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A B S T R A C T   

Background: Callous-unemotional (CU) traits, a youth antisocial phenotype, are hypothesized to associate with 
aberrant connectivity (dis-integration) across the salience (SAL), default mode (DMN), and frontoparietal (FPN) 
networks. However, CU traits have a heterogeneous presentation and previous research has not modeled indi-
vidual heterogeneity in resting-state connectivity amongst adolescents with CU traits. The present study models 
individual-specific network maps and examines topological features of individual and subgroup maps in relation 
to CU traits. 
Methods: Participants aged 13–17 (n = 84, male = 55%, female = 45%) completed resting-state functional 
connectivity and the inventory of callous-unemotional traits as part of the Nathan Klein Rockland study. A sparse 
network approach (GIMME) was used to derive individual-level and subgroup maps of all participants. We then 
examined heterogeneous network features, including positive and negative connection density, associated with 
CU traits. 
Results: Higher rates of CU traits increased probability of inclusion in one subgroup, which had the highest mean 
level of CU traits. Analysis of network features reveals less density (positive and negative) within the FPN and 
greater density between DMN-FPN associated with CU traits. 
Discussion: Findings indicate heterogeneous person-specific connections and some subgroup connections amongst 
adolescents associate with CU traits. Higher CU traits associate with lower density in the FPN, which has been 
associated with attention and inhibition, and higher density between the DMN-FPN, which have been linked with 
cognitive control, social working memory, and empathy. Our findings suggest less efficiency in FPN function 
which, when considered mechanistically, could result in difficulty suppressing DMN when task positive networks 
are engaged. This is an area for further exploration but could explain cognitive and socio-affective impairments 
in CU traits.   

1. Introduction 

Callous unemotional (CU) traits describe an antisocial phenotype in 
youth (Frick and White, 2008) that represent the affective component of 
adult psychopathy (Barry et al., 2000; Frick et al., 2014). Adolescents 
with these traits incur a societal cost that is 10 times greater than 
typically developing youth (Cohen and Piquero, 2009; Foster et al., 
2005). Because current treatments for antisocial phenotypes have 
limited efficacy (for meta-analysis: van der Stouwe et al., 2014), there is 
an ongoing need to develop a better understanding of these phenotypes. 
Identifying biomarkers related to callousness could inform development 

of new interventions and aid faster assessment of treatment response by 
monitoring treatment outcomes prior to changes being manifested 
behaviorally (Mayeux, 2004; Perez et al., 2014). However, this has been 
difficult because CU traits are heterogeneous (i.e., there are multiple 
variants underlying individual differences; e.g., Fanti et al., 2013; Fanti 
et al., 2018; Hadjicharalambous & Fanti, 2018; Sebastian et al., 2012). 
Prior investigations of neural mechanisms underlying CU traits use 
methods that do not account for individual heterogeneity. Given that 
adult psychopathy is viewed as a neurodevelopmental disorder with 
origins in youth (Frick and Viding, 2009) and children with CU traits 
share symptoms with adult psychopathy (Barry et al., 2000; Frick et al., 
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2014), it is critical to characterize neural networks, and previously 
uncaptured heterogeneity, underlying CU traits prior to adulthood. 
Thus, the present study examines CU traits amongst a community 
sample of adolescents using a novel method for characterizing neural 
networks that leverages individual heterogeneity. 

Multiple lines of research document candidate brain abnormalities 
associated with CU traits and the similar construct in adulthood, psy-
chopathy (Barry et al., 2000). Although we note these results represent 
only a subset of a complex literature, task-based fMRI studies in ado-
lescents suggest aberrant activity in the limbic, temporal, and frontal 
cortex regions in nodes associated with the salience (SAL), default mode 
(DMN), and frontoparietal (FPN; also called central executive) networks 
(Finger et al., 2008; Herpers et al., 2014; Jones et al., 2009; Lozier et al., 
2014; Marsh et al., 2013; Pujol et al., 2012; Sebastian et al., 2012; 
Veroude et al., 2016; Viding et al., 2012; White et al., 2012). Further 
support of the importance of these regions is found in studies measuring 
grey matter volume demonstrating abnormalities in similar regions 
(Caldwell et al., 2019; Cardinale et al., 2019; Cohn et al., 2016; Raschle 
et al., 2018; Rogers and De Brito, 2016; Sebastian et al., 2016; Wallace 
et al., 2014). Although some differences have been observed during task- 
based activations and microstructure, adults and youth with these traits 
demonstrate significant overlap in task-based brain activity and grey 
matter (for review see: De Brito et al., 2021). Overall, these findings 
support both the theory on psychopathy as a neurodevelopment disorder 
(Frick and Viding, 2009) as well as the importance of examining the SAL, 
DMN, and FPN. 

As opposed to regional differences in volume or activation during a 
task, a recent theory by Hamilton et al. (2015) suggests that psycho-
pathic traits involve an impaired integration within and between the 
SAL, DMN, and FPN. This dis-integration has been used to explain the 
prevalent theories on neural mechanisms underlying emotion (Blair, 
2010; Kiehl, 2006) and attention (Larson et al., 2013; Neumann & Hare, 
2008) impairments in adult psychopathy. Given the neuro-
developmental disorder view of psychopathy (Frick and Viding, 2009), 
dis-integration of these networks could also be applied to investigating 
impairments CU traits shares with psychopathy such as emotion (Blair, 
2008), socio-affective functioning (Blair et al., 2005; Hawes & Dadds, 
2012), and attention (Dadds et al., 2011). Initial support for this 
perspective includes both within and between network associations. For 
example, where we would expect stronger connectivity within network, 
CU traits associate with reduced connectivity within the SAL (Yoder 
et al., 2016) and DMN (Cohn et al., 2015; Umbach & Tottenham, 2020), 
as well as aberrant connectivity in the FPN (Cohn et al., 2015). Addi-
tionally, for between networks, where we would expect an anti-
correlation between task positive and task negative networks in 
typically developing brains (Uddin et al., 2009), higher CU traits asso-
ciate with a lower anticorrelation between the DMN and FPN (Pu et al., 
2017). Although previous task-based findings provided insights into the 
brain regions activated by specific tasks, these results suggest etiology of 
CU trait impairments may reflect a trait like pattern of disintegration 
within and between these networks. This compelling body of work 
makes it clear that understanding the neural mechanisms underlying CU 
traits could improve our mechanistic understanding of these traits that 
can lead to novel intervention development (i.e., an experimental 
theraputics approach: Kemp et al., 2019). 

