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ABSTRACT

N eurons are specialized cells with a complex
architecture that includes elaborate dendritic
branches and a long, narrow axon that extends from

the cell body to the synaptic terminal. The organized
transport of essential biological materials throughout the
neuron is required to support its growth, function, and
viability. In this review, we focus on insights that have
emerged from the genetic analysis of long-distance axonal
transport between the cell body and the synaptic terminal.
We also discuss recent genetic evidence that supports the
hypothesis that disruptions in axonal transport may cause or
dramatically contribute to neurodegenerative diseases.

Introduction

The axon of a neuron conducts the transmission of action
potentials from the cell body to the synapse. The axon also
provides a physical conduit for the transport of essential
biological materials between the cell body and the synapse
that are required for the function and viability of the neuron.
A diverse array of cargoes including membranous organelles,
synaptic vesicle precursors, signaling molecules, growth
factors, protein complexes, cytoskeletal components, and
even the sodium and potassium channels required for action
potential propagation are actively transported from their site
of synthesis in the cell body through the axoplasm to
intracellular target sites in the axon and synapse.
Simultaneously, neurotrophic signals are transported from
the synapse back to the cell body to monitor the integrity of
target innervation. The length of axons in the peripheral
nervous system can be in excess of one meter in humans, and
even longer in larger animals, making these cells particularly
reliant on the efficient and coordinated physical transport of
materials through the axons for their function and viability.

The length and narrow caliber of axons coupled with the
amount of material that must be transported raises the
possibility that this system might exhibit significant
vulnerability to perturbation. It has been proposed that
disruptions in axonal transport may lead to axonal transport
defects that manifest as a number of different
neurodegenerative diseases [1]. In this review, we focus on the
use of genetics to understand axonal transport, including the
identification and functional characterization of components
required for axonal transport, and the biological and medical
consequences when these functions are compromised.

Basic Features of the Axonal Transport System

Simplistically, the axonal transport system comprises cargo,
motor proteins that power cargo transport, cytoskeletal

filaments or ‘‘tracks’’ along which the motors generate force
and movement, linker proteins that attach motor proteins to
cargo or other cellular structures, and accessory molecules
that initiate and regulate transport. Defective axonal
transport and neurodegenerative diseases could potentially
result from disruptions in any of the components required
for axonal transport.
Long-distance transport in the axon is primarily a

microtubule-dependent process. The microtubule tracks
within an axon possess inherent polarity and are uniformly
oriented with the fast-growing (plus) ends projecting toward
the synapse and the slow-growing (minus) ends toward the
cell body [2]. The motor proteins that power axonal transport
on microtubules are members of the kinesin and cytoplasmic
dynein superfamilies. Kinesins are generally plus-end–
directed motor proteins that transport cargoes such as
synaptic vesicle precursors and membranous organelles
anterogradely toward the synapse (Figure 1). Cytoplasmic
dyneins are minus-end–directed motor proteins that
transport cargoes including neurotrophic signals, endosomes,
and other organelles and vesicles retrogradely toward the cell
body (Figure 1). Retrograde transport may not be exclusive to
dyneins, however, as a few kinesins that translocate cargo in
the retrograde direction have been identified [3,4]. In
mammals, the kinesin superfamily consists of approximately
45 members (KIFs) grouped into 14 subfamilies (reviewed in
[5]). Kinesins comprise one to four motor polypeptides called
heavy chains that contain a highly conserved motor domain,
with ATPase and microtubule-binding regions, and a
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divergent tail domain. Regulatory and/or accessory subunits,
such as the kinesin light chain (Klc), are thought to interact
with the tail domain of the kinesin heavy chain (Khc) to
confer cargo-binding specificity and regulation (Figure 1)
(reviewed in [6]). In contrast to kinesin, the cytoplasmic
dynein family in mammals is much smaller, consisting of only
two members. Cytoplasmic dynein, however, is a larger and
more complex microtubule motor, comprising two dynein
heavy chain (Dhc) motor subunits and various intermediate,
light intermediate, and light chain (Dlc) subunits (Figure 1)
(reviewed in [7]). Cytoplasmic dynein appears to employ a
‘‘subunit heterogeneity’’ approach to support a wide range of
essential cellular functions with only a few copies of the
cytoplasmic dynein motor peptide and a diverse array of
dynein-associated accessory proteins that impart cargo-
binding specificity and functional activity [6,8]. Considerable
evidence suggests that dynein function is dependent on an
equally large protein complex called dynactin, which is
proposed to link cytoplasmic dynein to its cargo and/or to
increase dynein processivity through an association with
microtubules (Figure 1) [9,10].

