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Abstract: Detection and isolation of infected people are believed to play an important role in the
control of the COVID-19 pandemic. Some countries conduct large-scale screenings for testing,
whereas others test mainly people with high prior probability of infection such as showing severe
symptoms and/or having an epidemiological link with a known or suspected case or cluster of
cases. However, what a good testing strategy is and whether the difference in testing strategy
shows a meaningful, measurable impact on the COVID-19 epidemic remain unknown. Here, we
showed that patterns of association between effective reproduction number (Rt) and test positivity
rate can illuminate differences in testing situation among different areas, using global and local
data from Japan. This association can also evaluate the adequacy of current testing systems and
what information is captured in COVID-19 surveillance. The differences in testing systems alone
cannot predict the results of epidemic containment efforts. Furthermore, monitoring test positivity
rates and severe case proportions among the nonelderly can predict imminent case count increases.
Monitoring test positivity rates in conjunction with the concurrent Rt could be useful to assess and
strengthen public health management and testing systems and deepen understanding of COVID-19
epidemic dynamics.

Keywords: COVID-19; SARS-CoV-2; surveillance; effective reproduction number; laboratory diagno-
sis; epidemics; outbreaks; pandemic

1. Introduction

The pandemic of the coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought substantial morbidity
and mortality in many countries. Some treatments have been shown to reduce its fatality,
and several vaccines including BNT162b2 (BioNTech & Pfizer, emergency use in the USA,
the EU, and so on), mRNA-1273 (Moderna, emergency use in the USA, the EU, and so
on), AZD1222 (AstraZeneca, emergency use in the UK, Brazil, and so on), and Sputnik
V (Gamaleya Research Institute, emergency use in Russia, Mexico, and so on) became
available by the beginning of 2021 [1,2]. Notwithstanding this advance, nonpharmaceutical
interventions including physical distancing, wearing a facemask, contact tracing, and
testing and isolation of infected people still play a significant role in controlling the spread
of the disease [3]. Many countries have implemented different kinds of public health inter-
ventions such as encouragement of remote work, school closures, bans on mass gatherings,
restrictions on indoor and/or outdoor dining at restaurants/bars, and permissive to total
“lockdown” stay-at-home measures, changing the level of intensity of those interventions
during the course of the epidemic [4,5]. To assess the situation of infection spread and to
determine the intensity of such interventions, the effective reproduction number (Rt), the
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average number of secondary cases resulting from contact or exposure to one infectious
case, is often chosen as a key metric [6]. An Rt value >1 indicates that the number of cases
is increasing, whereas an Rt of <1 suggests that the infection spread is slowing. Prediction
of Rt has been extensively studied using human mobility data to forecast the number of
future cases and to develop an effective strategy for public health measures [7,8]. There
are also other studies that used machine learning techniques or biological data for the
prediction of Rt [9,10].

Testing strategy differs among countries. Some countries conduct a population-wide
or geography-wide screening to detect people with active infections, including those
with no reported symptoms and those with an otherwise low expected probability of
infection [11,12]. Other countries test primarily those groups with high prior probability of
infection such as showing severe symptoms and/or having an epidemiological link with
an identified case or cluster of cases [13]. Countries with especially limited testing capacity
apply the latter, more targeted, testing strategy [14]. One theoretical study suggests that it
is difficult to contain the outbreak of COVID-19 solely by implementing extensive testing
for a whole population [15]; what a good testing strategy is and whether the difference
in testing strategy shows a meaningful, measurable impact on the COVID-19 epidemic
remain unknown [16–18].

Here, we analyzed an association between Rt and test positivity rate. Our results
illustrate how testing has been performed for COVID-19 surveillance in Japan and across
the globe. Furthermore, we found that monitoring the change in test positivity rate has the
potential to predict upcoming changes in the Rt and thus provide measures to understand
and monitor the dynamics of the COVID-19 epidemic.

2. Materials and Methods
2.1. Osaka Data

All confirmed COVID-19 cases in Osaka prefecture in Japan were reported to public
health centers, and epidemiological and clinical information was collected from each
documented case. The anonymized data of Osaka cases reported between 20 January
2020 and 15 November 2020 were provided by the Osaka prefectural government and
analyzed in the present study. The raw data are available from the Osaka prefectural
government upon reasonable request. We also acquired data of the numbers of total tests
and positive test samples during the study period. A severe case was defined as a patient
who required tracheal intubation, admission to an intensive care unit, the administration
of extracorporeal membrane oxygenation, or those who died.

