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ABSTRACT
In rheumatoid arthritis (RA), chronic joint inflammation leading to bone and cartilage damage is the major cause of functional
impairment. Whereas reduction of synovitis and blockade of joint damage can be successfully achieved by disease modifying
antirheumatic therapies, bone repair upon therapeutic interventions has only been rarely reported. The aim of this study was to
use fluorodeoxyglucose ([18F]FDG) and [18F]fluoride µPET/CT imaging to monitor systemic inflammatory and destructive bone
remodeling processes as well as potential bone repair in an established mouse model of chronic inflammatory, erosive
polyarthritis. Therefore, human tumor necrosis factor transgenic (hTNFtg) mice were treated with infliximab, an anti‐TNF antibody,
for 4 weeks. Before and after treatment period, mice received either [18F]FDG, for detecting inflammatory processes, or [18F]
fluoride, for monitoring bone remodeling processes, for PET scans followed by CT scans. Standardized uptake values (SUVmean)
were analyzed in various joints and histopathological signs of arthritis, joint damage, and repair were assessed. Longitudinal PET/
CT scans revealed a significant decrease in [18F]FDG SUVs in affected joints demonstrating complete remission of inflammatory
processes due to TNF blockade. In contrast, [18F]fluoride SUVs could not discriminate between different severities of bone damage
in hTNFtg mice. Repeated in vivo CT images proved a structural reversal of preexisting bone erosions after anti‐TNF therapy.
Accordingly, histological analysis showed complete resolution of synovial inflammation and healing of bone at sites of former
bone erosion. We conclude that in vivo multimodal [18F]FDG µPET/CT imaging allows to quantify and monitor inflammation‐
mediated bone damage and reveals not only reversal of synovitis but also bone repair upon TNF blockade in experimental
arthritis. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
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Introduction

Rheumatoid arthritis (RA) is the most common chronic
inflammatory and destructive joint disease, affecting

around 0.5% to 1% of the population worldwide.(1) Perpetua-
tion of inflammatory processes within the synovial tissue leads

to local activation of tissue‐degrading enzymes and formation
of bone‐resorbing osteoclasts, provoking progressive cartilage
and bone destruction.(2) Therefore, early interference with
inflammatory processes and prevention of bone and cartilage
destruction are crucial to preserve function in RA. Several
studies in both human RA and animal models have shown that
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therapeutic interventions with biological agents, such as tumor
necrosis factor (TNF) or interleukin‐6 receptor (IL‐6R) blockers,
lead to the resolution of synovitis as well as inhibition of joint
damage progression. However, initiation of bone regeneration
processes and repair of joint damage have rarely been reported
and need further elucidation.(3–7)

Conventional radiography remains the first choice for the
assessment of structural bone and cartilage damage in RA
patients. On the other hand, novel imaging methods, such as
combined positron emission tomography/computed tomo-
graphy (PET/CT) provide insights into pathophysiological
processes together with anatomical localization. Fluorodeox-
yglucose ([18F]FDG, 2‐deoxy‐2‐[18F]fluoro‐D‐glucose) demon-
strated great value for localizing articular inflammatory
processes in patients suffering from RA; not only increased
uptake of [18F]FDG in inflamed joints but also a strong
correlation with disease activity was observed.(8–11) PET
imaging with the bone tracer [18F]fluoride showed high
bone turnover in diseases like RA, osteoarthritis (OA), and
osteoporosis.(12,13)

In experimental models, it has been shown that TNF
inhibition can not only prevent progressive bone destruc-
tion but also initiate bony healing processes in TNF‐driven
arthritis.(14,15) However, these animal studies were based on
histological comparisons after different time points, lacking
continuous follow‐up in the same animal. This limitation
can be overcome by in vivo imaging techniques using [18F]
FDG or [18F]fluoride.(16–18) However, they have not yet been
used for monitoring therapeutic responses in individual
animals.(19,20)

The aims of our study were (i) the longitudinal characteriza-
tion of pattern and intensity of joint inflammation in a
TNF‐driven erosive mouse model of arthritis; (ii) to differentiate
joint inflammation in vivo and bone remodeling processes in
vivo from bone damage; and (iii) to evaluate the reversibility of
these events in individual animals during therapeutic interven-
tion, such as anti‐TNF antibody (anti‐TNF), using [18F]FDG PET,
[18F]fluoride PET, and CT.