Several barriers remain before the neural mechanisms of CU can be 
used to drive new interventions. First, while these studies reveal similar 
differences in each network, the individual studies do not converge on 
regions or demonstrate the same network across all studies. This is 
possibly due to the heterogeneity of CU traits (e.g., Fanti et al., 2013; 
Fanti et al., 2018; Hadjicharalambous & Fanti, 2018; Sebastian et al., 
2012) that is not modeled in the above adolescent studies. For example, 
youth with CU traits can present with a variety of symptom clusters 
including more anxiety, fear, distress, or aggression (Docherty et al., 
2016). And these different subgroups can demonstrate opposite ex-
tremes on neuro-physiological measures that present differently at 

varying levels of CU traits (Fanti et al., 2016a; b; c). Ignoring the het-
erogeneity of CU traits can produce spurious connections that fail to 
describe the individuals in the sample, whereas modeling this hetero-
geneity can more accurately characterize network patterns in the brain 
(Gates & Molenaar, 2012). Given it has been demonstrated with psy-
chopathic traits in adults (e.g., Baskin-Sommers et al., 2011; Dotterer 
et al., 2020; Efferson & Glenn, 2018; Espinoza et al., 2018; Korponay 
et al., 2017), it is critical we examine the heterogeneity of neural 
mechanisms underlying CU traits in adolescents. 

Second, these studies often use methods that average across the 
entire times series to examine the strength of contemporaneous con-
nections only. Ignoring lagged connections in resting state connectivity 
fails to model important neural connections – reflecting brain function 
rather than hemodynamic delay – critical for characterizing neural 
networks (Mitra et al., 2014). Modeling this as well as other important 
network function and architecture involves modeling the way networks 
are arranged, or their topology (De Vico Fallani et al., 2014). Network 
topology captures important features including relations between re-
gions that have shown to be important for understanding health and 
mental health disorders (Rezaeinia et al., 2020; Stiso & Bassett, 2018) 
making it appropriate to leverage for understanding CU traits. 

Third, most of this research is conducted on clinical or forensic 
samples when the spectrum of CU traits plausibly exists at some level 
(although lower) amongst community samples. The idea that psychiatric 
symptoms are on a spectrum and a disorder of neural circuits is 
consistent with the research domain criteria (RDoC) framework and a 
move away from symptom categories (Insel, 2014). Samples selected for 
extreme problem behaviors raise potential issues such as ceiling effects 
while also making it difficult to parse CU traits association with brain 
features from multiple other comorbid symptoms such as conduct 
problems. One exception is a study on a community sample children by 
Umbach and Tottenham (2020) that demonstrates the dimensionality of 
CU traits as well as its unique association with the brain independent of 
conduct problems. This study revealed increases in CU traits associated 
with reduced connectivity in the DMN. However, this study models the 
mean time series to examine the strength of contemporaneous connec-
tivity, which may not identify important network features that are 
crucial for understanding brain associations with CU traits. Examining a 
community sample of adolescents using a topological approach that 
models individual variability can improve our understanding of CU 
traits by reducing uncertainty and endogeneity around associated brain 
correlates. 

To address these methodological limitations, we use a novel network 
approach that includes traditional group level analyses while accounting 
for person-specific individual heterogeneity without averaging over the 
entire time series – subgrouping group iterative multiple model esti-
mation (S-GIMME; Gates et al., 2017). S-GIMME follows the same pro-
cedures as group iterative multiple model estimation (GIMME; Beltz & 
Gates, 2017; Gates & Molenaar, 2012) only S-GIMME forms subgroup 
clusters based solely on their network patterns using a community 
detection algorithm, which allows identification of subsets of in-
dividuals who have similarities in their dynamic processes (Beltz & 
Gates, 2017). S-GIMME and GIMME uses data driven methods to, first, 
model statistically meaningful subgroup-level connections and, second, 
adds statistically meaningful connections at the individual-level that are 
unique to each participant (both are blind to CU traits). These connec-
tions include both contemporaneous and lagged connections. The results 
include the identification of subgroup patterns that model heterogeneity 
by providing person-specific estimates. S-GIMME and GIMME outper-
form other network modeling approaches, such as bayes nets and 
Granger causality, in simulation studies when modeling data heteroge-
neity (Gates et al., 2017; Gates & Molenaar, 2012). Studies examining 
psychopathology using GIMME have found variation in network pat-
terns within the same diagnosis (Beltz, 2018; Price et al., 2017), 
including adult psychopathy (Dotterer et al., 2020), demonstrating 
reliable biological heterogeneity within diagnoses. And the data driven 
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subgrouping with S-GIMME has revealed brain connectivity patterns 
that differentiate individuals within the same diagnosis (e.g., Price et al., 
2017) demonstrating the ability to capture subgroup heterogeneity 
within symptoms while accounting for individual heterogeneity. 

We can then examine topological features of person-specific net-
works in relation to CU traits, which capture more nuanced information 
beyond mean strength such as connection density, directionality, and 
centrality of node importance. Network density is the number of con-
nections in a sparse network that indicate to what extent information 
travels between nodes within or between networks (De Vico Fallani 
et al., 2014). Node centrality is the number of connections into and/or 
out of a node which is used as a measure of node importance within a 
network or for communicating with other networks (De Vico Fallani 
et al., 2014; Kaiser, 2011). These network features have been shown to 
predict cognitive functioning by way of capturing information process-
ing streams in the brain (Cohen and D’Esposito, 2016). 