2.2. Japan Data

Data on the daily number of new confirmed cases and declared test positivity rate in
each prefecture in Japan were retrieved from the website of the Ministry of Health, Labour
and Welfare [19]. Japan is divided into 47 prefectures, which form the country’s first level
of jurisdiction and administrative division. The population and cumulative number of
COVID-19 cases in each prefecture of Japan are listed in Table S1, and 10 prefectures with
the highest number of cases were selected for further analysis. Test positivity rate data in
Japan were only available for the period from 9 August 2020 to 17 January 2021 and were
used for analysis.

2.3. World Data

Daily and cumulative numbers of cases, deaths, and tests were retrieved from the Our
World in Data website [20], accessed on 20 February 2021. Data for the period between
1 August 2020 and 17 January 2021 in countries that belong to the G20 were used for
analysis, excluding Brazil and China because data of test positivity rate were unavailable.
Because surveillance systems, including testing and reporting systems, and activities might
not have been established well at the beginning of the epidemic in some countries, we
analyzed global data for the period after 1 August 2020. Although vaccination started in
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some countries, most populations had not been vaccinated in the study period. Therefore,
the vaccine effect was considered negligible in the present study.

2.4. Statistical Analysis

The number of reported cases, proportion of severe cases, and rate of test positivity
were recomputed to be 7-day moving averages. Rt was calculated using EpiEstim with a
parameter of a serial interval set to 5.19 days [21,22]. For the calculation of Rt, the earliest
dates of either illness onset or infection reporting were used for Osaka data, and reporting
dates were used for all other data. Spearman’s rank correlation coefficient between Rt
and rate of test positivity as well as that between Rt and proportion of severe cases were
calculated. Day-by-day rates of test positivity and proportions of severe cases were shifted
±20 days (by 5 days) in the analysis for the calculation of the correlation coefficient to
account for time lags associated with preceding and following changes in Rt values. Data
analysis and visualization were performed using R software (R Foundation for Statistical
Computing, Vienna, Austria) with dplyr and ggplot2 packages [23,24].

3. Results and Discussion

In Osaka, Japan, during the study period, 270,830 COVID-19 tests were conducted,
and 14,864 laboratory-confirmed cases were reported, including 631 severe cases (Figure 1).
The proportions of severe cases were 1.0% (116/11,655) in people ≤59 years of age (referred
to as the nonelderly hereinafter) and 16.0% (515/3209) for the elderly (≥60 years of age).
The number of cases was quite low from the end of May to the beginning of June, and
the test positivity rate and the severe case proportion differed substantially before and
after that period. Thus, to adjust and to explore further, we divided the Osaka data into
two phases (Figure 1, Periods A and B) for further analysis. The strengthening of testing
capacity and establishment of earlier COVID-19 treatment protocols with remdesivir and
dexamethasone [25] might explain some differences observed between the periods.

In Figure 2, Spearman’s rank correlation coefficients between Rt and rate of test
positivity (top panel) as well as those between Rt and proportion of severe cases (bottom
panel) are shown for Periods A and B. Day-by-day rates of test positivity and proportions of
severe cases were shifted ±20 days (by 5 days) for the calculation of correlation coefficient
for the time-lagged preceding and following associations with Rt.

During Period A, Rt and test positivity rate showed positive correlations when the
test positivity rate was considered 5–20 days toward the past (in the −5 to −20 days
in the top panel of Figure 2A). A preceding change in test positivity rate suggests that
an observed increase in positivity rate can predict an imminent surge in the number of
cases. The positive correlation observed between Rt and test positivity rate gradually
decreased and changed progressively toward the negative when the test positivity rate
was shifted 5–20 days forward (in the +5 to +20 days in Figure 2A). This phenomenon can
be interpreted as that more people were tested after the rise of case numbers possibly to
control the disease spread by aggressive testing and isolation. The same trend was observed
in Period B (Figure 2B, top panel). The proportion of severe cases in the nonelderly has a
similar correlational trend with Rt, preceding positive correlation and following negative
correlation (Figure 2, bottom panel), as that observed for the test positivity rate. However,
that is not the case for severe case proportion in the elderly.