Materials and Methods

Animals

Human tumor necrosis factor‐α transgenic mice (hTNFtg;
Tg197 strain, C57BL/6 genetic background, originally gener-
ated by George Kollias, Fleming Institute, Athens, Greece).(21)

hTNFtg mice develop a chronic inflammatory, erosive,
symmetric polyarthritis starting around 4 to 5 weeks after
birth.(22) Mice were maintained under standardized, conven-
tional housing conditions (humidity 50%, 22°C: 12:12 light‐
dark cycle). Heterozygous litters were genotyped by PCR of
DNA isolated from tail biopsies as described.(21) Age‐matched
non‐transgenic wild type (wt) littermates were used as
controls. The local ethical committee from the Austrian
Federal Ministry of Education, Science and Research approved
all experiments (BMWFW‐66.009/0128/II/3b/2014).

Clinical assessment of arthritis

Clinical signs of arthritis including paw swelling and grip
strength were assessed weekly in front and hind paws in a
blinded manner by an independent investigator not involved in
treatment using an established semiquantitative scoring

system: paw swelling 0 to 3 (0= no swelling, 3= severe
swelling); grip strength 0 to –3 (0= no loss of grip strength,
–3= severe loss of grip strength) as described.(14)

Therapeutic interventions

Therapeutic TNF blockade was performed in 8‐week‐old hTNFtg
mice by intraperitoneal administration of anti‐TNF antibody
(Remicade [infliximab], 10 mg/kg, Jannsen Biologics B.V., Leiden,
Netherlands) three times per week for 4 weeks. Placebo‐treated,
sex‐ and age‐matched hTNFtg littermates and wt mice served as
controls. Two animal cohorts (n= 6 animals per group) were
evaluated: cohort 1 received [18F]FDG PET/CT scans; cohort
2 received [18F]fluoride PET/CT scans. Female mice were used for
cohort 1, male littermates for cohort 2. After final PET/CT, animals
were anesthetized to collect blood samples, euthanized by cervical
dislocation, and joints were isolated for histological and µCT
analysis.

Radiosynthesis

[18F]FDG and [18F]fluoride were synthesized in house (GE FASTlab®;
GE Healthcare, Piscataway, NJ, USA) with dedicated software and
single‐use cassettes (FastLab Casettes, GE Healthcare).

In Vivo µPET/CT

Longitudinal µPET/CT scans were performed before (1 day before
treatment) and after the treatment period (day 28). For µPET/CT
scans, mice received either [18F]FDG (16.96 ± 2.32 MBq; 107 ±
10 µL) or [18F]fluoride (18.42 ± 3.04 MBq; 104 ± 5 µL) via retro‐
orbital injection under isoflurane‐anesthesia (Inveon microSPECT/
PET/CT; Siemens Medical Solutions, Knoxville, TN, USA). A 20‐min
static PET scan was performed 50 min postinjection, followed by
two consecutive in vivo CT scans. CT acquisition parameters were
as follows: 360 projections (full rotation, 360 degrees, 1‐degree
projections); settle time 300 ms (hind limbs) 2 × 2 binning (whole
body), no binning (hind limbs); 1.5‐mm aluminum filter; exposure
time 950 ms; voltage 80 kV; current 500 µA; axial field of view
(FOV) 10 cm (whole‐body) and 4 cm (hind limbs). For the
evaluation of the pharmacokinetics and the determination of the
appropriate tracer equilibrium, a 60‐min dynamic PET acquisition
was performed as pilot for both [18F]FDG and [18F]fluoride. CT
data were reconstructed with the Feldkamp algorithm, ramp filter,
standard mouse beam‐hardening correction, and noise reduction
(matrix size 1024 × 1024; effective pixel size 9.75 µm). Framing:
1 × 30 s, 4 × 60 s, 1 × 90 s, 4 × 120 s, 1 × 210 s, 4 × 300 s, 1 ×
450 s, and 4 × 600 s. PET images were reconstructed using an
OSEM 3D/OP‐MAP (three‐dimensional Ordered Subset Expecta-
tion Maximum with Ordinary Poisson‐Maximum a Posteriori)
scatter‐corrected reconstruction algorithm and a ramp filter
(matrix size 128 × 128). Data were normalized and corrected for
random, dead time, radioactive decay, and weight of the animal.
PET data are expressed as mean standardized uptake values (SUV;
g/mL). CT data were used for attenuation correction of PET
images. Multimodal rigid‐body image registration and biomedical
image quantification were performed using Inveon Research
Workplace (IRW) and PMOD 3.8 (PMOD Technologies Ltd, Zurich,
Switzerland). 3D volumes of interest were drawn using a 3D
threshold‐based auto‐segmentation algorithm. Representative 3D
images of joints and quantitative changes in bone volume were
determined in selected bone regions (patella, femoral epiphysis,
talus) using the Multimodal 3D Visualization tool from the IRW
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Software. Briefly, after manually segmentation of selected bone
ROIs and constant setting of threshold levels for bone tissue
(higher than 1800 HU) statistics of bone volume (mm3) were
calculated. Data were obtained from both left and right limbs.

