
OPEN ACCESS

ll
Tutorial

Avoiding common machine learning pitfalls
Michael A. Lones1,*
1School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
*Correspondence: m.lones@hw.ac.uk
https://doi.org/10.1016/j.patter.2024.101046
THE BIGGER PICTURE Machine learning has transitioned from a niche pursuit to one with mass appeal.
Thanks to the accessibility of modern machine learning tools, it is now very easy to get started in machine
learning, yet this ease of use masks the underlying complexities of doing machine learning. This, coupled
with a relatively inexperienced community of practitioners, has led to flawed practices, which are reflected
in issues such as poor reproducibility within machine-learning-based studies.
This tutorial aims to address this problem by educating practitioners about the many things that can go
wrong when applying machine learning and providing guidance on how to avoid these pitfalls. However,
this is just part of the longer-term process that is needed to improve practice, as machine learning will
only meet its ambitions if it is able to become a robust and trusted applied discipline. Other factors that
have a role to play in this include better tools, standardization, and regulation.
SUMMARY

Mistakes in machine learning practice are commonplace and can result in loss of confidence in the findings
and products of machine learning. This tutorial outlines common mistakes that occur when using machine
learning and what can be done to avoid them. While it should be accessible to anyone with a basic under-
standing of machine learning techniques, it focuses on issues that are of particular concern within academic
research, such as the need to make rigorous comparisons and reach valid conclusions. It covers five stages
of the machine learning process: what to do before model building, how to reliably build models, how to
robustly evaluate models, how to compare models fairly, and how to report results.
INTRODUCTION

It is easy to make mistakes when applying machine learning

(ML), and these mistakes can result in ML models that fail to

work as expected when applied to data not seen during training

and testing.1 This is a problem for practitioners, as it leads to the

failure of ML projects. However, it is also a problem for society,

as it erodes trust in the findings and products of ML.2

This guide aims to help newcomers avoid some of these mis-

takes. It is written by an academic and focuses on lessons learnt

while doing ML research in academia. While primarily aimed at

students and scientific researchers, it should be accessible to

anyone getting started in ML and only assumes a basic knowl-

edge of ML techniques. However, unlike similar guides aimed

at a more general audience, it includes topics that are of a partic-

ular concern to academia, such as the need to rigorously eval-

uate and compare models in order to get work published.

Tomake it more readable, the guidance is written informally, in

a ‘‘dos and do nots’’ style. It is not intended to be exhaustive, and

references are provided for further reading; for publications with

access restrictions, citations to preprints are also included

where available. Since it does not cover issues specific to partic-
Patterns 5, Octo
This is an open access article under the CC BY-
ular academic subjects, it is recommended that readers also

consult subject-specific guidance where available, e.g., in clin-

ical medicine,3 genomics,4 environmental research,5 materials

science,6 business and marketing,7 computer security,8 and so-

cial science.9

The tutorial is divided into five sections. ‘‘Before you start to

build models’’ covers issues that can occur early in the ML pro-

cess and focuses on the correct use of data and adequate

consideration of the context in which ML is being applied.

‘‘How to reliably build models’’ then covers pitfalls that occur

during the selection and training of models and their compo-

nents. ‘‘How to robustly evaluate models’’ presents pitfalls that

can lead to an incorrect understanding of model performance.

‘‘How to compare models fairly’’ then extends this to the situa-

tion where models are being compared, discussing how com-

mon pitfalls can lead to misleading findings. ‘‘How to report

your results’’ focuses on reproducibility and factors that can

lead to incomplete or deceptive reporting.

ML pitfalls are not static and continue to evolve as ML de-

velops. To address this, the preprint version of this tutorial10

has been updated annually since it was first released in 2021,

and it will continue to be updated in the future.
ber 11, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).

mailto:m.lones@hw.ac.uk
https://doi.org/10.1016/j.patter.2024.101046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2024.101046&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


ll
OPEN ACCESS Tutorial
BEFORE YOU START TO BUILD MODELS

It is normal to want to rush into training and evaluating models,

but it is important to take the time to think about the goals of a

project, fully understand the data that will be used to support

these goals, consider any limitations of the data that need to

be addressed, and understand what has already been done in

your field. If you do not do these things, then you may end up

with results that are hard to publish or models that are not appro-

priate for their intended purpose.