The present study aims to characterize network features of CU traits 
in a community sample of early-to-mid adolescents (ages 13–17) using 
person specific network connectivity within and between the SAL, DMN, 
and FPN. We used S-GIMME (Gates et al., 2017) to generate person 
specific connectivity maps and to identify any subgroups of similar 
connectivity patterns. First, we examine CU traits association with 
identified subgroups. Then we examine associations of CU traits with 
individual-level network features of network density and node centrality 
across all participants. As suggested by previous research, we expect to 
see less connection density within the SAL, DMN, and FPN. For between 
network associations, given that adults demonstrate greater density 
(Dotterer et al., 2020) and adolescents demonstrate greater connectivity 
strength (Pu et al., 2017), we hypothesize greater density of between 
DMN-FPN connections in the present sample. We have no a priori hy-
potheses about subgroup homogeneity in network patterns, network 
centrality, or associations with CU trait subscales, but examine these to 
further characterize network features of these symptoms. 

2. Methods 

2.1. Sample 

Adolescent participants (ages 13–17) were from the Nathan Kline 
Institute’s Rockland study, a study with a community sample on ages 
between 6 and 85 conducted in Rockland, New York (for study pro-
cedures see: Nooner et al., 2012). Data were collected from participants 
which involved a series of questionnaires and an fMRI session (both task 
and resting state). To our knowledge the resting state data and its 
relationship to CU traits in an adolescent sample have not been 
published. 

To ensure integrity of the data, we excluded participants with a 
WAIS-II IQ score < 80 (α = 0.96; Wechsler, 2011), movement in global 
signal intensity or translation and rotational movement parameters > 3 
mm, or > 20% invalid scans. Out of a total of 122 participants between 
the ages of 13–17, 10 participants were removed for IQ < 80, 24 par-
ticipants for motion, and four participants for invalid scans. Leaving a 
total of 84 participants for analysis. The analyzed sample were pre-
dominantly White (White = 63%, Black = 24%, Asian = 9%, Indian =
1%, other = 3%) balanced between sex (female = 45%) and a mean age 
of 14.59 ± 1.48. 

2.2. Measures 

Inventory of Callous-Unemotional Traits (ICU). The ICU is a 24- 
item assessment of CU traits (Frick, 2004). The ICU demonstrates 
convergent and divergent validity as well as a factor structure that was 
confirmed after removing two items for poor psychometrics (Kimonis 
et al., 2008). Using the same factor structure, we found adequate reli-
ability in the present sample (α = 0.72). The ICU consists of three sub-
scales: callousness (e.g., “I do not care who I hurt to get what I want”), 

unemotional (e.g., “I do not show my emotions to others”), and uncaring 
(e.g., reverse scored: “I care about how well I do at school or work”). 
Participants rate items on a four-point Likert scale from 0 (“not true at 
all”) to 3 (“definitely true”). Higher scores indicate greater level of CU 
traits. 

Covariates and Demographics. The youth self-report (YSR) is a 
measure for behavior problems in youth ages 11–18 (Achenbach and 
Rescorla, 2001). The externalizing (α = 0.87) subscale was used to 
control for conduct issues in the present analysis. Items from the 
externalizing subscale are rated on a three-point scale (0 not true – 2 
very true) indicating how much they agree with the statement for the 
previous 6-months. Higher scores indicate higher externalizing symp-
toms. Previous literature has established the YSR externalizing subscale 
reliably associates with externalizing symptoms (Achenbach and 
Rescorla, 2001). Raw scores were used as recommended for research 
purposes by Achenbach and Rescorla (2001). We conducted analyses 
both controlled for and did not control for externalizing behavior to 
detect where CU traits accounted for unique variance. 

Both pubertal development and sex were measured by the genital 
and breast development subscales of the Tanner assessment (α = 0.77), 
in which parents rated pictures representing development of secondary 
sex characteristics on a scale of 1 (pre-pubertal) to 5 (full maturity) 
(Petersen et al., 1988). Higher scores indicate greater developmental 
maturity. Given there is significant variation in the timing of puberty 
when measured by age (about five years , Parent et al., 2003) and that 
hormonal changes during puberty have a direct effect on the adolescent 
brain, which in turn impact mental state and behavior (Cameron, 2004; 
Dahl, 2004; Sisk and Foster, 2004), we choose to control for pubertal 
stage instead of using age. Similarly, sex effects are known to associate 
with CU traits and demonstrate differences in brain structure amongst 
adolescents with CU traits, we included sex as a covariate (Raschle et al., 
2018). 

Imaging Acquisition. Resting state images were analyzed from the 
Rockland dataset (##citeorwebsite). We republish those parameters 
here for convenience. Images were collected with a Siemens TimTrio 3 T 
scanner using a blood oxygen level dependent (BOLD) contrast with an 
interleaved multiband echo planar imaging (EPI) sequence. Participants 
were instructed to keep their eyes closed without falling asleep and to 
not think of anything while they let their mind wander. Each participant 
received an fMRI scan during resting state (260 EPI volumes; repetition 
time (TR) 1400 ms; echo time (TE) 30 ms; flip angle 65◦; 64 slices, Field 
of view (FOV) = 224 mm, voxel size 2 mm isotropic, duration = 10 min) 
and a magnetization prepared rapid gradient echo (MPRAGE) anatom-
ical image (TR = 1900 ms, flip angle 9◦, 176 slices, FOV = 250 mm, 
voxel size = 1 mm isotropic). T1 stabilization scan removal was not 
necessary given that the Siemens sequence collects images after satu-
ration is achieved. 

Resting-state fMRI preprocessing. Preprocessing was conducted 
using Statistical Parametric Mapping (SPM version 12; Penny et al., 
2011) using the standard preprocessing pipeline via the CONN toolbox 
(version 18b; Whitfield-Gabrieli & Nieto-Castanon, 2012). The standard 
preprocessing pipeline involves using the first scan as a reference image 
to co-register realigned and unwarped scans. No slice timing correction 
was performed due to the short TR and multiband sequence used for 
acquisition. Motion outliers were detected using the Artifact Detection 
Tools (ART; http://www.nitrc.org/projects/artifact_detect). Motion 
outliers were flagged for correction if > 0.5 mm and regressed out of the 
time series using binary motion covariates. Functional and anatomical 
data was standardized into MNI space and segmented into grey matter, 
white matter, and CSF tissue using the unified segmentation and 
normalization procedure (Ashburner and Friston, 2005). Physiologic 
CSF and white matter noise were regressed out of the BOLD signal using 
anatomic component-based noise correction method (aCompCor) 
(Whitfield-Gabrieli & Nieto-Castanon, 2012). aCompCor is an alterna-
tive to global signal regression that does not artificially introduce anti-
correlations (Whitfield-Gabrieli & Nieto-Castanon, 2012). Finally, to 
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preserve meaningful resting state associations, and correct for drift, the 
data was bandpass filtered to between 0.008 and 0.09 Hz (Satterthwaite 
et al., 2013). 