Ex Vivo µCT

Isolated joints were fixed in 7% formaldehyde overnight and
stored in 70% ethanol. µCT scans were performed using a
µCT35 (Scanco Medical AG, Brüttisellen, Switzerland) with the
following settings: 55 kVp; 145 µA, 8 W; 300 ms; high resolution:
trabecular bone microarchitecture, cortical bone density; or
medium resolution: talus, ankle, knee, shoulder joints; recon-
struction threshold: 300 (talus, ankle), 270 (knee, shoulder); as
described.(14,23)

Histology

Paraffin‐embedded joint sections were stained with hematoxylin
and eosin (H&E), toluidine blue (TB), and tartrate‐resistant acid
phosphatase (TRAP). TRAP staining identifying bone‐resorbing
osteoclasts was performed using a TRAP staining kit (Sigma
Diagnostics, Livonia, MI, USA; cat.no.387‐A) according to the
manufacturer’s procedure. Briefly, deparaffinized sections were
incubated with staining solution I (containing naphthol AS‐BI
phosphoric acid solution, acetate solution, and tartrate solution)
for 1 hour at 37°C in a water bath protected from light. TRAP
staining was developed with substrate solution II (fast garnet
GBC base solution, sodium nitrite solution) for 5 to 8 min at 37°C
and nuclei were counterstained with Meyer’s hematoxylin. The
number of TRAP+ multinucleated osteoclasts (more than three
nuclei) and the area of TB‐stained cartilaginous regeneration
tissue (mm2) was quantitatively assessed determined using the
Osteomeasure software (OsteoMetrics, Decatur, GA, USA).
Semiquantitative analysis of histopathologies was assessed as
follows: synovial inflammation: 0= none; 1=mild infiltration of
inflammatory cells, thickening of synovial membrane (2 to 3 cell
layers); 2= increased thickening, multilayered synovial cell
membrane; 3=massive accumulation of inflammatory cells
throughout entire joints, expanded hyperplasia. Subchondral
bone erosion: 0= intact; 1= small superficial lesions of cortical
and subchondral bone; 2= enhanced focal, subchondral bone
erosions, partial or complete penetration of cortical bone;
3= severe subchondral bone erosions, complete breakthrough
to the bone marrow cavity. Proteoglycan loss of superficial
cartilage layer (blue stained): 0= intact; 1= destaining< 25%;
2=< 50%; 3= >50% or complete TB destaining. Degradation of
cartilage: 0= intact; 1=< 25% loss of calcified cartilage; 2= 25%
to 50% loss of calcified and/or superficial cartilage; 3= >50% loss
of both layers. Methacrylate‐embedded sections were stained
with Goldner and Movat to evaluate osteoid formation and
osteoblasts as well as for Kossa to visualize mineralized bone
tissue. Briefly, modified MOVAT pentachrome staining was
obtained by a mix of five stains including Alcian blue, Weigert
hematoxylin, brilliant crocein 0.1% combined with acidic
fuchsine (0.1%) in a ratio of eight to two and finally saffron du
Gatinois. Kossa staining included silver nitrate (5%), sodium‐
formol solution, sodium thiosulfate (5%), and counterstaining
with ponceau de xylidine and orange G. Histomorphometric
analyses were assessed using the Osteomeasure software as
described.(14,24) Immunohistochemical stainings were performed
to identify neutrophil granulocytes (clone 7/4; AbD Serotec,
Hercules, CA, USA), macrophages (F4/80ab, clone CI:A3‐1;

Serotec), T cells (CD3ab, clone CD3‐12; Serotec), and B cells
(CD45R, clone RA3‐6B2; BD Pharmingen, Franklin Lakes, NJ, USA).
Relative numbers of cell populations were quantified using
TissueQuest software (TissueGnostics GmbH, Vienna, Austria).
Immunohistochemical staining for Collagen type II expression
was performed after enzymatic antigen retrieval (proteinase type
XIV, 1:2000) using collagen type II antibody (Abcam, Cambridge,
MA, USA; ab34712), and goat anti‐rabbit IgG (biotinylated, BA‐
1000; Vector Laboratories, Burlingame, CA, USA).
Human joint tissue was obtained from RA patients undergoing

joint replacement. Patients signed an informed consent prior to
the donation of synovial tissues. The study was approved by the
ethical committee of the Medical University of Vienna. MOVAT‐
stained or TRAP‐stained sections were investigated.