Do think about how and where you will use data
Data are central to most ML projects but are often in short sup-

ply. Therefore, it is important to think carefully about what data

you need and how and where you will use them. Abstractly,

you need data for two things: training models and testing

models. However, for various reasons, this does not necessarily

translate into using a single dataset divided into two parts. To

begin with, model development often involves a period of exper-

imentation: trying out different models with different hyperpara-

meters and preprocessing the data in different ways. To avoid

overfitting (see ‘‘do avoid sequential overfitting’’), this process

requires a separate validation set, i.e., an additional set of

training data that are not used directly in training or testing

models. If you have no prior idea of what modeling approach

you are going to use, then this experimentation phase could

potentially involve a lot of comparisons. Due to themultiplicity ef-

fect (see ‘‘do correct for multiple comparisons’’), the more com-

parisons you do, the more likely you are to overfit the validation

data, and so the less useful the validation set will become in guid-

ing your modeling decisions. So, in practice, you might want to

set aside multiple validation sets for this. Then, there is the ques-

tion of how you adequately test your selected model. Because it

has the same biases as the training data, a test set taken from the

same dataset as the training data may not be sufficient to mea-

sure the model’s generality—see ‘‘do use an appropriate test

set’’ and ‘‘do report performance in multiple ways’’ for more on

this—meaning that, in practice, you may need more than one

test dataset to robustly evaluate your model. Also, be aware

that you will often need additional test data when using cross-

validation (CV); see ‘‘do save some data to evaluate your final

model instance.’’

Do take the time to understand your data
Eventually, you will want to publish your work. This is a lot easier

to do if your data are from a reliable source, have been collected

using a reliable methodology, and are of good quality. For

instance, if you are using data collected from an internet

resource, make sure you know where they came from. Are

they described in a paper? If so, take a look at the paper;

make sure it was published somewhere reputable, and check

whether the authors mention any limitations of the data. Do not

assume that because a dataset has been used by a number of

papers, it is of good quality—sometimes data are used just

because they are easy to get hold of, and some widely used da-

tasets are known to have significant limitations (see Paullada

et al.11 for a discussion of this). If you train your model using

bad data, then you will most likely generate a bad model: a pro-

cess known as ‘‘garbage in garbage out.’’ One way to avoid bad
2 Patterns 5, October 11, 2024
datasets is to build a direct relationship with people who

generate data, as this increases the likelihood of obtaining a

good-quality dataset that meets your needs. It also avoids prob-

lems of overfitting community benchmarks; see ‘‘do not always

believe results from community benchmarks.’’ Yet, regardless

of where your data comes from, always begin by making sure

that your data make sense. Do some exploratory data analysis

(see Cox12 for suggestions). Look for missing or inconsistent re-

cords. It is much easier to do this now, before you train a model,

rather than later, when you are trying to explain to reviewers why

you used bad data.
Do not look at all of your data
As you look at data, it is quite likely that youwill spot patterns and

make insights that guide your modeling. This is another good

reason to look at data. However, it is important that you do not

make untestable assumptions that will later feed into yourmodel.

The ‘‘untestable’’ bit is important here; it is fine to make assump-

tions, but these should only feed into the training of the model,

not the testing. So, to ensure that this is the case, you should

avoid looking closely at any test data in the initial exploratory

analysis stage. Otherwise, you might, consciously or uncon-

sciously, make assumptions that limit the generality of your

model in an untestable way. This is a theme I will return to several

times since the leakage of information from the test set into the

training process is a common reason why ML models fail to

generalize. See ‘‘do not allow test data to leak into the training

process’’ for more on this.
Do clean your data
Even good-quality datasets will have issues. Some of these

come from unavoidable noise or omissions in the data collec-

tion process, while others are due to human error during collec-

tion or collation. Whatever the cause, it is important to identify

any issues, and do this before you start to build models. One

common problem to look out for is data duplication, i.e., the un-

intentional inclusion of multiple copies of a data point. This can

cause serious problems when a model is evaluated (see ‘‘do

not do data augmentation before splitting your data’’ for an

example) and so should be identified and removed early on.