Region of Interest Selection. Neural investigations on CU traits 
supported focus on the DMN, SAL, and FPN in the current analysis (Pu 
et al., 2017; Umbach & Tottenham, 2020; Yoder et al., 2016). Consistent 
with examining psychopathology generally (Menon, 2011), targeting 
these networks is in line with contemporary theory on psychopathic 
traits (Hamilton et al., 2015). Eight a priori core ROIs for each network 
were defined anatomically using the Harvard-Oxford atlas involving the 
medial prefrontal and posterior cingulate cortex (mPFC and PCC) for the 
DMN; anterior cingulate cortex (ACC) and bilateral insula for the SAL; as 
well as the bilateral lateral prefrontal cortices and bilateral posterior 
parietal cortices (LPFC and PPC) for the FPN (MNI coordinates: Sup-
plementary Table 1). These ROIs represent the core regions of these 
networks and have been used to examine the associations within and 
between the DMN, SAL, and FPN (Menon, 2015; Menon and Uddin, 
2010; Uddin et al., 2009). 

S-GIMME. Network maps from each participants timeseries were 
constructed using R (Version 4.04; R Core Team, 2021) along with the 
‘GIMME’ (Lane et al., 2021) and ‘lavaan’ packages (Rosseel, 2012). This 
method uses a data-driven sparse modeling approach that iteratively 
adds network connections and using LaGrange multipliers (Sörbom, 
1989) to assess model fit and retain statistically meaningful connections 
(defined as connections that improve model fit for 75% of the sample). 
Sparse modeling used here minimizes spurious contemporaneous con-
nections generated by saturated models (Gates et al., 2010). GIMME 
models contemporaneous (occurring at the same functional volume) or 
lagged (occurring at the previous volume) connections that apply to the 
entire sample, subgroups (data-derived subsample), or individual level 
(individual-specific connections). The result is a unified structural 
equation model (uSEM; Gates et al., 2011) for each participant that in-
cludes both contemporaneous and first order lagged connections. Non- 
significant connections are pruned during model fitting if their influ-
ence changed with the addition of new connections (Gates & Molenaar, 
2012). Model-building ends when the network fits the data well, which 
were assessed using excellent fit criteria by Brown (2015) requiring two 
out of four alternative fit indices are met: root mean squared error of 
approximation (RMSEA) ≤ 0.05, standardized root mean residual 
(SRMR) ≤ 0.05, comparative fit index (CFI) ≥ 0.95, or non-normed fit 
index (NNFI) ≥ 0.95. 

During model generation, S-GIMME identifies shared connectivity 
patterns while accounting for individual heterogeneity using a com-
munity detection algorithm (walktrap) (Beltz & Gates, 2017), which 
simulations have proven to be a reliable method of detecting subgroups 
of network patterns (Gates et al., 2017; Pons & Latapy, 2005). The 
subgrouping using community detection provides the model with more 
known priors that refines and improves the search for individual con-
nections (Beltz & Gates, 2017). Because each subgroup is defined by 
similarities in features, each is best described by their shared network 
features (e.g., Goetschius et al., 2020). Using both individual and sub-
group level network features increase reliability of estimates for both 
individual and subgroups in comparison to other network approaches 
(Gates et al., 2017; Gates & Molenaar, 2012; Smith et al., 2011). 

2.3. Statistical analysis 

All inferential statistical analyses were conducted with the statistical 
language R (Version 4.04; R Core Team, 2021). We extracted network 
features from the S-GIMME networks and conducted inferential statistic 
on these features using maximum likelihood estimation. Prior to path 
analyses, variables demonstrated linear relationships and data met as-
sumptions for normality of residuals, auto correlation, and multi-
collinearity; and t tests revealed participants that were excluded were 
not significantly different from those included on demographics or 
variables of interest. 

Network features. We extracted network features for all individual 
networks including density, node centrality within (SAL, DMN, and 
FPN) and between (DMN-SAL, DMN-FPN, and SAL-FPN) networks of 
interest. To account for individual differences, we extracted proportions 
and calculated positive and negative features separately. Network density 
involved the number of connections between nodes (regardless of 
contemporaneous or lagged connections) for within and between net-
works separately. Node centrality involved calculating the number of 
connections a node has relative to the number of potential connections 
within a network or between networks (connections / nodes – 1). Higher 
number of connections toward or away from a node or between nodes 
suggests greater information flow regarding that node or set of nodes. 

Associations between network features and callous- 
unemotional traits. We first examined the probability of being 
included in identified subgroups given the presence of CU traits using a 
multinomial logistic regression. For individuals, we used path analysis 
to examine CU trait’s association with network features (network den-
sity and node centrality), which estimates all parameters simultaneously 
in one model and reduces multiple comparisons. Total CU traits were the 
independent variable of interest while controlling for sex and tanner 
stage. CU traits can be independent of conduct disorder (e.g., Baskin- 
Sommers et al., 2015b; Hyde et al., 2015), and, because the present 
analysis seeks to understand CU traits association with network features, 
we controlled for conduct problems. To ensure we are not capturing a 
suppression effect (e.g., Hyde et al., 2016; Lozier et al., 2014), we also 
ran all models without controlling for conduct problems. All results of 
were identical whether we controlled for conduct problems or not, 
suggesting there are no suppression or impact to model coefficients; 
thus, we only report on models that include conduct problems. To cor-
rect for multiple comparisons we used a false discovery rate correction 
(Benjamini & Hochberg, 1995, Benjamini & Yekutieli, 2001) for each 
analysis using ‘p.adjust’ in base R (R Core Team, 2021). 