ELISA

Blood samples were taken to determine expression levels of
matrix‐degrading MMP‐3 (1:20 serum dilution; R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s
protocol.

Real‐time quantitative polymerase chain reaction

Total RNA was isolated from the front paws. Briefly, after removal
from skin and toes carpal tissue was shock‐frozen and stored at
–80°C. Frozen tissue was mechanically homogenized using steel
beads and a TissueLyser II (Qiagen, Hilden, Germany) in the
presence of Trizol reagent (Invitrogen, Carlsbad, CA, USA). Total
RNA was extracted according to the Trizol manufacturer’s protocol
and a subsequent purification step using RNeasy kit (Qiagen).
Real‐time quantitative polymerase chain reaction (RT‐qPCR)
analyses are described further in the Supporting Methods.

Statistical analysis

Statistical analyses were done using GraphPad Prism 5 software
(GraphPad Software, Inc., La Jolla, CA, USA). Data are expressed
as mean ± standard error of the mean (SE). Student’s t test
(two‐tailed) was used to compare individual parameter
between two animal groups (unpaired) or to compare long-
itudinal changes within one group (repeated measurements,
paired t test). Statistical significance between more than two
groups was evaluated with one‐way ANOVA, Tukey post‐test.
Linear regression analysis was used to investigate the relation-
ship between two numeric parameters (Pearson correlation).
Values of p< 0.05 were considered statistically significant
(*p< 0.05, **p< 0.005, ***p< 0.001, ****p< 0.0001).

Results

[18F]FDG PET/CT imaging reveals remission of joint
inflammation after TNF blockade

To assess potential reversibility of disease activity, treatment
started at a progressed stage of disease with established joint
inflammation and damage. Knowing the precise course of the
disease,(22) we started the treatment in 8‐week‐old hTNFtg
mice. At this age, hTNFtg mice exhibited an increased articular
[18F]FDG accumulation in various joints compared to wt
animals (Fig. 1A). Quantitative analysis of [18F]FDG SUVs
revealed significantly increased values in ankle (3.1‐fold), knee
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Fig. 1. Longitudinal [18F]FDG PET/CT monitoring of joint inflammation in anti‐TNF–treated and placebo‐treated hTNFtg animals. (A) [18F]FDG
accumulations in joints (arrows) before and after the treatment period in placebo‐treated hTNFtg, anti‐TNF–treated hTNFtg, and wt mice. (B) [18F]FDG
SUVmean values before and after the treatment of the 3 groups (#statistical significant compared to wt; *statistical significant difference between anti‐
TNF and placebo‐treated). (C) Clinical course of arthritis signs and body weight during treatment. (D) Changes of individual [18F]FDG SUVmean values
after anti‐TNF or placebo treatment. Data analyzed for clinical course, PET/CT and SUV included 6 placebo‐treated hTNFtg, 6 anti‐TNF–treated hTNFtg,
and 4 wt animals.



(1.6‐fold), and shoulder (1.6‐fold) in hTNFtg animals compared
to wt mice (Fig. 1B, left panel). Small inflammatory areas in wrist
or elbow were not resolvable by PET because of partial volume
effects (Supporting Fig. 3). At this time point, hTNFtg mice also
showed clinical signs of arthritis such as reduced grip strength
and increased paw swelling, most prominently in hind paws
(Fig. 1C). In histological sections of euthanized littermates, we
found synovial inflammation, invasive pannus formation, bone
erosions, and cartilage proteoglycan loss (Supporting Fig. 1).

