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Abstract: The endocannabinoidome (expanded endocannabinoid system, eCBome)-gut microbiome
(mBIome) axis plays a fundamental role in the control of energy intake and processing. The liver-
expressed antimicrobial peptide 2 (LEAP2) is a recently identified molecule acting as an antagonist
of the ghrelin receptor and hence a potential effector of energy metabolism, also at the level of
the gastrointestinal system. Here we investigated the role of the eCBome-gut mBIome axis in the
control of the expression of LEAP2 in the liver and, particularly, the intestine. We confirm that the
small intestine is a strong contributor to the circulating levels of LEAP2 in mice, and show that:
(1) intestinal Leap2 expression is profoundly altered in the liver and small intestine of 13 week-
old germ-free (GF) male mice, which also exhibit strong alterations in eCBome signaling; fecal
microbiota transfer (FMT) from conventionally raised to GF mice completely restored normal Leap2
expression after 7 days from this procedure; in 13 week-old female GF mice no significant change was
observed; (2) Leap2 expression in organoids prepared from the mouse duodenum is elevated by the
endocannabinoid noladin ether, whereas in human Caco-2/15 epithelial intestinal cells it is elevated
by PPARγ activation by rosiglitazone; (3) Leap2 expression is elevated in the ileum of mice with either
high-fat diet—or genetic leptin signaling deficiency—(i.e., ob/ob and db/db mice) induced obesity.
Based on these results, we propose that LEAP2 originating from the small intestine may represent a
player in eCBome- and/or gut mBIome-mediated effects on food intake and energy metabolism.
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1. Introduction

The liver-expressed antimicrobial peptide 2 (LEAP2) was originally isolated from
human hemofiltrates [1]. Its encoding gene is composed of three exons and two introns lo-
cated at chromosome 5q31 in humans and chromosome 11 in mice. There are two different
transcripts of LEAP2 in humans; the one mainly found in the liver, small intestine, kidney,
colon, and gastric antrum is the 350bp transcript, whereas, the lung, heart, and trachea
express the 550bp transcript [1,2]. The murine Leap2 RNA encodes for a 76 amino acid
protein, although the mature LEAP2 peptide is composed of 40 amino acid residues [1]. The
peptide is positively charged and shows similar characteristics to other cationic peptides
with antimicrobial activity in vitro. It is composed of an N-terminal (1–14 amino acids) and
a C-terminal (15–40 amino acids) domain and two disulfide bonds. LEAP2 shares structural
characteristics with antimicrobial peptides such as defensins and LEAP1/hepcidin [1].
Several Gram-positive bacteria, such as Bacillus megaterium and Bacillus subtilis, are sen-
sitive to treatment with a synthetic LEAP2 peptide, which did not affect the growth of
Gram-negative Escherichia coli and Pseudomonas [1]. The antimicrobial activity of LEAP2
was suggested to be dependent on the amino-terminal domain and not on the induction
of membrane destabilization and/or pore formation under physiological conditions [3],
indicating that the peptide may bind to an intracellular target to exert this activity.

The strong sequence conservation of LEAP2 in vertebrates might indicate a physiolog-
ical role unrelated to antimicrobial activity [3,4]. Whilst it was shown that the peptide is not
mitogenic for epithelial cells and does not function directly to link the innate and adaptive
immune systems [2,5], regulation of the action of ghrelin, a key hormone produced from
the stomach and acting in the brain to regulate food intake, reward, and other fundamental
central nervous system (CNS) functions, was recently suggested as an additional function
of LEAP2. Ge et al. [6] used a mouse model of vertical sleeve gastrectomy (VSG) as a tool
to identify secreted proteins and peptides that might act as metabolic regulators. They
analyzed various genes that encode for secreted proteins and peptides in the stomach and
intestines and found that one set of genes exhibited inverse regulation between the stomach
and duodenum. Among these genes, Leap2 expression increased by 52-fold in the stomach
and decreased by 94% in the duodenum following VSG [6]. Subsequently, it was found that
LEAP2 acts as an endogenous antagonist of the ghrelin receptor by specifically inhibiting
ghrelin binding to its receptor, the GHSR, in a non-competitive manner, thus blocking
ghrelin-mediated GH release, food intake, and glucose mobilization [6]. This discovery led
to the proposal of LEAP2 as a new potential therapeutic target for uncontrolled ghrelin
signaling-related diseases, such as obesity and diabetes, cachexia, anorexia, alcohol abuse,
and Prader-Willi Syndrome.

Two other reciprocally interacting players in energy metabolism and its pathological
disturbances are: (1) the endocannabinoidome (eCBome), which includes: (a) the endo-
cannabinoids anandamide (AEA), 2-arachidonoylglycerol (2-AG), and noladin ether; (b)
the cannabinoid CB1 and CB2 receptors; (c) endocannabinoid-related mediators, such as
the N-acylethanolamines (NAE), like AEA, and other long-chain fatty acid amides and
esters in general, such as the 2-monoacyl-glycerols (2-MAGs), like 2-AG, and the N-acyl
amino acids, the N-acyl-glycines, as well as their receptors (which encompass peroxisome
proliferator-activated receptors [PPARs], transient receptor potential [TRP] channels and
orphan G-protein-coupled receptors [GPRs]) and anabolic/catabolic enzymes [7]; and
(2) the gut microbiome (mBIome), which encompasses thousands of commensal intesti-
nal microorganism species with their armamentarium of genes, proteins and metabolites
signaling to the host [8]. Both these systems have been related to ghrelin function, for
example through the following mechanisms: (1) ghrelin has been shown to enhance food
intake partly via endocannabinoid biosynthesis and CB1 receptor activation, e.g., in the
hypothalamus [9,10], while, vice versa, some central effects of CB1 receptors have been
suggested to be mediated by activation of the ghrelin receptor, GHSR [11]; additionally,
the anorexigenic NAE, N-oleoyl-ethanolamine (OEA), which is inactive at cannabinoid
receptors and activates instead PPARα, TRPV1 and GPR119, or CB1 activation by endo-
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cannabinoids, were suggested to inhibit or stimulate, respectively, ghrelin release from
the stomach [12–14]; interestingly, in human plasma, similar or opposing alterations in the
levels of ghrelin and 2-AG or non-endocannabinoid NAEs, respectively, occur following
exposure to palatable food of lean volunteers [15], whereas in obese individuals exposed
to chocolate, the plasma levels of both orexigenic and anorexigenic eCBome mediators
(i.e., AEA and OEA, respectively) were directly correlated to ghrelin levels [16]; and (2)
through some of its specific metabolites, such as the short chain fatty acids (SCFAs), the gut
microbiome impacts on ghrelin action at GHSR, whereas concomitant changes in circulating
ghrelin levels and specific gut microbiota taxa are also known to occur under different
experimental conditions; however, the mechanisms by which the gut microbiota interacts
with ghrelin secretion and signaling are still largely unknown [17]. These, and many other
previously published data, strongly suggest that both the eCBome and the gut mBIome,
through their multiple signaling mechanisms, are likely to regulate energy metabolism also
via interactions with ghrelin.

