; C2C12 cells were
serum-starved for 24 h and then challenged with or without 15 µM C1P or different concentration of
LPA for 16 h. After [3H]Thymidine (0.5 µCi/well) addition in the last 1 h of incubation, cells were
washed twice in ice-cold PBS and then 500 µL of 10% trichloroacetic acid were added. Successively,
cells were washed in ice-cold PBS, before being added with 250 µL of ethanol:ether (3:1 v/v) and lysed
in 0.25 N NaOH for 1 h, as previously described [30]. [3H]Thymidine incorporation was measured by
scintillation counting.

4.7. Cell Membrane Preparation for C1P Radioligand-Binding Assay

C2C12 cells were plated onto 100-mm diameter dishes at 1 × 105 cells/dish and were grown in
DMEM containing 10% FBS. The cells were incubated in homogenization buffer (10 mM Tris–HCl,
3 mM EDTA, 3 mM EGTA, 1 mM NaF, pH 7.5) containing 1 µL/mL protease inhibitor cocktail and
1 mM phenylmethylsulfonyl fluoride (PMSF) for 30 min on ice. They were then lysed with a Dounce
homogenizer and the remaining intact cells and nuclei were removed by centrifugation at 500× g for
5 min. Cell membranes were pelleted by centrifugation at 100,000× g for 30 min and resuspended in
binding buffer (50 mM Tris–HCl, 150 mM NaCl, 0.8% fatty acid-free BSA, 1 µL/mL protease inhibitor
cocktail, and 0.2 mM PMSF, at pH 7.5). Only freshly prepared membranes were used in experiments.
[3H]C1P (final specific activity 60 nCi/pmol) and non-labeled C1P were sonicated in fatty acid-free BSA
binding buffer and mixed with membranes in a total volume of 150 µl in borosilicate tubes. Binding
was performed at 37 ◦C with gentle mixing for 30 min, and terminated by collecting the membranes
onto GF/C filter with a 1225 Sampling Manifold from Millipore. To determine the non-specific binding
of the radioligand to the filters, the same experiment was performed as described above but without
cell membranes. Filters were then rapidly washed three times with 350 µL of ice-cold washing buffer
containing 10 mM Tris–HCl, and 15 mM NaCl, at pH 7.5 with a 1225 Sampling Manifold from Millipore.
Radioactivity of filter-bound radionuclide was quantified by liquid scintillation counting.

4.8. Quantitative Real-Time Reverse Transcription PCR

C2C12 myoblasts total RNA was extracted with TRI reagent, before being reverse transcribed by
the high capacity cDNA reverse transcriptase (Applied Biosystems). Relative quantitative real-time
PCR was performed using TaqMan gene expression assays to quantify LPAR mRNA. The automated
ABI Prism 7500 Sequence Detector System (Applied Biosystems) was employed as previously
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described [59–61], simultaneously amplifying the target sequence together with the housekeeping
gene 18 S rRNA. Results were analyzed by ABI Prism Sequence Detection System software, version 1.7
(Applied Biosystems). The 2−∆∆Ct method was applied as a comparative method of quantification [62],
and data were normalized to ribosomal 18 S RNA expression.

4.9. Statistical Analysis

To perform densitometric analysis of the Western blot bands and graphical representations,
ImageJ software and GraphPad Prism 6.0 (GraphPad Software, San Diego, CA, USA) were utilized,
respectively. Statistical analysis was performed using Student’s t test, one-way ANOVA and two-way
ANOVA followed by Bonferroni’s post hoc test (* p < 0.05, # p < 0.05).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/1/138/s1.
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