Next, we tested if the association between Rt and test positivity rate existed in places
outside Osaka, Japan. Data for nine other prefectures in Japan also showed similar trends
across the country (Figure 3). Preceding changes of test positivity rate were present in all
prefectures investigated, and following counter-changes (i.e., negative correlation) of test
positivity rates compared with Rt occurred in 7 of 10 prefectures except Chiba, Tokyo, and
Kanagawa. Japan’s national guidelines provide for a nationwide surveillance system [26,27].
Therefore, all prefectures would be expected to implement nearly identical public health
programs with similar measures and testing strategies. As a result, the association between Rt
and test positivity rate has similar patterns even in different areas in the country.
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Data from other countries showed various patterns in association between Rt and
test positivity rate (Figure 4). The preceding change and following counter-change in test
positivity rate compared with Rt were observed in Argentina, Russia, South Africa, South
Korea, Turkey, and the United States, same as in Japan (Group A). In those countries, test
positivity rate can be used to predict upcoming increase in Rt. Moreover, testing intensity
seemed to be affected with a delay by the situation of the epidemic there.
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Figure 1. Timeline of epidemiological parameters in Osaka, Japan, from 20 January 2020 to
15 November 2020. Seven-day moving average is shown as a curved line for the number of cases.
Shaded areas indicate 95% confidence intervals for Rt, rate of test positivity, and proportion of
severe cases.
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Figure 4. Correlation between effective reproduction number and test positivity rate in 17 countries. Spearman’s rank
correlation coefficients between Rt and rate of test positivity are shown for 17 countries from 1 August 2020 to 17 January
2021. Day-by-day rates of test positivity were shifted ±20 days (by 5 days) for the calculation of correlation coefficient to see
the time-lagged preceding and following associations with Rt. Countries were categorized into five groups described in the
main text.
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An epidemic situation-dependent change in testing intensity (i.e., following counter-effect)
was captured in Canada, France, Italy, and the United Kingdom as well (Group B). However,
preceding effects in test positivity rate to Rt were not present in those countries. Targeted
populations such as those with high prior probability of infection and those with high risk of
developing severe illness might have received more focus for testing in Group A countries
compared with Group B countries. Targeted testing in Group A countries could have resulted
in sensitive changes in test positivity rate that were followed by case trend movements.

Consistent negative correlations emerged between Rt and test positivity rate in Aus-
tralia and Germany (Group C). The results for these two countries suggest that test pos-
itivity rates decreased before the increase in the case numbers and test positivity rates
increased before the decrease in the case numbers. That could happen in situations where
the detection of a cluster of cases triggers massive testing immediately prior to the detection
of the wide spread of the infections. In contrast, there were consistent positive correlations
between Rt and test positivity rate in India and Indonesia (Group D). A high positivity rate
observed when the Rt is high suggests that testing was insufficient to catch up with the
surge of cases. No clear correlations were detected for Mexico and Saudi Arabia (Group E).

Finally, we checked relationships between the classification based on the association
between Rt and test positivity rate (Groups A–E) and the numbers of cases and tests, in
each country (Figure 5). There was a moderate but nonsignificant negative correlation
between the number of tests per case and the number of cases per capita (Spearman’s
rho = −0.40; p-value = 0.13). However, there was no clear association between the group
classification and the number of cases or tests. The results indicate that any differences
in association between Rt and test positivity rate were not simply caused by absolute
magnitude of testing intensity. Moreover, difference in the association between Rt and test
positivity rate had no obvious impact on the size of the COVID-19 epidemic.

Int. J. Environ. Res. Public Health 2021, 18, x  8 of 11 
 

 

Finally, we checked relationships between the classification based on the association 
between Rt and test positivity rate (Groups A–E) and the numbers of cases and tests, in 
each country (Figure 5). There was a moderate but nonsignificant negative correlation be-
tween the number of tests per case and the number of cases per capita (Spearman’s rho = 
−0.40; p-value = 0.13). However, there was no clear association between the group classi-
fication and the number of cases or tests. The results indicate that any differences in asso-
ciation between Rt and test positivity rate were not simply caused by absolute magnitude 
of testing intensity. Moreover, difference in the association between Rt and test positivity 
rate had no obvious impact on the size of the COVID-19 epidemic. 