We then conducted exploratory and confirmatory analyses. First, to 
determine if any subgroups were more characteristic of CU traits, we 
used an ANOVA to examine if there were mean differences in CU traits 
across subgroups and conducted Tukey’s post hoc test for individual 
differences. Second, for individual-specific features, we ran exploratory 
analyses with CU trait subscales of callousness, uncaring, and unemo-
tionality to determine if associations found with total scores were driven 
by these subscales. We did not control for multiple comparisons for 
exploratory or confirmatory analyses. 

3. Results 

3.1. Descriptives 

Mean ICU total score (Boys = 23.11 ± 7.56; Girls = 22.27 ± 10.31; 
Total = 22.71 ± 8.93) were within one standard deviation of other 
studies with community samples (Byrd et al., 2013; Essau et al., 2006). 

3.2. S-Gimme 

Resting state networks met a priori criteria of good fit on two out of 
four fit indices according to average fit (SRMR = 0.024, CFI = 0.953, see 
Supplementary Table 2) and identified significant heterogeneity indi-
cated by low modularity (modularity = 0.024). Connections for all 
participants were detected between the lateral prefrontal cortex and 
posterior parietal cortex in the FPN and bilateral insulae in the SAL. Four 
subgroups were identified that comprised 65% participants (n = 54). 
The remaining 35% of participants (n = 30) did not match any subgroup 
(for subgroup depiction: Supplementary Figs. 1 and 2). All person spe-
cific maps contained individual level connections (23.85 ± 4) and had 
positive connections (16.49 ± 2.04), whereas negative connections were 
present in 83.3% of participants (7.36 ± 2.19). All models contained 
both contemporaneous and lagged connections (contemporaneous =
7.75 ± 2.00, lagged = 16.18 ± 2.17). Subgroup maps indicated 
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connections were heterogeneous within three of the subgroups and 
homogeneous in the fourth subgroup only. Specifically, the first sub-
group (n = 19, modularity = 0.191) was characterized by 18 shared 
connections and 33 connections that varied between individuals; second 
subgroup (n = 10, modularity = 0.190) was characterized by19 shared 
connections and 36 connections that varied between individuals; and 
the third subgroup (n = 19, modularity = 0.225) was heterogeneous 
with 8 shared connections and 57 connections that varied between in-
dividuals, whereas the fourth subgroup (n = 6, modularity = 0.213) was 
homogeneous with 24 shared connections and no individual connec-
tions (individual heterogeneity depicted in Supplementary Fig. 3). The 
first subgroup had the highest overall average network density (Sup-
plementary Table 3). A depiction of network features can be found in 
Supplementary Fig. 2. 

3.3. Subgroup association with Callous-Unemotional traits 

Increases in CU traits associated with increases in odds of being in the 
heterogeneous second subgroup (β = 0.17, p (FDR corrected) = 0.048, odds 
ratio = 1.19; see Table 1 and Fig. 1 Panel B.), which performed better 
than a null model (ΔChi = 25.14, p = 0.012). Associations were not 
significant with other subgroups and conduct problems had no signifi-
cant associations. 

Analysis confirming subgroup differences on callous-unemotional 
traits. Subgroups were significantly different on mean level of CU 
traits and, specifically, the second subgroup had the highest mean level 
of CU traits (F(3.50) = 6.51, p = 0.001; Fig. 1 Panel C.). 

Exploratory analysis on dimensional ICU subscale. Uncaring sub-
scale was positively associated with an increase in odds that participants 
would fall into subgroup two (β = 0.195, p = 0.048, odds ratio = 1.21, 
see Supplementary Table 5 and Supplementary Figure 4). 

3.4. Individual-Specific features associated with Callous-Unemotional 
traits 

Network density and callous-unemotional traits. CU traits asso-
ciated with both within and between network density. Increases in CU 
traits associated with decreases in number of positive connections 
within the FPN (β = – 0.001, p (FDR corrected) = 0.042, Fig. 2 Panel B and 
Table 2). For between network density, higher levels of CU traits asso-
ciated with greater number of positive connections between the DMN- 
FPN (β = 0.002, p (FDR corrected) = 0.023, Fig. 2 Panel C and Table 3). 

Node centrality: Within network and callous-unemotional 
traits. CU traits associated with increased positive node centrality in 
the left insula within the SAL (β = 0.010, p (FDR corrected) = 0.009) and 
decreases in both positive and negative centrality of the right lateral 
prefrontal cortex in the FPN (β = – 0.005, p (FDR corrected) = 0.019, β =
– 0.010, p (FDR corrected) = 0.006 [respectively], see Supplementary 
Tables 6-8). 

Node centrality: Between network and callous-unemotional 
traits. CU traits associated with central between DMN-FPN connec-
tions positively for positive PCC- left LPFC and positively for negative 
PCC – right PCC (β = 0.002, p (FDR corrected) < 0.001; β = 0.004, p (FDR 

corrected) = 0.019 [respectively]). Central DMN-SAL network connections 

showed a positive association between CU traits and positive centrality 
and a negative association with negative centrality between the PCC- 
ACC (β = 0.003, p (FDR corrected) = 0.014; β = – 0.002, p (FDR corrected) =

0.024 [respectively]; Supplementary Tables 9-14, depiction of node 
centrality Fig. 2 Panel A.). 

3.5. Covariates association with Individual-Specific network Features. 

Externalizing symptoms. Externalizing symptoms positively asso-
ciated with increases in positive connections between the SAL and FPN 
(β = 0.003, p (FDR corrected) = 0.038) and negatively associated with both 
positive and negative network centrality of the anterior cingulate cortex 
within the salience network (β = – 0.012, p (FDR corrected) = 0.049, β = – 
0.028, p (FDR corrected) = 0.034 [respectively]). 

Pubertal stage. Pubertal stage positively associated with negative 
centrality between DMN-SAL at the mPFC- left insula (β = 0.011, p (FDR 

corrected) = 0.024) and negative SAL-FPN centrality at the insula(L)-LPFC 
(R) (β = 0.009, p (FDR corrected) = 0.003). 