Based on this background, we hypothesized that some of the effects of the eCBome
and the gut mBIome on ghrelin action may occur via changes in Leap2 expression in the
liver and, particularly, the intestine, and investigated this hypothesis either in vivo or
in vitro. In particular, we first aimed at identifying a direct effect of the gut mBIome by
studying Leap2 expression in germ-free (GF) mice before and after the reinstatement of
functional gut microbiota by fecal microbiota transfer (FMT) from conventionally raised
(CR) mice. Next, we investigated if the effect of the gut mBIome on Leap2 expression
in the gut was due to its previous effect on the gut eCBome, by looking at how several
eCBome mediators, or eCBome receptor activating and inactivating pharmacological tools,
affected Leap2 expression in differentiated intestinal epithelial CaCo-2/15 cells or organoids
prepared from the mouse small intestine, in the presence or absence of a gut microbiota-
derived pro-inflammatory signal, i.e., lipopolysaccharide (LPS). Finally, we investigated
whether, and how, intestinal Leap2 expression is altered in mouse models of obesity/type 2
diabetes and how such alterations relate to those of the eCBome in the same models, where
profound gut microbiota perturbations, sometimes referred to as dysbiosis, also exist.

2. Results
2.1. Germ-Free Mice Exhibit Altered Levels of Leap2 in the Small Intestine

We investigated the impact of the gut microbiota on Leap2 expression in the liver
and intestinal sections of both male and female GF mice at 4 weeks and 13 weeks of age
as compared to conventionally raised CR mice of the same sex and age (Figure 1). In
4 week-old male mice, we observed a significant decrease in Leap2 mRNA expression in the
liver, and a non-significant increase in the jejunum and ileum, in GF vs. CR mice, whereas
there were no trends in the duodenum (Figure 1A). In 13 week-old males, we observed
again a significant decrease in Leap2 mRNA levels in the liver and a significant increase in
expression in the duodenum in GF vs. CR mice, whereas, in the jejunum and ileum, there
were no changes (Figure 1A). Levels of circulating LEAP2 protein showed a decrease at
4 weeks (Figure 1B), whereas there was a significant increase in 13 week-old male mice
(Figure 1B). This suggests that the liver and duodenum, respectively, may contribute the
most to LEAP2 circulating plasma levels in 4 and 13-week old male GF mice.

Concerning female mice, Leap2 mRNA expression showed a tendency to increase at
4 weeks old in GF vs. CR mice in the liver and duodenum, and the same pattern was
observed in the jejunum, where there was a significant increase (Figure 1C). In 13 week-old
females, there was a non-significant decrease in Leap2 mRNA expression in the liver and
ileum of GF vs. CR mice, whereas there were no observable changes in the other analyzed
tissues (Figure 1C). Protein levels of LEAP2 in the blood did not change in either 4 or
13-week old female GF mice (Figure 1D).

We next performed a fecal microbiota transfer (FMT) from CR male mice of 13 weeks of
age into GF male mice to evaluate whether the reintroduction of the gut microbiota is able
to reverse the Leap2 expression changes observed in GF male mice. For this, we privileged
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male 12 week-old GF mice, since we saw the most interesting results and changes in older
male mice compared to female mice. This procedure was previously reported by us in
these same mice to successfully reinstate gut microbiota in GF mice [18]. We first checked
if we could repeat the results of the previous experiment, for instance, the decrease in the
liver and increase in the duodenum of Leap2 mRNA expression in GF vs. CR mice, and
this was indeed the case. More importantly, in both the liver and duodenum, we found
that the FMT was able to revert the changes in Leap2 expression found in male GF mice,
with an increase in the liver and a decrease in the duodenum following FMT (Figure 2A).
Circulating protein levels of LEAP2 that were upregulated in 13 week-old male GF mice
were likewise reduced to baseline CR mouse levels by FMT (Figure 2B).
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Figure 1. Leap2 expression in germ-free mice. Gene expression of Leap2 was measured in the liver
and small intestinal regions of conventionally raised (CR) and germ-free (GF) male mice at 4 and 13
(A) weeks of age by qPCR and r plotted relative to CR mice for each age and each tissue. LEAP2
protein levels (ng/mL) were measured in the plasma of CR and GF male mice at 4 and 13 (B) weeks
of age by ELISA and represented as means ± S.D. n = 5–6. * p ≤ 0.05. Gene expression of Leap2 was
measured in the liver and small intestinal regions of conventionally raised (CR) and germ-free (GF)
female mice at 4 and 13 (C) weeks of age by qPCR and plotted relative to CR mice for each age and
each tissue. LEAP2 protein levels (ng/mL) were measured in the plasma of CR and GF female mice
at 4 and 13 (D) weeks of age by ELISA and represented as means ± S.D. n = 5–6. * p ≤ 0.05.

These data indicate that the GF status results in sex-dependent significant changes in
Leap2 mRNA expression in the liver and the duodenum, with the latter tissue producing
the predominant effect on circulating LEAP2 protein levels in adult male mice, and that
such changes are directly due to the lack of the gut microbiota. Since the small intestine of
GF mice also exhibits strong FMT-reversible alterations in the levels of eCBome mediators
(namely NAEs such as OEA and LEA, which are increased) and receptor mRNAs (namely
Cnr1 and Ppara, which are increased, and Gpr55 and Gpr18, which are decreased) [18], we
next tested the effect of drugs activating CB1, PPARα, GPR55 and GPR18 receptors on
Leap2 mRNA expression in two different in vitro models of intestinal tissue.
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Figure 2. Leap2 expression in germ-free male mice after a fecal microbiota transfer. Relative Leap2
gene expression was measured by qPCR (left) in the liver and small intestinal regions and LEAP2
protein levels ((right); ng/mL) were measured in the plasma by ELISA of 13 week-old conventionally
raised (CR) (n = 10), GF (n = 5) and in GF mice after fecal microbiota transfer (FMT) (n = 6). Relative
mRNA expression is plotted relative to CR mice for each tissue. Plots represent means ± S.D. Post-hoc
analysis was carried out between GF and CR mice to determine the impact of the lack of microbiota
or GF and FMT mice to determine the impact of the introduction of microbiota. * GF vs. CR; # FMT
vs. GF. * p ≤ 0.05, # p ≤ 0.05.