hTNFtg mice then received placebo or anti‐TNF, respec-
tively, for an additional 4 weeks. Placebo‐treated hTNFtg
animals exhibited a further increase of joint inflammation as
observed by both imaging and clinical assessment (Fig. 1A, C).
[18F]FDG uptake increased 1.5‐fold in knees (p< 0.0001) and
1.3‐fold in shoulders (p= 0.03) during that period (Fig. 1B [right
panel], D). Additionally, in wrists, a slight increase of [18F]FDG
uptake became apparent (1.14‐fold, p= 0.03). In contrast, when
quantifying the changes of [18F]FDG SUVs in hTNFtg animals
after anti‐TNF treatment, we observed a significant reduction
compared to baseline values in ankles (p< 0.0001), knees
(p= 0.0028), and shoulders (p< 0.0001). The reduction of [18F]
FDG SUVs resulted in values comparable with SUVs in wt
animals (Fig. 1B; Supporting Fig. 2), indicating complete
remission of joint inflammation (Fig. 1D). Consistently, anti‐
TNF therapy revealed clinical improvement with a significant
decrease in paw swelling and increase in grip strength (Fig. 1C).
To correlate [18F]FDG uptake with synovitis, we investigated

histological sections from joints after treatment. Placebo‐treated
hTNFtg animals showed massive inflammation of the synovial
membrane in various joints such as ankles, knees, and shoulders.
Synovitis was characterized by synovial hyperplasia, infiltration
of inflammatory cells such as macrophages and neutrophils, as
well as pannus formation (Fig. 2). TNF blockade led to a
complete resolution of these inflammatory processes. Compared
to placebo‐treated animals, anti‐TNF–treated hTNFtg mice
showed a significant decrease in synovial inflammation
(p< 0.0001) and infiltrating neutrophil granulocytes (p= 0.012)
(Fig. 2A–C). The only areas of residual abnormalities were found
as slightly thickened, multilayered regions within the synovial
membrane without inflammatory cell infiltrates. Serological
analyses revealed a significant decrease of matrix‐metalloprotei-
nase (MMP)‐3 levels in anti‐TNF–treated mice compared to
placebo‐treated animals (p< 0.0001, Fig. 2D).

CT imaging proves healing of local bone erosions after
TNF blockade

To identify structural bone damage and repair of bone
erosions, we assessed in vivo CT scans from hind limbs of
placebo‐treated hTNFtg mice, anti‐TNF–treated hTNFtg mice,
and wt controls (Supporting Fig. 2). At week 8, hTNFtg mice
showed porous, rough, eroded bone surfaces at the sites of
ankle and tarsal bones as well as femoral and tibial heads,
indicating inflammation‐mediated subchondral and cortical
bone erosions (Fig. 3A). At the end of the observation period,
damage indicated as loss of bone volume was significantly
pronounced in placebo‐treated hTNFtg mice (Fig. 3A, B; two‐
tailed, paired t test, ***p< 0.0001). In contrast, treatment with
anti‐TNF led to improved or intact bone architecture and
increased bone density with regular, smoother bone surfaces in
knee and ankle (Fig. 3A). By volumetric quantification of in vivo
CT scans, we found a significant improvement of bone volume
in knees and ankles (Fig. 3B; ****p< 0.0001).

Consistent with these in vivo CT data, 3D reconstructed ex
vivo µCT images confirmed intact, smooth bone surfaces and
structures in joints from anti‐TNF–treated hTNFtg mice.
Placebo‐treated hTNFtg animals showed massively destroyed
and deformed joints (Fig. 3C). Quantification of the bone
volume of the talus and the patella demonstrated a signifi-
cantly higher bone volume in anti‐TNF–treated compared to
placebo‐treated mice (p< 0.0001, Fig. 3D).

TNF blockade fosters formation of fibrocartilaginous
refilling and regeneration tissue at bone lesions

We investigated TRAP and TB histological sections from small
and large joints after treatment. In placebo‐treated hTNFtg
mice, numerous synovial osteoclasts and massive subchondral
bone erosions were present. As expected, in hTNFtg mice
treated with anti‐TNF, we found a significant reduction in
synovial osteoclast formation (Fig. 4A, B) and activity (Fig. 4C).
Consistently, negligible signs of subchondral bone erosions
were present in the treated mice (Fig. 4B). Some joints showed
completely intact bone architecture, whereas other joints
showed areas of ongoing regenerative processes of cortical
and subchondral bone tissues (Supporting Table 1). Preexisting
bone erosion sites were refilled with cartilaginous or fibrocarti-
laginous tissue in ankle, knee, and shoulder joints of anti‐
TNF–treated mice (Fig. 5A). Sites of chondrogenic refillings
strongly stained for collagen type II (Fig. 5B). TB positively
stained regeneration tissue indicating proteoglycan‐rich carti-
laginous tissue was quantitatively assessed in joints from anti‐
TNF–treated hTNFtg mice (Fig. 5C). Of note, signs of cortical
osteophyte‐like structures were partially found in knee joints as
indicated by µCT. Mineralization of cortical new bone formation
is shown by Kossa staining (Fig. 5D). Moreover, we found an
increased mRNA expression of chondrogenic markers such as
Sox9 transcription factor and collagen type II in paw extracts,
accompanied by a decreased expression of cartilage degrading
enzymes such as ADAMT‐S5, MMP‐3, and MMP‐13 in response
to anti‐TNF treatment (Fig. 5E). These findings prove the partial
restoration of bone erosions and initiation of regenerative
processes upon therapeutic intervention with anti‐TNF.