Based on the kinetics of transport determined from classic
pulse-chase labeling experiments, axonal transport is
classified as either fast or slow (reviewed in [11,12]). Fast
axonal transport occurs in both the retrograde and
anterograde directions at a rate of 0.5–10 lm/sec and includes
the transport of membrane-bound organelles, mitochondria,

neurotransmitters, channel proteins, multivesicular bodies,
and endosomes. In contrast, slow axonal transport occurs in
the anterograde direction at a rate of 0.01–0.001 lm/sec,
considerably slower than fast axonal transport [12].
Cytoskeletal components, such as neurofilaments, tubulin,
and actin, as well as proteins such as clathrin and cytosolic
enzymes are transported at this slower rate [12]. Current
thought is that slow axonal transport is mediated by the same
microtubule motors that participate in fast axonal transport,
with fast instantaneous transport of cargo interspersed with
prolonged pauses [13–15].

Mutations Disrupting Motor Proteins

Classic studies using extruded squid axoplasm identified
kinesin and cytoplasmic dynein as candidate motors required
for axonal transport [16–20]. Since then, many different
animalmodel systems have been used to genetically investigate
axonal transport mechanisms. Such studies reveal
considerable diversity in kinesin function in the axon (Table 1).
The requirement for conventional kinesin (Kinesin-1) in

axonal transport was revealed in Drosophila melanogaster larvae
with lesions in Khc and Klc genes. These mutants exhibit
axonal swellings containing accumulations of transported
vesicles, synaptic membranes, and mitochondria [21–23].
Such axonal ‘‘organelle jams’’ are a phenotypic hallmark of
compromised axonal transport and result in a posterior
paralysis of mutant larvae. Loss of function of the neuronal

DOI:10.1371/journal.pgen.0020124.g001

Figure 1. Cytoplasmic Dynein and Kinesin Power Axonal Transport

Schematic diagram of the microtubule motor proteins cytoplasmic dynein and kinesin. Cytoplasmic dynein transports cargo in the retrograde direction
toward the minus ends of microtubules whereas kinesin transports cargo in the anterograde direction toward the plus ends. Cytoplasmic dynein is a
large multimeric protein complex comprising two heavy chain subunits (red) that possess microtubule binding and ATPase activity, two intermediate
chains (yellow), two light intermediate chains (indigo), and an assortment of light chains (light pink, green, orange) (reviewed in [7]). Dynactin, a large
multisubunit protein complex of comparable size to cytoplasmic dynein, is proposed to link the dynein motor to cargo and/or increases its processivity.
The largest dynactin subunit, p150Glued (turquoise), forms an elongated dimer that interacts with the dynein intermediate chain and binds to
microtubules via a highly conserved CAP-Gly motif at the tip of globular heads. The dynactin subunit p50 (dark pink) occupies a central position linking
p150Glued to cargo. The conventional kinesin holoenzyme, also known as kinesin-1, is a heterotetramer comprising two Khc subunits (red) with
microtubule binding and ATPase domains, a central coiled stalk, and a tail domain that interacts with two Klc subunits (green). Klcs may mediate cargo-
binding via an intermediate scaffold protein (blue) that binds a cargo transmembrane protein (yellow).
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Kinesin-1 family member KIF5A is linked to the human
neurodegenerative disease Hereditary Spastic Paraplegia
(HSP) Type 10 (HSP(SPG10)) [24,25]. HSP is a group of
clinically heterogeneous neurodegenerative disorders
characterized by progressive spasticity and mild weakness of
the lower limbs [26]. Although the mechanistic cause of
HSP(SPG10) remains unclear, the observation that KIF5A is
required for the transport of neurofilaments implies a
possible defect in slow axonal transport in the pathogenesis
of HSP(SPG10) [15]. The ubiquitous Kinesin-1 family member
KIF5B is required for the transport of both mitochondria and
lysosomes [27]. Elucidation of a defined cellular role for
neuronal-specific Kinesin-1 KIF5C is hindered by its
apparent functional redundancy with KIF5A and KIF5B [28].