2.2. Leap2 mRNA Expression in Organoids from the Mouse Duodenum Is Increased by
Noladin Ether

We have previously reported that several components of the eCBome are modified
within the intestinal sections of GF mice, especially within the duodenum [18]. As we
observed changes in the expression of Leap2 in the duodenum of GF mice, we investigated
Leap2 mRNA expression in small intestine organoids isolated from the mouse duodenum
and treated with different concentrations of eCBome mediator inactivating enzyme in-
hibitors, in the absence or presence of a pro-inflammatory cocktail (LPS, TNFα, IL-1β and
IFNγ [LC]). In the absence of LC, organoids treated with: (1) MAGL and FAAH inhibitors,
i.e., URB597 and JZL184, respectively, which can indirectly activate the targets of NAEs and
2-MAGs; or (2) CB1 and CB2 antagonists/inverse agonists (rimonabant and SR144528, re-
spectively) at 10 nM, did not exhibit significant alterations in Leap2 expression (Figure 3A).
Higher concentrations of the enzyme inhibitors (100 nM and 1 µM) similarly failed to
modify Leap2 expression (Figure 3B). These data may suggest that MAGL and FAAH
do not play a major role in inactivating NAEs and 2-MAGs in small intestine epithelial
cells, and/or that there is no endogenous tone by AEA and 2-AG at CB1/CB2 receptors
regulating Leap2 expression within duodenum-derived organoids. In order to confirm this
hypothesis, we next tested the effects of the hydrolysis-resistant AEA and 2-AG analogs,
ACEA, and noladin ether, respectively, to target CB1/CB2 receptors directly. Importantly,
ACEA and noladin ether, at higher concentrations, are also known to activate TRPV1 and
PPARα, respectively [19–21]. Treatment with ACEA at different concentrations, 0.1, 1.0,
and 10 µM did not change Leap2 expression (Figure 3C). However, while the two lowest
concentrations of noladin ether (0.1 and 1 µM) also did not change Leap2 expression, the
highest concentration (10 µM) resulted in a statistically significant upregulation of more
than 2-fold (Figure 3C).

The LC inflammatory cocktail did not affect Leap2 expression, nor did co-incubation of
LC with URB597, JZL184, SR144528 or rimonabant, all at a 0.1 µM concentration (Figure 4D).
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Figure 3. Expression in the duodenum-derived intestinal organoids. Relative Leap2 gene expression
was measured by qPCR in organoids treated with the indicated compounds at the indicated concentra-
tions to test responsiveness to cannabinoid receptor activity through pharmacological manipulation
((A–C), Rimonabant; CB1 antagonist, SR144528; CB2 antagonist, URB597; FAAH inhibitor, JZL184;
MGLL inhibitor) and in response to an inflammatory lipopolysaccharide/cytokine cocktail ((D), LC;
lipopolysaccharide [LPS, 10 µg/mL], tumor necrosis factor-alpha [TNFα, 100 ng/mL), interleukin 1
beta [IL-1β; 100 ng/mL] and interferon-gamma [IFNγ, 100 ng/mL]) for 24 h and then co-treated with
the indicated compound for a further 24 h. Experiments were performed in duplicate or in triplicate
with organoids from at least 3 independent organoid cultures (n = 3–5). Each culture was isolated
from the duodenum of different mice. Values are represented as mean ± S.E.M and were compared
relative to control (Negative; without DMSO). * p ≤ 0.005 vs. DMSO.

2.3. LEAP2 mRNA Expression in Human Intestinal Epithelial Caco-2/15 Cells Is Increased
following PPARγ Activation

Duodenal organoids contain all cellular elements of the duodenum, and the epithelial
layer in general (except for myenteric neurons). Additionally, the geometry of the organoids
is inverse to that of the normal intestinal mucosa, since their basolateral side is outside and
directly exposed to treatment, and the apical side is inside and less exposed. Therefore, we
wanted to investigate the potential for the eCBome to modulate LEAP2 expression more
selectively in epithelial intestinal cells. To do so, we used the human Caco-2/15 intestinal
cell line, an easy model to culture that could give us an insight of how LEAP2 expression
might behave in humans, which we first fully differentiated into enterocytes to be treated
on their apical side. Differentiated Caco-2/15 cells in monolayers were treated with a
1 µM concentration of agonists and antagonists of eCBome receptors, i.e., ACEA (CB1
and TRPV1 agonist), noladin ether (CB1, GPR55, and PPARα agonist), rimonabant (CB1
antagonist/inverse agonist), fenofibrate (PPARα agonist), GW6471 (PPARα antagonist),
capsaicin (TRPV1 agonist), capsazepine (TRPV1 antagonist), rosiglitazone (PPARγ agonist)
and GW9662 (PPARγ antagonist), as well as with inhibitors of catabolic enzymes, i.e.,
URB597 and JZL184. We observed no changes in LEAP2 expression after treatment with
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any of these compounds at 1 µM for 24 h, except for a 4-fold increase in enterocytes treated
with rosiglitazone (Figure 4A), indicating a possible role of PPARγ. In view of this latter
result, we investigated if the effect of rosiglitazone could be abolished using a PPARγ
antagonist (GW9662) at 1 µM concentration. We tested two doses (0.1 µM and 1 µM) of
rosiglitazone, which dose-dependently increased LEAP2 expression (Figure 4B), supporting
our initial observation (Figure 4A). The PPARγ antagonist alone produced no effect on
LEAP2 expression; however, co-treatment with rosiglitazone and GW9662 significantly
inhibited the rosiglitazone-mediated increase in LEAP2 expression (Figure 4B). These
results indicate that PPARγ is involved in the up-regulation of LEAP2. Since AEA, unlike
ACEA, has been suggested to activate PPARγ, at concentrations higher than those required
to activate cannabinoid receptors, we tested this compound and found that up to a 10 µM
concentration, it did not affect LEAP2 expression, though a trend towards increase was
observed (Figure 4C). Finally, N-arachidonoyl-glycine (NAGly), which has been proposed
as both a PPARα and GPR18 agonist (see above), was also tested at 10 µM and similarly
found not to stimulate LEAP2 expression (Figure 4C).

Molecules 2022, 26, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 4. LEAP2 expression in Caco-2/15 cells. Differentiated cells were treated with the indicated 
compounds at 1 μM (unless otherwise indicated) for 24 h. Effect of modulation of receptor activity 
through pharmacological manipulation. (A, ACEA; CB1 and TRPV1 agonist, Rimonabant; CB1 an-
tagonist, Fenofibrate; PPARα agonist, GW6471; PARA antagonist, Rosiglitazone; PPARγ agonist 
and GW9662; PPARγ antagonist, Capsaicin; TRPV1 agonist and Capsazepine; TRPV1 antagonist). 
Specificity of LEAP2 gene expression responsiveness to PPARγ activation (B). Effects of noladin 
ether N-arachidonoylethanolamine (AEA) and N-arachidonoyl-glycine (NAGly) (C). Effects of in-
flammatory stimulation by lipopolysaccharide (LPS at 10 μg/mL) without and with eCBome phar-
macological manipulation (D, URB597; FAAH inhibitor, JZL184; MAGL inhibitor). Values are rep-
resented as mean ± S.E.M and were compared relative to DMSO. n = 3. * p ≤ 0.05 vs. DMSO; # p ≤ 
0.05 vs. relevant Rosiglitazone control. 