Sex. Interestingly sex had no significant associations after control-
ling for multiple comparisons. 

3.6. Exploratory analyses with Callous-Unemotional trait subscales and 
network features 

Network Density. Facets underlying callous unemotional traits (i.e., 
callousness, unemotional, and uncaring) had no association with 
network density features (Supplementary Tables 15 and 16). 

Node Centrality. The callousness subscale of the ICU associated 
with decreases in positive network centrality of the right LPFC for within 
FPN connectivity (β = – 0.015, p = 0.012) and positively for positive 
centrality between the PCC- left LPFC for between DMN-FPN connec-
tivity (β = – 0.005, p = 0.009; see Supplementary Tables 17-19). The 
uncaring subscale negatively associated with positive network centrality 
of the left insula within the SAL (β = 0.013, p = 0.033) and negatively 
with negative network centrality of the right lateral prefrontal cortex 
within the FPN (β = – 0.013, p = 0.044). No other significant findings 
were revealed for ICU subscales (Supplementary Tables 20-25). 

4. Discussion 

Results from a community sample of adolescents reveals significant 
heterogeneity in resting state network connections and supports the 
notion that CU traits associate with network disintegration. Data-driven 
results revealed a subset of adolescents with few shared and many in-
dividual heterogeneous connections that had higher CU traits, which 
was independent of conduct problems. This suggests CU traits may lead 
to more individual-specific alterations in neural circuitry. Individual- 
specific features indicated less positive density within the FPN and 
greater density between the DMN and FPN associated with higher CU 
traits. Within the FPN this is likely due to fewer connections (positive 
and negative) with the right lateral prefrontal cortex; between DMN- 
FPN this is likely due to more positive connections between the poste-
rior cingulate cortex-bilateral lateral prefrontal cortices. The present 
findings reveal potential parallels between the adolescent and adult 

Table 1 
Probability of inclusion in GIMME identified subgroups for callous unemotional traits.   

Subgroup 2 Subgroup 3 Subgroup 4  

β S.E. OR FDR p β S.E. OR FDR p β S.E. OR FDR p 

Callous-Unemotional Traits  0.171*  0.066  1.187  0.048 − 0.001  0.053  0.991  0.966 − 0.047  0.083  0.954  0.920 
Conduct Issues  − 0.105  0.094  0.900  0.438 − 0.215  0.086  0.801  0.064 0.009  0.092  1.009  0.920 
Tanner Stage  0.057  0.507  1.059  0.909 0.200  0.367  1.222  0.966 0.074  0.496  1.077  0.921 
Male  0.461  1.024  1.584  0.816 − 0.031  0.751  0.969  0.966 − 0.885  1.043  0.412  0.920 
Note: reference category is subgroup 1 

*= FDR corrected p < 0.05  
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literature – suggesting 1) psychopathy may be a neurodevelopmental 
disorder with ontogeny of affective features in youth CU traits and 2) 
that this can be studied by examining disintegration between the SAL, 
DMN, and FPN. We extend the current line of research methodologically 
by examining topological features that modeled both heterogeneity and 
lagged connections of adolescent brains to reveal the information pro-
cessing between networks, specifically between DMN-FPN with within 
the FPN, may be of particular importance. 

4.1. Network connection heterogeneity 

The heterogeneity revealed in the present analysis, even within 
identified subgroups, emphasizes the issues of relying on the prevalent 
averaging approaches that hide important individual specific features. 
Averaging across an entire timeseries does not capture the heterogeneity 
of individual-specific functional connectivity that, given the heteroge-
neous presentations of CU traits (Docherty et al., 2016), may produce 
spurious results (Gates & Molenaar, 2012). Modeling heterogeneity can 
more accurately characterize network patterns in the brain (Gates & 
Molenaar, 2012). Because simulation studies demonstrate GIMME is 
both accurate and robust (Gates & Molenaar, 2012), the network con-
nections identified here are plausibly more specific to adolescents for 
which we can make more precise inferences on CU traits relation to 
these network features. 

Network connection heterogeneity associating with CU traits 
revealed in the present results are consistent with adult literature and 
heterogeneous presentation of symptoms. Dotterer et al. (2020) revealed 
heterogeneity in network connections amongst adults with varying 
levels of psychopathy; and the heterogeneity revealed in the present 
analysis on adolescent CU traits may highlight similarities between the 
adolescent CU trait and adult psychopathic literature, which both have 
heterogeneous symptom presentations (e.g., Baskin-Sommers et al., 

2011; Docherty et al., 2016; Efferson & Glenn, 2018; Espinoza et al., 
2018; Korponay et al., 2017). Symptom heterogeneity of CU traits in 
adolescents associating with different extremes on neuro-physiological 
measures in previous literature (e.g., Fanti et al., 2016a; b; c) is 
consistent with the present results and underscore an important 
consideration for developing a mechanistic understanding of CU traits is 
to account for the underlying heterogeneity of network features. It is 
plausible that the present results point to multiple potentially indepen-
dent mechanisms underlying CU traits. 

4.2. Subgroup two associates with greater Callous-Unemotional traits 

The finding that a subgroup had higher representation of CU traits is 
novel and, if replicated, could provide a base for investigating the het-
erogeneity of individual connections represented in the group. Explor-
atory analyses revealed the uncaring CU trait subscale also increased 
probability in the same subgroup. Although this finding would not have 
withstood multiple comparison correction, it may be worth further ex-
amination to understand whether uncaring drives the association with 
subgroup two. This subgroup may be replicated and used in future 
studies to examine shared and heterogeneous connections amongst ad-
olescents with CU traits. 