Members of the Kinesin-3 family, including UNC-104,
KIF1A, and KIF1B, are required for the axonal transport of
specific membrane-bound organelles such as synaptic vesicle
precursors and mitochondria. Mutants of the unc-104 gene of
C. elegans are paralyzed and have fewer synaptic vesicles than
wild-type animals [29]. The subcellular distribution of other
membrane-bound organelles such as the endoplasmic
reticulum, Golgi apparatus, and mitochondria appear normal
in these mutants, supporting the idea that the specific role for
UNC-104 is in the anterograde transport of synaptic vesicle
components [29]. Mice lacking KIF1A, a neuronal-specific
homolog of UNC-104, die shortly after birth and suffer
marked neuronal degeneration associated with a similar
decrease in synaptic vesicle transport and a subsequent
reduction in the density of these vesicles in the nerve
terminals [30]. Fractionation and immunoisolation
experiments revealed that KIF1A associates with a specific
subclass of synaptic vesicles containing synaptotagmin,
synaptophysin, and Rab3A [31]. KIF1Bb associates with yet a
different subclass of synaptic vesicle components that contain
synaptophysin, synaptotagmin, and the synaptic membrane
integral protein SV2 [32]. Interestingly, the human
neurodegenerative disorder Charcot-Marie-Tooth (CMT)
disease Type 2A1, an inherited neuropathy characterized by
weakness and atrophy of distal muscles, is linked to a
mutation in the ATP binding site of the motor domain of
human KIF1Bb [32]. In a KIF1Bb knockout, heterozygous
mice develop multiple nervous-system abnormalities similar
to those observed in UNC-104/KIF1A mutants, including a
decrease in the transport of synaptic vesicle proteins and a
reduction of these vesicles at the synapse [32].

Together these genetic experiments support the hypothesis
that KIFs support various cellular functions by transporting
different classes of organelles and vesicles in axons.

Unlike the kinesin superfamily, in which different members
of a large superfamily support diverse cellular functions,
cytoplasmic dynein comprises an invariant motor subunit
with variations in other protein subunits that potentially alter
motor function and cargo specificity. Consequently, isolating
and interpreting lesions in the cytoplasmic dynein motor has
been difficult since dynein is required for multiple functions
in the neuron, including axonal transport [33,34].
Nonetheless, in vivo evidence supports a role for cytoplasmic
dynein in retrograde axonal transport (Table 2).

Although null mutants die early in development,
hypomorphic alleles of the cytoplasmic Dhc in Drosophila
result in larval paralysis with accumulations of synaptic
vesicle components in axonal swellings that are

indistinguishable from phenotypes observed in Khc mutants
[35]. Hypomorphic mutations in both the C. elegans Dhc and
Dlc genes also caused reduced locomotion in animals and
ectopic accumulation of the synaptic vesicle components
synaptobrevin, synaptotagmin, and the kinesin motor UNC-
104 at the terminal ends of mechanosensory processes [36].
Finally, two mutations in the mouse dynein heavy chain gene
(Dync1h1), Loa and Cra1, cause progressive motor neuron
degeneration in heterozygotes [37]. A marked alteration in
the retrograde transport of a fluorescent tetanus toxin tracer
was observed in cultured motor neurons isolated from Loa
homozygous mice [37]. Although mutant forms of the Dync1h1
gene are ubiquitously expressed in heterozygous mice, the
lesions appear to primarily perturb axonal transport in
motor neurons, indicating that for unknown reasons, motor
neurons are extremely sensitive to alterations in dynein
function [37].

Mutations in Non-Motor Components Disrupt
Axonal Transport

Lesions in kinesin and cytoplasmic dynein disrupt critical
functions in axonal transport, but factors associated with the
motors, such as dynactin, may also be essential for transport
(Table 3). Membrane-bound organelles transported in the
axon often move bidirectionally, alternating between
anterograde and retrograde motion, with net movement in
one direction. This suggests that dynein and kinesin are
present on the same organelles and their activity is
coordinated. One candidate to mediate this coordination is
the dynactin complex [38]. Strong genetic interactions have
been observed between kinesin, cytoplasmic dynein, and the
dynactin complex in Drosophila [35]. Dynactin is also required
for bidirectional transport of lipid droplets in Drosophila
embryos and mediates the interaction between kinesin and
cytoplasmic dynein in Xenopus melanophore cells [39,40].
Consequently, caution must be exercised when interpreting
phenotypes associated with mutations in dynactin
components because both anterograde and retrograde
transport parameters may be affected, as observed in the
axonal transport of mitochondria in Drosophila p150Glued