2.3. LEAP2 mRNA Expression in Human Intestinal Epithelial Caco-2/15 Cells Is Increased 
Following PPARγ Activation 

Duodenal organoids contain all cellular elements of the duodenum, and the epithelial 
layer in general (except for myenteric neurons). Additionally, the geometry of the organ-
oids is inverse to that of the normal intestinal mucosa, since their basolateral side is out-
side and directly exposed to treatment, and the apical side is inside and less exposed. 
Therefore, we wanted to investigate the potential for the eCBome to modulate LEAP2 ex-
pression more selectively in epithelial intestinal cells. To do so, we used the human Caco-
2/15 intestinal cell line, an easy model to culture that could give us an insight of how 
LEAP2 expression might behave in humans, which we first fully differentiated into enter-
ocytes to be treated on their apical side. Differentiated Caco-2/15 cells in monolayers were 
treated with a 1 μM concentration of agonists and antagonists of eCBome receptors, i.e., 
ACEA (CB1 and TRPV1 agonist), noladin ether (CB1, GPR55, and PPARα agonist), ri-
monabant (CB1 antagonist/inverse agonist), fenofibrate (PPARα agonist), GW6471 
(PPARα antagonist), capsaicin (TRPV1 agonist), capsazepine (TRPV1 antagonist), rosig-
litazone (PPARγ agonist) and GW9662 (PPARγ antagonist), as well as with inhibitors of 

Figure 4. LEAP2 expression in Caco-2/15 cells. Differentiated cells were treated with the indicated
compounds at 1 µM (unless otherwise indicated) for 24 h. Effect of modulation of receptor activity
through pharmacological manipulation. ((A), ACEA; CB1 and TRPV1 agonist, Rimonabant; CB1
antagonist, Fenofibrate; PPARα agonist, GW6471; PARA antagonist, Rosiglitazone; PPARγ agonist
and GW9662; PPARγ antagonist, Capsaicin; TRPV1 agonist and Capsazepine; TRPV1 antagonist).
Specificity of LEAP2 gene expression responsiveness to PPARγ activation (B). Effects of noladin ether
N-arachidonoylethanolamine (AEA) and N-arachidonoyl-glycine (NAGly) (C). Effects of inflamma-
tory stimulation by lipopolysaccharide (LPS at 10 µg/mL) without and with eCBome pharmacological
manipulation ((D), URB597; FAAH inhibitor, JZL184; MAGL inhibitor). Values are represented as
mean ± S.E.M and were compared relative to DMSO. n = 3. * p ≤ 0.05 vs. DMSO; # p ≤ 0.05 vs.
relevant Rosiglitazone control.
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Similar to what was done with organoids, we also tested the impact of inflammation on
LEAP2 expression in enterocytes, and the effect thereupon of pharmacological manipulation
of eCBome receptors and enzymes. In this case, the inflammatory state was induced by
incubation with only LPS, concomitantly with agonists and antagonists/inverse agonists of
eCBome receptors (CB1, PPARγ, PPARα, GPR55, GPR18, TRPV1) and inhibitors (URB597
and JZL184) of the catabolic enzymes (FAAH and MAGL) for 24 h. LPS did not alter
LEAP2 expression, either alone or in the presence of any of the compounds, except again
for rosiglitazone (Figure 4D). In particular, also, in this case, AEA and NAGly only tended
to increase expression in a non-statistically significant manner.

2.4. Effect of Noladin Ether on PPARα and PPARγ in a Luciferase Functional Assay

Due to the stimulatory effect of noladin ether on Leap2 expression in intestinal organoids
and its lack of effect in Caco-2/15 cells, where PPARγ, but not PPARα, activation instead
produces elevation of LEAP2 mRNA levels, and in view of the previous reports of noladin
ether as a PPARα agonist, we next wondered if high noladin ether concentrations may
be acting through PPARs to affect LEAP2 mRNA expression in cells other than epithelial
enterocytes. In fact, the possibility of PPARα being involved in the noladin ether effect in
organoids still exists, since we did not test here PPARα agonists in organoids. To test if high
concentrations of noladin ether can activate PPAR-mediated transcription, we performed
luciferase assays with this compound at concentrations from 1 to 25 µM. As expected,
PPARα/HEK293 and PPARγ/HEK293 cells showed a massive luciferase induction upon
exposure to the selective agonists GW7647 and rosiglitazone, respectively. However, no
changes were found in either case with noladin ether (Figure 5A,B). Therefore, the mecha-
nism by which noladin ether upregulates Leap2 expression in duodenal organoids remains
to be determined.
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was performed in HEK293 cells transiently expressing the ligand-binding domain (LBD) of human
PPARα (A) and/or PPARγ (B) fused to the yeast GAL4 DNA binding domain (DBD). Bar graphs
showing the ratio between the firefly and Renilla luciferase in response to increasing concentrations of
noladin ether. GW7647 (1 µM) and rosiglitazone (0.1 µM) were used as positive controls for PPARα
(A) and PPARγ (B), respectively. The vehicle group value was set to 1. Each point is the mean ± SEM
of four separate determinations performed in duplicate. *** p ≤ 0.0005 versus the vehicle (dimethyl
sulfoxide, DMSO) group.
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2.5. Diet-Induced and Genetically Obese Mice Express Altered Intestinal Levels of Leap2 in
Relation with Altered Endocannabinoidome Signaling

It was previously shown that ghrelin levels are altered in a mouse model of diet-
induced obesity (DIO) [22]. Here we wanted to explore how DIO affects Leap2 expression
in mice fed with high-fat high sucrose (HFHS) diet at different time points following the
beginning of the diet (0 days, 10 days, 21 days, and 56 days). We have previously shown [23]
that these same mice progressively gained weight and become glucose intolerant over the
duration of the protocol while developing time-dependent alterations in their circulating
and intestinal eCBome mediators, enzymes, and receptors [23]. We report a gradual
increase in Leap2 expression in the liver, from day 0 to day 56 that did not reach statistical
significance (Figure 6A). Then, we looked at the duodenum and saw no changes in Leap2
expression, although we observed a non-significant increase on day 21 (Figure 6B). In the
jejunum, instead, we observed a significant decrease in Leap2 expression on day 21, and no
changes on days 3, 10, and 56 compared to the baseline (Figure 6C). Finally, in the ileum,
we observed a significant increase in Leap2 expression at day 3, when the mice were already
glucose intolerant [23], and a gradual decrease from day 10 to day 56 (Figure 6D), when the
mice gradually became obese [23].
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HFHS diet time points as measured by qPCR. Relative mRNA expression relative to mice at day 0 is
represented as mean ± S.D.). n = 10–12. * p ≤ 0.05.