TNF blockade inhibits inflammation‐driven cartilage
damage

Anti‐TNF treatment led to significantly lower proteoglycan loss
in cartilage tissue and prevented degradation of the superficial
cartilage layer compared to placebo. Moreover, preexisting
lesions of calcified cartilage layers were found to be refilled with
cartilaginous tissue upon TNF blockade (Supporting Fig. 4A, B).

[18F]fluoride PET/CT imaging detects normalization of
local bone remodeling in response to TNF blockade

Based on the joints of interest and treatment, [18F]fluoride SUVs
uptake provided inconsistent results in regard to bone
remodeling. Marked [18F]fluoride accumulation was found in
large joints such as knees, shoulders, elbows, and the spine of
both hTNFtg and wt mice, primarily due to epiphyseal growth
plate activity (Fig. 6A; Supporting Fig. 2 and 3). Strong [18F]
fluoride signals at growth plates overshadowed adjacent areas
and prevented a separate consideration of tracer uptake at
subchondral bone erosion sites. However, compared to wt
animals, hTNFtg mice had a slightly lower [18F]fluoride uptake
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at growth plates related to decreased bone formation activities
at sites of growth plates (Supporting Fig. 6A, B). [18F]fluoride
SUVs in knee joints strongly correlated with the body size of
animals (Pearson r= 0.5961, p< 0.0001****, Fig. 6C). In the 4‐
week follow‐up, [18F]fluoride SUVs did not markedly change in
wt and placebo‐treated hTNFtg animals. Only in anti‐
TNF–treated hTNFtg animals, did we observe a significant
increase of [18F]fluoride SUVs at growth plates from knees (1.2‐
fold, p= 0.0026) related to increased bone formation and body
size (Supporting Figs. 5 and 6). When comparing the three
animal groups, we observed a recurrence of [18F]fluoride SUVs
to normality upon anti‐TNF treatment (Fig. 6B, right panel)

associated with increased trabecular bone mass, osteoblast
numbers and osteoid formation (Supporting Fig. 6). These data
suggest a major negative influence of systemic inflammation
on growth plate activity and improvement upon therapy.

Secondly, however, compared to age‐matched wt animals,
we found a slightly increased accumulation of [18F]fluoride in
ankle joints from hTNFtg mice (Fig. 6A, B), which was associated
with an increased presence of osteoblasts, osteoblast activity,
and osteoid formation at eroded bone surfaces (Fig. 7A, C).
However, locally increased osteoid formation could not com-
pensate for excessive bone destruction in ankles of placebo‐
treated hTNFtg mice, a typical feature also found in subchondral
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bone erosions from RA patients (Supporting Fig. 7). Although
clinical signs of arthritis progressed over time upon placebo
administration, [18F]fluoride SUVs did not markedly change in
ankle joints (Fig. 6B, D). After 4 weeks of treatment, individual

mice showed significantly reduced [18F]fluoride SUVs in the
ankle joints (20% decrease, p= 0.003), indicating a normalized
osteoblast activity upon TNF blockade (Fig. 6D; Fig. 7A, C). Anti‐
TNF treatment led to a successful restoration of bone volume,
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showing complete absence of osteoclasts and reduction of
osteoblast numbers and osteoid formation to levels similar to wt
animals (Fig. 7A, B).