mutants [41]. In another study, the overexpression of a
dominant negative form of dynactin component p150Glued in
Drosophila caused phenotypes similar to those observed in
both Dhc and Khc mutants [35]. Partial loss-of-function of
p150Glued or overexpression of p50 dynamitin in C. elegans
resulted in ectopic accumulation of synaptic vesicle
components [36]. The overexpression of p50 dynamitin
disrupts the dynactin complex and inhibits cytoplasmic
dynein function, circumventing the difficulty of isolating
viable dynein mutants. The targeted overexpression of p50
dynamitin in mouse motor neurons caused an accumulation
of synaptophysin and aggregation of neurofilaments in axons,
as well as late onset motor neuron degeneration [42].
Although mutant cytoplasmic dynein has yet to be identified
as a causative factor of a human neurological disorder,
dynactin is directly linked to a number of human
neurodegenerative diseases. Lesions in the conserved CAP-
Gly microtubule-binding motif of the p150Glued subunit of
dynactin have been identified in a family with a heritable
form of motor neuron disease. These individuals exhibit
weakness in the distal limbs, abnormal accumulations of both
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cytoplasmic dynein and dynactin in motor neurons, and
motor neuron degeneration [43,44]. Three additional lesions
in the p150Glued subunit of dynactin have also been identified
in patients with amyotrophic lateral sclerosis [45].
Motor proteins bind to transmembrane proteins on the

cargo surface directly, or indirectly, via intermediary scaffold
proteins (Figure 1) [6,46]. The cJun NH2-terminal kinase
(JNK) interacting protein (JIP) group is a class of proteins that
may link the kinesin motor to cargo and also act as a scaffold
for components of the stress-activated JNK kinase signaling
pathway [47]. This implies that the subcellular localization of
the JNK signaling complex in the neuron may be regulated by
vesicular axonal transport or conversely that kinesin motor
activity during axonal transport may itself be regulated via
the JNK signaling pathway. In support of the latter, deletion
of JNK and JNK kinase results in the mislocalization of
synaptic vesicle components in C. elegans [48], although this
could be due to a requirement of JNK to regulate
microtubule dynamics [49]. The JIP1 and JIP2 proteins are
thought to link kinesin with apolipoprotein E receptor 2
(ApoER2) on cargo [50,51]. Aplip1, the Drosophila JIP1
homolog, is required in axonal vesicle transport and,
curiously, the retrograde transport of mitochondria [52].
Sunday Driver (Syd)/JIP3 was identified in Drosophila as a
scaffold protein possibly required for the interaction of
kinesin with vesicles transported in the axon [53].
Interestingly, Syd/JIP3 is implicated as a transport-dependent
positive-injury signal in the response to axonal damage [54].
Another interesting process was recently found in studies

of the motor domain of KIF5 which has been suggested to
interpret variations in microtubule structure in the neuronal
cell body to ensure that cargo is directed into the axon [55].
The mechanism by which this occurs is unclear, but
microtubule-associated proteins on the surface of
microtubules are probable candidates. The predominant
microtubule-associated protein in the axon is tau, which
promotes microtubule assembly and stability. Mutations in
tau not only impair its ability to bind, stabilize, and assemble
microtubules [56,57], but also retard its slow transport in the
axon [58]. When tau is overexpressed [59,60] or abnormally
phosphorylated [61,62], it forms aggregates that may
physically block the fast anterograde transport of
mitochondria, neurofilaments, peroxisomes, and vesicles
carrying the amyloid precursor protein (APP). The
retrograde axonal transport of signaling endosomes that
provide neurotrophic support for the neuron may also be
blocked and prevented from reaching the cell body [63].
The Drosophila proteins Milton and mitochondrial GTPase

Miro are also required for the transport of mitochondria [64–
66]. Lesions in Milton and Miro result in the specific failure of
mitochondria to be transported anterogradely, and they
consequently accumulate in the cell body, although the
transport of synaptic vesicles is unaffected.

Links between Axonal Transport and Human
Neurodegenerative Disease

Defects in axonal transport have been indirectly linked to a
number of progressive human neurodegenerative diseases
including Alzheimer disease (AD), Huntington disease (HD),
and amyotrophic lateral sclerosis (ALS). One common feature
of these diseases is that the proteins encoded by genes linkedT
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to each disease are transported in the axon and can perturb
transport when manipulated; presenilin 1 and APP in AD, Cu/
Zn superoxide dismutase (SOD1) in ALS, and huntingtin (Htt)
in HD. Each disease is characterized by accumulations of
these or other proteins within axons, similar to defective
axonal transport phenotypes observed in animal models of
motor protein mutants.