We have reported previously [23] that in the ileum of the same HFHS mice used
in the present study the levels of some eCBome mediators, i.e., OEA, 2-oleoyl-glycerol
(2-OG), and 2-linoleoyl-glycerol (2-LG), which may act on PPARα, GPR119 and TRPV1
receptors [7], change in a very similar way to what found here for Leap2 mRNA levels,
i.e., they peak at day 3 and then significantly decrease, whereas the levels of the eCB
and weak PPARγ agonist, AEA, instead start increasing after 3 days of the HFHS diet.
Likewise, the mRNA levels of eCBome genes such as Faah, Abhd6, and Ppara peaked at
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day 3 before decreasing, whereas Cnr2, Pparg, and Plcb1 mRNA levels showed a negative
peak at day 3 and then increased with time [23]. Therefore, we wanted to see if the
changes we saw in Leap2 expression in the ileum were correlated with changes in eCBome
genes. Interestingly, Leap2 expression was significantly and positively correlated with the
ileal mRNA levels of Ppara, Faah, and Gde1, but not Abhd6, and negatively with those of
Plcb1 and Trpv2, but not Cnr2 and Pparg (Figure 7). These correlations might suggest the
implication of the eCBome, and in particular, of NAEs—which are biosynthesized through
GDE1 (among other enzymes) and (like N-acyl-glycines) are degraded by FAAH, and act
as agonists at PPARα (as in the case of OEA and PEA, similar to N-acyl-glycines) and
PPARγ (as in the case of AEA) and/or antagonists at TRPV2 (as in the case of OEA and
N-linoleoyl-ethanolamine [LEA]) [7,24,25]—in Leap2 up-regulation during the development
of HFHS-induced glucose intolerance and obesity. The negative correlation with Plcb1
might suggest instead the existence of a negative correlation with 2-MAGs, of whose
biosynthesis this enzyme catalyzes the rate-limiting step. However, ileal Leap2 mRNA
levels did not correlate with any eCBome mediator levels measured in the ileum (data
not shown).
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gression lines. Pearson correlation coefficients (r) and p-values are shown in graphs (n = 54–56). Data
were obtained using the 2-∆∆Ct method relative to the Tbp (TATA-binding protein) housekeeping
gene (RT-qPCR).
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We next analyzed two genetic models of obesity: leptin gene mutant (ob/ob) mice and
leptin receptor mutant (db/db) mice. Although there were trends for a decrease in the liver
and for increases in the jejunum and duodenum of ob/ob mice, the only significant difference
was found in the ileum, where there was a strong increase in Leap2 expression in both ob/ob
and in db/db mice compared to the corresponding controls (Figure 8A). The results observed
in these and DIO mice may suggest that Leap2 expression in the small intestine, and the
ileum, in particular, maybe due to glucose intolerance rather than obesity per se, since this
dysmetabolic feature was common to both genetically obese mice and HFHS mice when
they showed increase Leap2 mRNA levels.

Finally, also in the case of ob/ob and db/db mice we looked at possible correlations be-
tween the mRNA expression of Leap2 and eCBome signaling in the ileum. First, we observed
that some mediators, such as 2-PG, were also higher in ob/ob and db/db mice as compared to
their respective controls. Other mediators, i.e., NAGly, LEA, and N-docosahexaenoylethano-
lamine (DHEA), instead were significantly, or tended to be, lower in the ob/ob and db/db
mice when compared to the respective controls (Figure 8B). Accordingly, we found that the
levels of 2-PG, a PPARα agonist [26], positively correlated with Leap2 mRNA expression
(Figure 8C), which however did not correlate with any of the mRNAs of eCBome genes
(data not shown).

In summary, the results obtained in animal models of glucose intolerance and obesity
suggest that ileal Leap2 expression may represent an early adaptive response aimed at
counteracting dysmetabolism. This response might be under the indirect positive control
of PPARα and its eCBome agonists (as suggested by the positive correlations with Ppara,
the NAE synthesizing enzyme Gde1, and AEA and N-acyl-glycine degrading enzyme
Faah, as well as 2-PG, which is also a good PPARα agonist). Based on the results of the
previous section, however, such control would not occur in enterocytes, where instead
PPARγ activation may play a role.
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Figure 8. mRNA expression (A) in the liver, duodenum, jejunum, and ileum of ob/ob and db/db
mice as measured by qPCR. Relative mRNA expression is represented as mean ± S.D. Values were
compared relative to control (i.e., CT ob; CT db) mice for each tissue. Levels of select eCBome
mediators within the ileum of ob/ob and db/db mice and their respective controls ((B); pmol/mg wet
tissue weight; 2-palmitoylglycerol; 2-PG, N-Arachidonoyl-glycine; NAGly; N-linoleoylethanolamine;
LEA, N-docosahexaenoylethanolamine; DHEA), as measured by HPLC-MS/MS. Data are presented
as the mean ± S.E.M. of n = 8–10 and were analyzed by one-way ANOVA followed by Tukey’s post
hoc test. * p ≤ 0.05 vs. the respective control. (B). Pearson correlation analysis between the mRNA
expression of Leap2 and the concentration of 2-PG both measured/quantified in the ileum of ob/ob
and db/db mice, and their respective controls (C). n = 8–10 mice.

3. Discussion

LEAP2 is a recently discovered, a potential endogenous regulator of food intake and
energy metabolism through antagonism of ghrelin action [6]. In agreement with these
properties of this peptide, originally isolated from the liver as an antimicrobial agent, are
the following previous findings: (1) selectively in female mice subjected to a high-fat diet,
Leap2 deletion raises body weight, food intake, lean mass, and hepatic fat, and reduces
O2 consumption, heat production, and locomotor activity during the first part of the dark
period [27]; (2) in both female and male lean mice, Leap2 deletion renders the animals more
sensitive to the hyperphagic actions of ghrelin [27]; LEAP2 administration also reduces
blood glucose levels in lean mice [6]; (3) in humans and mice, circulating LEAP2 levels
display an inverse pattern compared to ghrelin, by increasing with food intake and obesity,
and decreasing upon fasting and weight loss [28,29]; refeeding decreases circulating levels
of ghrelin, while LEAP2 goes up to baseline levels; and (4) like other anorectic signals,
LEAP2 is also produced by the small intestine [2]. Others have reported that all regions of
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the mouse small intestine express Leap2, with the highest expression having been found in
the jejunum (whereas we detected slightly higher levels in the duodenum), with next to no
detectable levels expressed in the stomach [6]. Regardless, after bariatric surgery (vertical
sleeve gastrectomy), the expression in the jejunum decreased significantly, while expression
in the stomach increased over 50-fold. This shows that Leap2 expression can respond to
various experimental paradigms in an intestinal-region-specific manner. However, LEAP2
regulation in this tissue has not yet been investigated, nor have its potential interactions
therein with two major and inter-related players in obesity, i.e., the eCBome and the gut
mBIome. Here we have reported evidence suggesting that: (1) the presence or absence
of the gut microbiota strongly and directly affects Leap2 mRNA expression in the liver
and duodenum, and LEAP2 circulating levels, in 13 week-old male, but not female, mice
(gender differences are known to influence gene expression [30] and their targeting by tran-
scription [31] and translation regulators that ultimately lead to different mRNAs or protein
products [32]); (2) despite the fact that the gut microbiota also strongly and directly affects
small intestinal eCBome signaling, generalized modulation of eCBome receptors does not
result in significant changes of Leap2 expression in a model of human enterocytes, except
for the activation by the synthetic (i.e., rosiglitazone) agonist of PPARγ, which caused a
strong upregulation; additionally, noladin ether, another endocannabinoid discovered by
Raphael Mechoulam and his group in 2001 [33], caused a significant elevation of Leap2
expression in organoids from the mouse duodenum, through yet to be investigated mech-
anisms; and (3) Leap2 expression in the ileum of HFHS- and genetically (leptin signaling
deficiency)-induced obesity is increased concomitantly with glucose intolerance rather than
obesity, and in a manner variedly and strongly correlated with the ileal levels of either an
eCBome mediator (2-PG, positive) or mRNAs of proteins that participate in either NAE
or 2-MAG biosynthesis (Gde1, positive; Plcb1, negative) or actions (Ppara, positive; Trpv2,
negative), or in NAE and N-acyl-glycine inactivation (Faah, positive).