Figure 5. Association with the numbers of cases and tests. The total number of tests per case and the total number of cases 
per million people in each country reported by 17 January 2021 were plotted with colors according to the groups described 
in Figure 4. France was excluded from the panel because data of the total number of tests were not available. 

Some countries and regions in Western Pacific Region such as New Zealand, Taiwan, 
and Thailand, in addition to Australia, which was investigated in the previous analysis 
shown in Figure 5, have conducted testing with great intensity and have kept the COVID-

Figure 5. Association with the numbers of cases and tests. The total number of tests per case and the
total number of cases per million people in each country reported by 17 January 2021 were plotted
with colors according to the groups described in Figure 4. France was excluded from the panel because
data of the total number of tests were not available.



Int. J. Environ. Res. Public Health 2021, 18, 4655 8 of 10

Some countries and regions in Western Pacific Region such as New Zealand, Taiwan,
and Thailand, in addition to Australia, which was investigated in the previous analysis
shown in Figure 5, have conducted testing with great intensity and have kept the COVID-
19 case numbers quite low (Table S2) [28,29]. Other countries in the area, such as Japan,
Malaysia, Philippines, Singapore, and South Korea, where testing intensity was not as
high as that of the aforementioned countries, also have relatively small numbers of cases
compared to countries in North America and Europe (Figure 5 and Table S2). Socio-
economic environments may have affected testing systems, as we saw two countries in the
South-East Asia Region, India and Indonesia, were classified in the same group (Figure 4).
However, it is also interesting that low- and middle-income countries have not always
suffered from a high disease burden of COVID-19 (Figures 4 and 5, Table S2) [30–32]. A
recent study from Taiwan suggests that both case-based and population-based interventions
including testing are required for COVID-19 containment [33].

4. Conclusions

To the best of our knowledge, this is the first study to investigate the association
between test positivity rate and epidemic trend. We showed that patterns of association
between Rt and test positivity rate can illuminate differences in testing situation among
different areas. This association can also evaluate the adequacy of current testing systems
and what information is captured in COVID-19 surveillance. We found that the differences
in testing systems alone cannot predict the results of epidemic containment efforts.

Furthermore, we found that monitoring test positivity rate can be a tool to predict
imminent case count increases (in Group A countries). Data from Osaka suggest the pro-
portion of severe disease cases in the nonelderly can serve as a surrogate measure of the
test positivity rate for that purpose. The results suggest two possibilities: (1) the high
proportion of severe cases in the nonelderly reflects a high positivity rate possibly caused
by many mild and asymptomatic cases being missed in the surveillance and (2) the undiag-
nosed nonelderly are the driving force of the disease spread, although the present study
cannot confirm these possibilities or elucidate any causality insights about the community
transmission of COVID-19. In contrast, the infections in the elderly seem less likely to be
missed and/or they play a smaller role in the disease spread because the proportion of
severe disease cases in the elderly did not show the particular pattern in association with
Rt. Our previous study also revealed the importance of asymptomatic/presymptomatic
infected nonelderly in the generation of clusters of cases in communities [34].

Because Rt is calculated retrospectively using data of the number of infected people
reported, the prediction of future Rt using test positivity rate, or severe case proportion,
would help us more closely consider the adequacy and applicability of public health
measures. Limitations of the present study include that we did not consider the impact or
other effects of public health interventions, vaccination, people’s mobility, seasonality, or
differences of viral variants [4,35–38]. Rather, the effects of those factors were considered
integrated into Rt reflecting the trend of case numbers.

Current surveillance and testing systems cannot detect all infected cases in real
time [39,40]. In this study, we present a method to assess how testing has been per-
formed for COVID-19 surveillance. Future studies should attempt to predict the trajectory
of the COVID-19 epidemic and identify target populations to be strategically tested, using
data on test positivity rate. Monitoring test positivity rates could be useful to evaluate and
strengthen public health management and testing systems and deepen understanding of
COVID-19 epidemic dynamics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18094655/s1, Table S1: Cumulative number of cases and population in 47 prefectures in
Japan, Table S2: Numbers of tests and cases in countries and region in Western Pacific Region.
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