4.3. Individual-Specific network features underlie Callous-Unemotional 
traits 

Individual-specific findings are consistent with theory of dis- 
integration between networks; and the consistency with the adult 
literature partially supports the idea that psychopathy is a neuro-
developmental disorder with ontogeny in youth. First, we found that as 
CU traits increase, the density of connections within the FPN decreases 
and that the right lateral prefrontal cortex is a central node. This is 

Fig. 1. Group-level associations of subgroup two with callous-unemotional traits. A. Depiction of the shared connections for subgroup two. Size of spherical nodes 
indicate within network centrality (bigger node spheres = more centrality) and size of edges indicate connection density (thicker connection = more density); B. 
Depicting probability of subgroup inclusion in the presence of total callous-unemotional traits; C. Depicting the heterogeneity of all unshared connections in subgroup 
2; D. Mean differences in CU traits by GIMME identified network subgroup. Note: only significant pairwise tests are shown. Node colors: blue = default mode 
network, red = salience network, green = frontoparietal network. 
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consistent with adult literature demonstrating interpersonal features of 
psychopathy negatively associate with node connectivity within the FPN 
(Philippi et al., 2015), which may indicate a developmental feature of 
the brain underlying adult psychopathy. Future work examining FPN 
connections longitudinally could determine this. The FPN is implicated 
in various aspects of attention alerting, orienting, and cognitive control 
(e.g., Corbetta, 1998; Scolari et al., 2015; Shulman et al., 2010). Mul-
tiple lines of research converge on higher order cognitive processes 
being impaired in psychopathy (e.g., Baskin-Sommers et al., 2015a; 
Delfin et al., 2018; Maes and Brazil, 2013) and CU traits (e.g., Gluckman 
et al., 2016; Javakhishvili & Vazsonyi, 2021; Racer et al., 2011). In the 
context of the literature, the present finding of reduced information flow 
within the FPN may be related to attention impairments observed in the 
behavioral literature and it a plausible mechanism for future 
investigation. 

For between network features, our present findings are consistent 
with both adult findings by Dotterer et al. (2020) and adolescent find-
ings Pu et al. (2017) indicating psychopathic and CU traits associated 
with greater between DMN-FPN connection density and less anti-
correlation (respectively). We extend this work to reveal greater 
connection density found in adults is present in adolescents with CU 
traits as well – suggesting a disintegration between networks that may 
have developmental underpinnings prior to adult psychopathy. 

Less connectivity between the DMN-FPN is implicated healthy 
cognitive functioning, such as social working memory (Xin & Lei, 2015) 
and cognitive control (Marek et al., 2015; Sheffield et al., 2015), as well 
as socio-affective processes, such as the interpersonal component of 

emotional intelligence (Takeuchi et al., 2013) and empathy (Xin & Lei, 
2015). Greater connectivity is implicated in aberrant cognitive function 
(Menon, 2011) and associated with conditions with cognitive and socio- 
affective impairments such as psychopathy (Dotterer et al., 2020) and 
schizophrenia (Anticevic et al., 2013; Palaniyappan et al., 2013). 
Because the FPN suppresses the DMN to improve externally focused task 
performance (e.g., DeSerisy et al., 2021), these findings suggest cogni-
tive and socio-affective impairments associated with CU traits may be 
due to failure to suppress the DMN during task directed behavior. Thus, 
it is plausible that increased information flow between DMN-FPN may 
interfere with cognitive processes involved in social affective and higher 
order cognitive functioning. Future studies could examine whether 
increased DMN-FPN connectivity underlies those with CU traits diffi-
culties in socio-affective tasks or prosocial behavior; and examining the 
development of between DMN-FPN connections over time may reveal 
the ontogeny underlying the development of psychopathy. 

We did not find aberrant connectivity within the SAL or DMN as 
hypothesized. However, this was also found in an adult study of psy-
chopathy examining individual network topology (Dotterer et al., 
2020). Given that previous studies in adolescents have been inconsistent 
by not finding aberrant connectivity in the SAL (Umbach & Tottenham, 
2020) or DMN (Pu et al., 2017) whereas others found aberrant con-
nectivity in the SAL (Yoder et al., 2016) and DMN (Umbach & Totten-
ham, 2020), it is plausible that this may be due differences in modeling 
approach where using averages across the entire time series are known 
to create spurious results (Molenaar, 2004). It may also be that the nodes 
we selected a priori based on previous studies did not include 

Fig. 2. Individual-level associations across all participants with callous-unemotional traits. A. Depiction off all potential connections in the frontoparietal network 
(FPN); B. Association between positive connections within the FPN; C. Depiction of all possible connections between default mode-frontoparietal networks (DMN- 
FPN); D. Association between CU traits and positive connections between DMN-FPN. Node: blue = DMN, red = salience network (SAL), green = FPN. 
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subsystems outside the core regions and, thus, did not demonstrate the 
disintegration that previous studies have. While it may be argued that 
adding nodes outside the core nodes for each network may present 

spurious results that are extraneous to core functions of a network – 
future studies examining whether the inclusion of subsystems of net-
works in addition to the core regions may reveal important differences 
when trying to target specific underlying processes or interactions with 
subsystems. 

Subscales of CU traits did not drive network density; however, node 
centrality did associate with specific subscales. The callousness subscale 
indicates a lack of empathy or remorse (Essau et al., 2006), and its 
positive association with positive centrality between the PCC and left 
LPFC suggests that, while overall CU traits underlie between DMN-FPN 
connection density, impaired empathy drives the centrality between 
PCC and left LPFC for between DMN-FPN. Interaction of the PCC with 
the LPFC is partially implicated in down regulating task negative 
network function during higher order cognitive processes (Leech et al., 
2012). Given that higher-order cognitive impairments are thought to 
drive socio-affective impairments in CU traits (Tillem et al., 2020), this 
result suggests connections between the PCC and left LPFC may underlie 
cognitive function impairments limiting empathy in those with CU 
traits. On the other hand, the uncaring subscale represents a lack of 
concern for performance (Essau et al., 2006), and its negative associa-
tion with negative centrality of the right LPFC for within FPN connec-
tivity suggests a lack of concern drives less importance for right LPFC for 
negative FPN connections. The LPFC is involved in several higher order 
cognitive processes (El-Baba, 2017; McGuire and Botvinick, 2010) and 
its negative association with negative centrality is unclear, but specu-
latively may represent an important consideration for understanding 
higher order cognitive function in youth with CU traits. 