The gut microbiota is known to affect host physiology, and metabolism in particular,
through a plethora of microorganism-derived molecules, of which eCB-like mediators
different from those produced by the host are also part [34]. Therefore, it was not surprising
to find previously that the gut microbiota is a strong determinant of eCBome signaling
in the mouse intestine [18], although this action of intestinal microorganisms could also
be mediated by other, non-eCBome-related molecules, such as, for example, short-chain
fatty acids, tryptophan metabolites and secondary bile acids [35,36]. Likewise, the tonic
inhibitory effect of the gut microbiota on duodenal Leap2 expression, described here for
the first time in adult male mice, might be both eCBome- and non-eCBome-mediated.
It is noteworthy that the intestinal mBIome is markedly varied along the length of the
gastrointestinal tract, with there being relatively few bacteria in the duodenum, and the
number and diversity of bacteria increasing distally [37,38]. This of course does not discount
the ability of the duodenal microbiome, by being significantly modified with obesity [38,39],
to impact both the host physiology and small intestinal bacterial overgrowth [40]. Indeed,
we have reported that fecal microbiota transfer into germ-free mice reconstitutes the small
intestinal bacterial communities and significantly modulates the eCBome of the small
intestine, including the duodenum [18].

We found that at least one eCBome mediator, noladin ether, can stimulate Leap2
expression in duodenal organoids, which, together with the previous observation that the
gut microbiota tonically reduces duodenal PPARα expression in the small intestine of adult
male mice [18], may suggest that this receptor and its endogenous ligands might mediate in
part gut microbiota tonic inhibition of duodenal Leap2 expression. However, we could not
confirm the proposed mechanism of action of noladin ether in organoids, as this compound
did not activate recombinant PPARγ or PPARα in a functional assay, nor could we show that
it stimulates Leap2 expression in a model of human enterocytes. Additionally: (1) PPARγ
(an alternative AEA target), although involved in stimulating Leap2 expression in vitro,
particularly when rosiglitazone was used as an agonist, is not significantly altered by the
lack of presence of the gut microbiota in terms of mRNA expression in the duodenum [18];
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(2) GPR55 (another proposed target for AEA and noladin ether) and GPR18 (a proposed
target for NAGly) are tonically stimulated, rather than inhibited, in the duodenum by
the gut microbiota [18], and hence cannot partake in microbiota tonic inhibition of Leap2
expression; and (3) also the duodenal expression of Cnr1 or Cnr2, the two preferential
targets for eCBs, is not significantly altered by the gut microbiota [18]. In sum, present
and previous data suggest that the effects of the gut microbiota on Leap2 expression and
eCBome signaling might be two unrelated, or only very partially related, phenomena.
Nevertheless, the increase in Leap2 expression observed in GF mice might still account, at
least in part, for their more favorable metabolic and glycemic profile under conditions of
DIO [41].

Indeed, we observed here, again for the first time, that increased RNA levels encoding
for this peptide are produced in the ileum 3 days following an HFHS diet, concomitantly
with the appearance of hyperglycemia, and in both ob/ob and db/db mice that, apart from be-
ing obese, are also glucose intolerant. This finding may suggest that LEAP2 is overproduced
by the ileum to counteract glucose intolerance induced by an HFHS diet or hyperphagia.
Since the ileum of HFHS and of ob/ob and db/db mice presents with inter-related alterations
in gut eCBome signaling (present results and [23]) and microbiota composition [23,42,43],
we hypothesized a role of either system in the modulation of Leap2 expression. However,
also, in this case, the only potential eCBome signaling pathway that changed in a manner
similar to Leap2 expression following HFHS and in ob/ob and db/db mice was that mediated
by PPARα and/or its ligands. Conversely, as mentioned above, the only eCBome signaling
pathway that was clearly implicated in Leap2 expression stimulation in human enterocytes
was that mediated by PPARγ, whose expression, however, peaks negatively in HFHS mice
when Leap2 expression peaks positively. This may suggest that also in the case of obesity
and hyperglycemia the regulation of Leap2 expression and eCBome signaling might be two
unrelated phenomena, and not controlled in a coordinated manner by gut dysbiosis.

A limitation of this study is that the selected in vitro systems for the small intestine
do not necessarily reflect what is going on in vivo in the ileum. The organoids were
prepared from the duodenum and not from the ileum, and therefore results obtained in
this system may only be relevant to those in GF mice, where the strongest reduction in
Leap2 expression was indeed found in this small intestinal section. Yet, the geometry of
organoids is such that their basolateral side, rather than the apical one, is the one that
is exposed to treatments, which may have altered the effects of the latter. Differentiated
Caco-2 cells, instead, model only one cell type (enterocytes) among the several ones that are
found in the small intestinal mucosa. Therefore, the findings in these two in vitro systems
may not necessarily be relevant to the actual in vivo regulation of Leap2 expression by
the gut microbiota in the dysbiosis typical of GF and hyperglycemic/obese mice, thus
leaving still open the possibility that the eCBome, per se or following its modulation by the
gut microbiome, might be an important determinant of LEAP2 production. In this sense,
it is noteworthy that the mRNA expression of this potentially metabolically beneficial
endogenous antagonist of ghrelin action is stimulated in vitro by, and correlates in vivo
with, non-CB1-mediated (and hence non-metabolically “noxious”) eCBome signaling, i.e.,
respectively: (1) activation of PPARγ, which is known to be an intermediate in anti-diabetic
and anti-glucose intolerance drugs, and (2) expression of PPARα and the levels of one of its
endogenous agonists, i.e., 2-PG, with potential anorectic and anti-dyslipidemic actions.