Discussion

In our study, we used µPET/CT imaging techniques to monitor
and quantify (i) TNF‐induced chronic inflammatory polyarthritis
and (ii) repair of preexisting joint damage in vivo upon
therapeutic intervention. Standard evaluations of experimental
arthritis models show limitations because they are generally
restricted to the clinical assessment of easily accessible joints
and histological analyses at predetermined endpoints without
intraindividual follow‐up options. In contrast, PET/CT imaging
provides a longitudinal, noninvasive, whole‐body monitoring of
systemic inflammation and joint damage in the same individuals.
In our study, [18F]FDG showed intense accumulations in

various joints of hTNFtg mice at week 8. Affected joints
included shoulders, knees, ankles, and vertebrae. Based on the
knowledge of partial volume effects, small inflammatory areas
(< 1.2 to 1.5 mm) are not resolvable by PET, limiting the
detection of inflammatory processes in small joints or lymph
nodes. Further increase in [18F]FDG SUVs from weeks 8 to 12
indicated disease progression and increased severity of
synovial inflammation, especially in knee and shoulder. Minor
changes in the severity of synovitis in arthritic ankle joints have
been reported.(14,25) Thus, whole‐body [18F]FDG imaging allows
not only the identification, but even more importantly the
monitoring and quantification of joint inflammation in vivo.
Consistently, also in RA patients, [18F]FDG PET imaging studies
showed a strong correlation of [18F]FDG uptake and metabolic
activity of synovitis with disease activity.(10,11,26,27)

Reversibility of articular inflammation upon inhibition of TNF
has been documented in hTNFtg mice by clinical assessment,
gait analysis, and histological analysis at the endpoint but not
by in vivo imaging modalities.(14,15,28) Here, we show that by
performing whole‐body [18F]FDG imaging repeatedly, a ther-
apeutic response can be monitored longitudinally in multiple
joints of individual hTNFtg animals. Upon TNF blockade,
normalization of [18F]FDG SUVs was achieved in various
affected joints such as knee, shoulder, and ankle, showing
remission of preexisting synovial inflammation in hTNFtg
individuals.
Previous in vitro and in vivo studies indicated that

periarticular uptake of [18F]FDG is predominantly mediated by
activated synovial fibroblasts and macrophages.(17) In line with
these results, we have shown that the normalization of [18F]
FDG SUVs upon TNF inhibition is associated with a marked
reduction of synovial fibroblast, macrophage, and neutrophil
numbers in the synovium.
Chronic joint inflammation causes dysregulated bone

remodeling characterized by the promotion of bone destruc-
tion and inhibition of bone formation.(29) Recent studies
suggest repair of erosions in some RA patients treated with
biologic agents such as TNF or IL‐6R inhibitors.(4,30,31) Initial
signs of bone repair included the presence of bony depositions
or osteosclerotic changes, associated with a decrease in erosion
size and improvements of radiographic scores.(4) In experi-
mental arthritis, bone repair has also been initiated by
combination therapy of TNF inhibitors and antagonists of
Wnt signaling pathway or parathyroid hormone, respec-
tively.(32–34) TNF blockade alone has been shown to initiate

bone repair and healing processes in hTNFtg mice.(14,15)

However, all these animal studies had major limitations,
because bone repair had only been detected by comparative
histological analysis with placebo‐treated or baseline data. In
our study, longitudinal multimodal in vivo imaging enabled the
direct comparison of in vivo situations before and after the
treatment period in each individual animal. CT scans of anti‐
TNF–treated hTNFtg mice showed significantly improved
radiographic bone volumes compared to CT scans obtained
before treatment. Preexisting bone erosions regenerated with
varying extent up to complete restoration of bone architecture.
This proves conclusively that bone repair and alleviation of
preexisting bony lesions is achievable upon TNF blockade.
The mechanisms leading to this healing process are not fully

understood. Repopulation of osteoblasts and the occurrence of
bone repair at sites of erosions have been shown in arthritis
models.(34–36) Our in vivo data indicate that resolution of
inflammatory processes is essential to allow initiation of such
processes. We found bone healing processes at various sites of
distinct joints: preexisting cortical and subchondral bone
erosions were either completely restored (25% to 40% of
joints), refilled with fibrocartilaginous tissue, or substituted by
hyperproliferative chondrocytes. Only few joints showed
undirected restoration by forming cartilaginous soft callus or
signs of secondary osteoarthritis. Further investigations will be
required to identify molecular and cellular mechanisms
contributing to such aberrant regeneration processes.
In contrast to [18F]FDG uptake, which reflects inflammation,

[18F]fluoride uptake reflects ion exchange within hydroxyapa-
tite forming [18F]fluorapatite and thus incorporation into the
skeleton at sites of active osteoblastic bone synthesis.(13,37,38)