4.4. Limitations 

While the present study presents many strengths there are some 
limitations to consider. First, this is a small sample size and, thus, may 
have failed to identify some connections due to a limited power. Second, 
the analysis is conducted on a cross-sectional sample making it impos-
sible to discern causal relationship between brin and trait measures. 
Also, the results with this community sample may not generalize to 
forensic samples. However, it is important to note that there is consid-
erable support that CU traits is dimensionally present in the community 
and demonstrate a range of the same neurocognitive correlates as clin-
ical/forensic samples (Viding & McCrory, 2012). Future studies could 
build on this research by examining larger samples that include com-
munity and forensic samples or oversampling for higher CU traits in 
community samples. 

5. Conclusion 

The present study demonstrates heterogeneous functional connec-
tions in the brains of a community sample of adolescents. The present 
approach improves upon traditional methods by modeling both 
contemporaneous, lagged, and directional connections to derive topo-
logical features while accounting for individual heterogeneity – 
improving inference of network features with CU traits. CU traits was 
more represented in one data-driven identified subgroup that was het-
erogeneous. Individual-specific features demonstrated lower in density 
within the FPN and higher density between the DMN and FPN associated 
with higher CU traits. These findings held whether or not we included 
conduct problems and withstood multiple comparisons correction. 
Overall, the present findings suggest less efficiency within the FPN and 
between DMN-FPN, which are associated with attention, cognitive 
control, and socio-affective functioning. In the context of the literature 
on impairments amongst youth with CU traits, these results may explain 
common impairments amongst these youth. The consistency of these 
findings with adult literature may suggest neurodevelopmental disorder 
for adult psychopathy worth further investigation. Disintegration 
observed in the FPN and between DMN-FPN information processing 
streams provides support for disintegration between these core networks 

Table 2 
Within network density across participants.  

Network connections β S.E. Z p FDR p 

DMN positive (R2 = 0.151)     
CU traits − 0.001  0.001 − 1.217  0.224  0.447 
Tanner 0.006  0.006 0.963  0.335  0.447 
Conduct Issues − 0.002  0.001 − 2.258  0.024  0.096 
Sex − 0.005  0.011 − 0.408  0.683  0.683  

SAL positive (R2 = 0.098)     
CU traits 0.000  0.001 − 0.124  0.901  0.921 
Tanner 0.005  0.006 0.855  0.393  0.785 
Conduct Issues − 0.002  0.001 − 2.098  0.036  0.144 
Sex 0.001  0.012 0.099  0.921  0.921  

SAL negative (R2 = 0.095)     
CU traits 0.000  0.000 − 0.846  0.397  0.795 
Tanner 0.000  0.003 0.122  0.903  0.903 
Conduct Issues − 0.001  0.001 − 1.750  0.08  0.321 
Sex 0.002  0.007 0.295  0.768  0.903  

FPN positive (R2 = 0.223)     
CU traits − 0.001*  0.000 − 2.557  0.011  0.042 
Tanner 0.008  0.004 2.132  0.033  0.066 
Conduct Issues − 0.001  0.001 − 1.689  0.091  0.122 
Sex − 0.003  0.007 − 0.418  0.676  0.676  

FPN negative (R2 = 0.136)     
CU traits 0.000  0.000 − 1.319  0.187  0.374 
Tanner − 0.001  0.002 − 0.672  0.501  0.502 
Conduct Issues − 0.001  0.000 − 1.556  0.12  0.374 
Sex 0.004  0.004 0.862  0.389  0.502 
Note: there were no negative DMN connections analysis was not conducted on his 

outcome.*= FDR p < 0.05  

Table 3 
Between network density.  

Network connections β S.E. Z p FDR p 

DMN-FPN positive (R2 = 0.185)     
CU traits  0.002*  0.001  2.753  0.006  0.024 
Tanner  0.004  0.005  0.776  0.437  0.443 
Conduct Issues  − 0.001  0.001  − 1.143  0.253  0.443 
Sex  − 0.007  0.010  − 0.767  0.443  0.443  

DMN-FPN negative (R2 = 0.137)     
CU traits  0.002  0.001  2.242  0.025  0.100 
Tanner  0.006  0.006  0.918  0.359  0.718 
Conduct Issues  0.000  0.001  − 0.353  0.724  0.877 
Sex  0.002  0.012  0.155  0.877  0.877  

DMN-SAL positive (R2 = 0.187)     
CU traits  0.001  0.001  1.847  0.065  0.129 
Tanner  − 0.006  0.005  − 1.264  0.206  0.275 
Conduct Issues  0.002  0.001  2.059  0.039  0.129 
Sex  0.009  0.009  0.948  0.343  0.343  

DMN-SAL negative (R2 = 0.202)     
CU traits  0.001  0.001  0.957  0.339  0.339 
Tanner  − 0.006  0.005  − 1.136  0.256  0.339 
Conduct Issues  0.002  0.001  2.473  0.013  0.054 
Sex  0.018  0.010  1.759  0.079  0.157  

SAL-FPN positive (R2 = 0.176)     
CU traits  − 0.001  0.001  − 1.393  0.163  0.327 
Tanner  − 0.005  0.006  − 0.759  0.448  0.448 
Conduct Issues  0.003*  0.001  2.593  0.01  0.038 
Sex  − 0.012  0.012  − 0.96  0.337  0.448  

SAL-FPN negative (R2 = 0.153)     
CU traits  − 0.001  0.001  − 1.484  0.138  0.184 
Tanner  − 0.01  0.006  − 1.674  0.094  0.184 
Conduct Issues  0.002  0.001  1.691  0.091  0.184 
Sex  − 0.009  0.012  − 0.723  0.47  0.470 
*= FDR p < 0.05  
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when examining CU and psychopathic traits. Overall, we demonstrate 
the importance of modeling individual heterogeneity of network pat-
terns to improve inferences to understand CU traits in adolescents. 
Modeling individual heterogeneity that investigates topological features 
of large-scale networks can reveal important neural underpinnings of 
youth with CU traits that can be used to improve development of indi-
vidualized treatment approaches for these youth. 
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