The pathological hallmarks of AD include neurofibrillary
tangles of abnormally phosphorylated tau protein and
aggregates of amyloid-b (Ab) peptide resulting in neuritic
plaques in the brain [67]. The transmembrane protein APP,
the precursor of potentially neurotoxic Ab, is transported
anterogradely within vesicles in axons by the fast axonal
transport system [68]. Interestingly, APP may link the kinesin
motor either directly, or indirectly, via the JIP1 scaffold, to a
specific class of synaptic vesicles containing synapsin 1,
growth-associated protein 43 (GAP-43), along with b-
secretase and presenilin 1, two components responsible for
processing Ab from APP [69,70]. Deletion of the APP
homolog Appl in Drosophila results in defective axonal
transport including axonal accumulation phenotypes [71].
Overexpression of human APP causes similar phenotypes
that are enhanced by genetic reduction in kinesin and
suppressed by genetic reduction in cytoplasmic dynein [71].
These findings suggest that APP plays a central role in the
axonal transport of a specific class of vesicle and that
disruption in this transport, through lesions in APP or APP-
interacting components, may result in axonal blockages, a
possible causative factor in the development of AD.

HD is a progressive neurodegenerative disorder caused by
expansion of CAG triplet repeats in the coding sequence of
the huntingtin gene resulting in an expanded polyglutamine
tract (polyQ) in the Htt protein and a toxic gain of function.
Interestingly, both Htt and the Huntingtin-associated
protein 1 (HAP1) are anterogradely and retrogradely
transported in axons [72]. HAP1 interacts with the
anterograde motor kinesin via the Klc subunit and is thought
to interact with the retrograde motor cytoplasmic dynein
through an association with the p150Glued subunit of
dynactin [73–75]. Recent studies raise the possibility of a link
between axonal transport defects and the onset of HD. In
Drosophila, both a reduction of Htt protein and the
overexpression of proteins containing polyQ repeats result
in axonal transport defects [76]. Full-length mutant Htt also
impairs vesicular and mitochondrial transport in mouse
neurons [77]. Although the mechanism of axonal transport
disruption remains unclear, one possibility is that toxic Htt
titrates soluble motor protein components into axonal
aggregates that physically block transport. One class of
vesicle potentially affected are those containing brain-
derived neurotrophic factor which would result in loss of
neurotrophic support and neuronal toxicity [77,78].
Interestingly, in transport studies performed on extruded
squid axoplasm, recombinant Htt fragments with polyQ
expansions inhibited fast axonal transport in the absence of
aggregate formation [79]. This suggests that polyQ aggregates
may not be necessary for axonal transport disruption, but
may contribute to or enhance neuronal toxicity. Clearly, a
more comprehensive analysis is required to elucidate the
mechanism of polyQ toxicity.

Lesions in the ubiquitously expressed enzyme SOD1 are a
cause of rare hereditary ALS [80,81]. Mouse models of

hereditary ALS have been generated by transgenic expression
of mutant SOD1. These animals have impaired slow axonal
transport with axonal accumulations of neurofilaments and
tubulin [82–85]. Similarly, large axonal swellings with
neurofilament accumulations, consistent with a failure in
axonal transport, are observed in patients with ALS [86,87]. It
has been suggested that SOD1 may specifically inhibit
retrograde axonal transport [88]. The potential involvement
of cytoplasmic dynein in ALS was further highlighted by the
identification of a number of lesions in the motor binding
domain of dynactin subunit p150Glued in ALS patients [45].
Additional support comes from the observation that the
cytoplasmic dynein mutations Loa and Cra1 revert axonal
transport defects of ALS mice, attenuating motor neuron
degeneration resulting in delayed onset of disease and
extended lifespan [89,90].

Conclusions and Future Directions

Although a potential link between axonal transport
disorders and neurodegenerative disease has been suggested,
a number of critical questions remain unanswered. For
example, recent evidence indicates that axonal transport is
disrupted in mouse models of ALS, HD, and AD long before
detectable pathological hallmarks of the disease are observed
[77,83,91]. Similarly, comparable pathology may exist early in
these human diseases. Yet, it remains unclear whether these
changes are causes or consequences of the disease process.
Unraveling these issues will require a better understanding of
how axonal transport is controlled and which components
contribute to the various pathways. In several cases, it is not
known whether human mutations represent loss of function
or give rise to dominant negative effects, resulting in toxic
proteins that titrate or poison axonal transport components.
As a result, the effect on axonal transport could be specific
and cause the disruption of only a single class of transported
material, or nonspecific and reduce or physically block
multiple transport pathways through the aggregation of
transported cargoes into axonal blockages. It is likely that
both mechanisms occur, depending on the nature of the
lesion and the motor component involved. Finally, while
genetics in model systems will continue to clarify
mechanisms, further investigations of heritable neurological
disorders in humans may lead to the identification of
additional motor proteins or accessory components required
for axonal transport. In any event, a more comprehensive
understanding of axonal transport may lead to the
development of novel therapies for the treatment of
neurodegenerative disorders. “
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