In summary, we have provided here unprecedented evidence for the existence of
gut microbiota tonic in vivo control over intestinal Leap2 expression, which persists into
adulthood, at least in the duodenum, of male mice. We also provided preliminary in vitro
data suggesting that stimulation of the levels of the mRNA encoding for this metabolically
beneficially peptide may be exerted by non-CB1-mediated eCBome signaling. It remains to
be clarified whether the gut microbiota-eCBome axis is involved in the control of intestinal
LEAP2 levels, especially during obesity and hyperglycemia, where, as shown previously
and confirmed here, all the members of this triangle undergo adaptive regulation.
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4. Materials and Methods
4.1. Animals and Housing

Conventionally Raised (CR) and Germ-free (GF) C57BL/6NTac mice were purchased
from Taconic (Taconic Bioscience, NY, USA) and maintained in the animal facility of the
Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ, QC, Canada).
All animals have grouped 3–4 mice per cage under a 12 h:12 h light-dark cycle with ad
libitum access to NIH-31 Open Formula Autoclavable Diet (Zeigler, PA, USA) and water.
GF mice were housed in axenic status and fecal samples were weekly tested for microbes
and parasites by the facility’s staff to ensure that the GF unit was indeed sterile. Both GF
and CR mice were acclimatized for at least one week prior to starting the procedures.

4.2. Animal Experiments and Fecal Microbial Transplant (FMT)

Twelve (6 male and 6 female) CR and GF mice at 4 and 13 weeks of age, were in-
traperitoneally anesthetized with a cocktail of ketamine/xylazine/acepromazine at a dose
of 50/10/1.7 mg/kg body weight and euthanized by cervical dislocation, following an
intra-cardiac puncture. Whole blood was collected in K3-EDTA tubes. The abdominal
cavity was opened and the whole digestive tract was carefully aligned from the stomach up
to the colon. Once the stomach was removed, the small (duodenum, jejunum, ileum) and
large (cecum and colon) intestine were carefully excised and separated and the intestinal
contents were harvested by flushing with 1ml of sterile PBS without Ca/Mg (Thermo Fisher
Scientific, MA, USA) and snap-frozen. The liver was also isolated from the abdominal cav-
ity. Sections of the liver as well as small and large intestine were stored either in RNALater
(Thermo Fisher Scientific, MA, USA) for RNA stabilization or immediately snap-frozen
and stored at −80 ◦C for further analysis. This common procedure was concluded, for each
mouse, within a maximum of 15 min, to ensure the preservation of mRNA and lipid for
further analysis.

For fecal microbiota transplant (FMT) experiments only 12 weeks old male mice were
utilized. GF mice were randomly divided into two groups at the age of 12 weeks: those
gavaged with sterile PBS (SHAM; 5 mice) and those gavaged with fecal material (FMT;
6 mice). Material gavaged for FMT consisted of a cocktail of the intestinal contents and
stools of a single and 4 CR donor mice, respectively. Briefly, the intestinal contents of the
duodenum, jejunum, ileum, colon, and cecum were collected from one 12-week-old CR
donor mouse and mixed with stool pellets from all the CR mice to be used as controls. The
mixture was well homogenized, weighed, suspended at 1:10 in sterile PBS, and centrifuged
at 805× g for 10 min at room temperature. The supernatant was used to gavage the mice
(200 µL of homogenate per mouse) [18]. The FMT mice were then housed (3 per cage, like
for CR mice) for one week in conventional conditions in cages contaminated with used litter
coming from donor mouse cages. SHAM mice were submitted to a similar gavage with
saline solution, but then kept in the germ-free facility for a week in the same conditions as
GF mice. CR mice were euthanized the day of the gavages, while SHAM and FMT mice
were sacrificed one week after the gavage; the tissues were collected from all animals as
previously described.

4.3. RNA Isolation, Reverse Transcription, and qPCR

RNA was extracted from tissues and cells with the RNeasy Plus Mini Kit (Qiagen,
Hilden, Germany) following the manufacturer’s instruction and eluted in 50 µL of Ultra-
Pure Distilled Water (Invitrogen, CA, USA). The concentration and purity of RNA were
determined by measuring the absorbance of the RNA in a Biodrop at 260 nm and 280 nm,
and RNA integrity was assessed by an Agilent 2100 Bioanalyzer, using the Agilent RNA
6000 Nano Kit (Agilent Technologies, CA, USA). 1 µg of total RNA was reverse transcribed
using the iScript cDNA synthesis kit (Bio-Rad, CA, USA) in a reaction volume of 20 µL.
Leap2 mRNA expression levels were determined using primer pairs (Mm.PT.58.6158455.g,
IDT, IA, USA) on a CFX384 touch qPCR System (BioRad) using PowerUp SYBR Green
qPCR master mix (Thermo Fisher Scientific, CA, USA) in duplicate reactions. Hprt1
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(Mm.PT.39a.22214828, IDT, IA, USA) was used as a reference gene. Because the Ct of
the reference gene was the same in all the 13 weeks old control samples (first and FMT
experiments), we merged the two control sets into 13 weeks control group. Gene expression
levels in mice and cells (see below) were evaluated by the 2-∆∆Ct method and represented
as fold increase with respect to the baseline of the relevant control. Data were analyzed by
ANOVA followed by Dunnett’s multiple comparisons.

4.4. Organoid Preparation and Treatment

Crypt-derived organoids were mechanically separated from sacrificed black male
C57BL/6 mouse duodenum. Murine small intestines were opened longitudinally, scratched,
and washed with cold phosphate-buffered saline (PBS) (Gibco Life Technologies, Carlsbad,
CA, USA). Organoids were incorporated in a solid matrix (Corning® Matrigel®) (Corn-
ing, Corning, NY, USA) and were incubated with advanced DMEM media (Dulbecco’s
Modified Eagle’s Medium) (Gibco Life Technologies, Carlsbad, CA, USA) supplemented
with HEPES buffer (Thermoscientific, Waltham, MA, USA), Glutamine (GlutaMAX) (Gibco
Thermoscientific, Waltham, Ma, USA), antibiotic Pen-Strep (Millipore Sigma, Oakville, ON,
Canada), Noggin (Millipore Sigma, Oakville, ON, Canada), mRSPO (Peprotech, Cranbury,
NJ, USA), B27 supplement (Gibco Life Technologies, Carlsbad, CA, USA), EGF (Cedarlane,
Burlington, ON, Canada, and N-acetyl-cystein (Millipore Sigma, Oakville, ON, Canada)
and Ly-27. Organoids were split 1 into 3 every week, in 24 wells plates, and media was
changed every 2 days. on Mature organoid cultures, 4 days following plating, were exposed
24 h to treatment or vehicle.