Indeed, [18F]fluoride scans are widely used for the detection of
bone metastasis and osteosarcomas.(39) In RA patients, [18F]
fluoride signals have been associated with affected joints,
especially those with ongoing erosive changes.(40) So far, only a
single experimental arthritis study of mice immunized with
G6PI demonstrated a correlation of [18F]fluoride accumulation
with bone surface alterations as a consequence of erosive sites
but also spontaneous new bone and osteophyte formation in
affected paws.(18) In contrast, in our animal model, which is an
erosive arthritis model without spontaneous new bone
formation, [18F]fluoride imaging demonstrated major limita-
tions regarding bone remodeling changes and structural bone
damage. Despite tendencies of increased [18F]fluoride SUVs in
ankles from hTNFtg mice, which were associated with the local
increase and activity of osteoblasts at sites of inflammatory
bone erosions, there was no detectable difference during the
investigated period compared to wt animals. On the other
hand—and to our surprise—anti‐TNF therapy was associated
with normalized [18F]fluoride SUVs in the animal’s ankle joints,
which might relate to a decrease in eroded bony surfaces and
osteoblast activity after treatment.
Another limitation of bone‐tracers such as [18F]fluoride or

[99Tc]methylene diphosphonate for our investigation is their
accumulation in growth plates from rats and mice.(37)

Consistently, we observed intensive [18F]fluoride accumulations
in large joints such as knees and shoulders in hTNFtg but also
in wt mice. These [18F]fluoride signals reflected osteoblast
activity at sites of growth plates, thereby excluding a separate
consideration of adjacent epiphyseal bone erosive lesions or
repair processes. Because most common arthritis models do
not develop in old, skeletally mature animals, there is no
alternate erosive arthritis model available to avoid this effect.
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Consistently, the use of an alternative method such as optical
imaging with a hydroxyapatite‐targeting fluorescent marker
(OsteoProbe) also showed limited sensitivity to quantify bone
damage.(41) Advances in identifying differences between
physiological and pathophysiological bone remodeling
are necessary for the development of novel pathology‐
associated bone tracers. Overall, our study demonstrates that
[18F]fluoride is not an appropriate tracer to quantify the extent
of local inflammation‐mediated bone damage and remodeling
processes in joints from this TNF‐driven arthritis model.
As a further limitation, we did not confirm the data obtained

in another experimental model of arthritis, because most of the
other models, such as collagen‐induced arthritis or K/BxN
serum transfer arthritis are associated with spontaneous
resolution and healing processes.(35,42,43)

In contrast to conventional radiography, which is used almost
exclusively for evaluating joint damage, advances in other
imaging techniques such as magnetic resonance imaging (MRI),
ultrasound (US), and PET allow the simultaneous monitoring of
joint inflammation and disease activity in both RA patients as
well as in preclinical animal models. US has the advantage of
lower costs and easy accessibility, but is limited by its acoustic
window, and interobserver and intermachine reliability. In
contrast, MRI may deliver valuable information about inflamma-
tion beyond the findings of other modalities (eg, bone marrow
edema or contrast enhancement). Importantly, [18F]FDG PET is a
direct readout of energy consumption, capable of detecting
slight biochemical changes in “real‐time.” These changes
represent active metabolic processes, which are accepted as
the gold standard evidence for active inflammation. Therapeutic
responses that improve inflammatory processes can therefore be
readily observed as a reduction of metabolic activity and thus
reduced [18F]FDG values. Recently, a comparative study of PET
and MRI in early RA patients clearly demonstrated the superiority
of PET in detecting subclinical synovitis and its potential use in
predicting clinical flares.(44) Unfortunately, a direct comparison of
these techniques in murine models is limited by the scarcity of
head‐to‐head studies. However, longitudinal animal studies
revealed volumetric µCT imaging as a valuable quantitative
tool for structural bone damage and other techniques such as
Power Doppler US, contrast‐enhancement MRI, and PET as
quantitative tools for monitoring synovial inflammation.(45–47)

Unfortunately, small animal MRI and PET are limited by
accessibility and costs for preclinical studies. In conclusion, the
primary advantage of [18F]FDG PET over the other imaging
methods is its high specificity and value as a direct readout of
energy consumption throughout the whole body. Future
comparative studies utilizing different imaging techniques may
one day enable researchers to provide clear recommendations
on the use of such techniques in arthritis models.
To summarize, by the use of [18F]FDG PET/CT we could

demonstrate and prove the resolution of joint inflammation to
allow subsequent restoration of joint architecture upon TNF
blockade in one and the same arthritic animals. Thus, multi-
modal [18F]FDG PET/CT provides a noninvasive, sensitive,
objective, and quantitative in vivo tool to monitor therapeutic
effects on distinct compartments such as the synovial
membrane and bone in individual animals.
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