4.5. Caco-2/15Cell Differentiation and Treatment

Human Caco-2/15 intestinal cells (kindly provided by Dr. Jean-François Beaulieu
(Université de Sherbrooke, Sherbrooke, Canada) were cultured in high glucose Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS,
Neuromics), 10 mM HEPES, 1X GlutaMAX, and 100 U/mL Penicillin/Streptomycin. Cell
lines were grown until confluence, split, and plated 2 × 105 cell/well for differentiation for
21 days to induce the enterocyte phenotype. On the day of the experiment (after 21 days of
differentiation), cells were treated for 24 or 48 h with media containing compounds at the
indicated concentrations. DMSO controls were at 0.1%. For the LPS induction, 24 h prior to
the experiment, cells were treated with 10ug/mL of LPS (Sigma) before being incubated for
24 h with the indicated compounds at the indicated concentrations. After incubation, media
was removed, cells were washed with 1X PBS and frozen for RNA extraction as above.

4.6. PPAR-Luciferase Assays

Human embryonic kidney 293 cells (ATCC CRL-1573) were propagated in a growth
medium (GM) composed of Dulbecco’s modified Eagle’s medium (DMEM cat. n. 41966029;
Thermo Fisher, Monza, Italy) supplemented with 10% fetal bovine serum (cat. n. 16000044;
Thermo Fisher, Monza, Italy) and 1% Pen/Strep (cat. n. 15140122 Thermo Fisher, Monza,
Italy) under standard conditions. After plating (in 24 well plate density; 5 × 104 cells/well),
the cells were transfected on the next day with the following plasmids: (a) pM1-hPPARα-
Gal4 or pM1-hPPARγ-Gal4; (b) TK-MH100 × 4-Luc containing the UAS enhancer elements
and; (c) Renilla luciferase (pRL, Cat. E2231; Promega, Milan, Italy) using lipofectamine
2000 (cat. n. 11668027; Life Technologies; Milan, Italy). The next day, the growth media
was replaced with fresh media containing vehicle (Dimethyl sulfoxide, DMSO ≤ 0.03%)
or compounds of interest (noladin ether Cat. No. 1411, GW7647 Cat. No. 1677/10 and
Rosiglitazone Cat. No. 5325/10, purchased from TOCRIS, Abingdon, UK). On day 3,
the cells were harvested and processed for analysis of luciferase activity using a GloMax
Luminometer instrument (Promega, Milan, Italy) and the Dual-Luciferase Reporter Assay
kit (cat. n. E1910 Promega, Milan, Italy) following published procedures [26].
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4.7. Lipid Extraction and HPLC-MS/MS for the Analysis of eCBome Mediators

Lipids were extracted from ileum samples as previously described [18,23,26]. Briefly,
about 10 mg of ileum was sampled and homogenized in 1 mL of a 1:1 Tris-HCl 50 mM
pH 7: methanol solution containing 0.1 M acetic acid and 5 ng of deuterated standards.
One ml of chloroform was then added to each sample, which was then vortexed for 30 s
and centrifuged at 3000× g for 5 min. The organic phase was collected and another 1 mL
of chloroform was added to the inorganic one. This was repeated twice to ensure the
maximum collection of the organic phase. The organic phases were pooled and evaporated
under a stream of nitrogen and then suspended in 50 µL of mobile phase containing 50%
of solvent A (water + 1 mM ammonium acetate +0.05% acetic acid) and 50% of solvent B
(acetonitrile/water 95/5 + 1 mM ammonium acetate +0.05% acetic acid). Forty µL of each
sample were finally injected onto an HPLC column (Kinetex C8, 150× 2.1 mm, 2.6 µm,
Phenomenex) and eluted at a flow rate of 400 µL/min using a discontinuous gradient of
solvent A and solvent B [18,23,26]. Quantification of eCBome-related mediator, was carried
out by HPLC interfaced with the electrospray source of a Shimadzu 8050 triple quadrupole
mass spectrometer and using multiple reaction monitoring in positive ion mode for the
compounds and their deuterated homologs [18,23,26].

4.8. Experiments in Mice Undergoing a High Fat High Sucrose Diet

As previously described [20], sixty 6-week-old C57BL/6J male mice were fed ad
libitum with a low-fat, low-sucrose purified diet (10% fat and 7% sucrose [LFLS]; Research
Diet, NJ, USA) for a 10-day acclimatization period in the animal facility of the Institute of
Nutrition and Functional Foods. Mice were then randomly assigned to 6 groups (n = 12) fed
a high-fat, high-sucrose purified diet (45% fat and 17% sucrose [HFHS]; Research Diet, NJ,
USA) for up to 56 days. These dye-free diets harbor comparable fiber contents, and while
the HFHS diet had, by design, a higher fatty acid content, the omega-3/omega-6 ratios
were comparable. Six-hour-fasted mice were sacrificed by cardiac puncture to retrieve
plasma (1780× g, 10 min) at either 0 (baseline), 3, 10, 21, or 56 days following HFHS diet
initiation. Duodenum was collected 2 cm of the pylorus, while jejunum and ileum were
collected 10 cm and 2 cm, respectively, from the ileocecal junction. All samples were stored
at −80 ◦C until batch analysis.

4.9. Experiments in ob/ob and db/db Mice

As previously described [36], male homozygous ob/ob mice (B6.V-Lepob/ob/JRj) were
used as a leptin-deficient obese model, and their lean littermates served as controls (CT ob);
(n = 9–10 per group). Male homozygous db/db mice (BKS-Lepr/db/db/JOrlRj) functionally
deficient for the long-form leptin receptor were used as a hyperleptinemic obese type 2
diabetic model, and their lean littermates served as controls (CT db); (n = 9–10 per group).
Mice were purchased at the same time and from the same supplier (Janvier Laboratories,
Le Genest-Saint-Isle, France) at the age of 6 weeks. Mice were housed in a specific pathogen
and opportunistic free (SOPF) controlled environment (room temperature of 22 ± 2 ◦C,
humidity 55 ± 10%, 12 h daylight cycle, lights off at 6 p.m.) in groups of two mice per
cage, with free access to sterile food and sterile water. Upon delivery, mice underwent an
acclimation period of one week, during which they were fed a standard diet containing
10% calories from fat (D12450Ji; Research Diet; New Brunswick, NJ, USA) and were then
kept ad libitum on the same diet for 7 weeks. Milli-Q water filtered by a Millipak® Express
40 with a 0.22 µm membrane filter (Merck Millipore, Burlington, MA, USA) was autoclaved
and provided ad libitum. All mouse experiments were approved by and performed
in accordance with the guideline of the local ethics committee (Ethics committee of the
Université Catholique de Louvain for Animal Experiments specifically approved this study
that received the agreement number 2017/UCL/MD/005). Housing conditions were
specified by the Belgian Law of 29 May 2013, regarding the protection of laboratory animals
(agreement number LA1230314).
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