Another common problem is missing values. Some models

can cope with these, but many cannot, and so you will have

to replace missing values with something else before they

can be trained. There are various forms of imputation that

can be used to achieve this; see Emmanuel et al.13 for a review.

If you do imputation, be careful to avoid data leaks during

imputation—see ‘‘do not allow test data to leak into the training

process.’’ You should also check for outliers in your data, but

only remove these if they are likely to be the result of noise

or error rather than being natural extremes of the underlying

data-generating process. For example, if a person’s age is

greater than 150, then it is probably an error; if it is 110, then

it could be a natural outlier. A related issue is meaningless or

inconsistent data, for instance a person with a negative age.

Data cleaning can be a time-consuming process and becomes

more challenging as the complexity of data increases. For this

reason, many people have explored automating data cleaning

using ML approaches; see Côté et al.14,15 for a review.



ll
OPEN ACCESSTutorial
Do make sure you have enough data
If you do not have enough data, then it may not be possible to

train a model that generalizes. Working out whether this is the

case can be challenging and may not be evident until you start

building models: it all depends on the signal-to-noise ratio in

the dataset. If the signal is strong, then you can get away with

less data; if it is weak, then you need more data. If you cannot

get more data—and this is a common issue in many research

fields—then you can try using data augmentation techniques

(see Wang et al.16 and, for time-series data, Iglesias et al.17).

These can be quite effective for boosting small datasets, though

do not do data augmentation before splitting your data. Data

augmentation is also useful in situations where you have limited

data in certain parts of your dataset, e.g., in classification prob-

lems where you have less samples in some classes than others,

a situation known as class imbalance. See Haixiang et al.18 for a

review of methods for dealing with this; also see ‘‘do choose

metrics carefully.’’ Another option for dealing with small datasets

is to use transfer learning—see ‘‘do keep up with progress in

deep learning (and its pitfalls).’’ A danger when using small data-

sets is that different data partitionsmay be biased, for instance in

terms of the quality or difficulty of data they contain. For this

reason, it is advisable to consider frequent repartitioning. CV

(see ‘‘do evaluate a model multiple times’’) is an efficient way

of achieving this in small datasets. If you have limited data,

then it is also likely that you will have to limit the complexity of

the ML models you use, as models with many parameters, like

deep neural networks, can easily overfit small datasets (see

‘‘do not assume deep learning will be the best approach’’).

Regardless of how you handle the problem of limited data, it is

important to identify this issue early on and come up with a suit-

able strategy to mitigate against it.

Do talk to domain experts
Domain experts can be very valuable. They can help you to un-

derstand which problems are useful to solve, choose the most

appropriate feature set and ML model to use, and publish to

the most appropriate audience. Failing to consider the opinion

of domain experts can lead to projects that do not solve useful

problems or that solve useful problems in inappropriate ways.

An example of the latter is using an opaque ML model to solve

a problem where there is a strong need to understand how the

model reaches an outcome, e.g., in making medical or financial

decisions.19 At the beginning of a project, domain experts can

help you to understand the data and point you toward features

that are likely to be predictive. At the end of a project, they can

help you to publish in domain-specific journals and, hence, reach

an audience that is most likely to benefit from your research.

Do survey the literature
You are probably not the first person to throw ML at a particular

problem domain, so it is important to understand what has and

has not been done previously. Other people having worked on

the same problem is not a bad thing; academic progress is typi-

cally an iterative process, with each study providing information

that can guide the next. It may be discouraging to find that some-

one has already explored your great idea, but theymost likely left

plenty of avenues of investigation still open, and their previous

work can be used as justification for your work. To ignore previ-
ous studies is to potentially miss out on valuable information. For

example, someone may have tried your proposed approach

before and found fundamental reasons why it will not work

(and therefore saved you a few years of frustration), or they

may have partially solved the problem in a way that you can build

on. So, it is important to do a literature review before you start

work; leaving it too late may mean that you are left scrambling

to explain why you are covering the same ground or not building

on existing knowledge when you come to write a paper.

Do think about how your model will be deployed
Why do you want to build an ML model? This is an important

question, and the answer should influence the process you use

to develop your model. Many academic studies are just that—

studies—and not really intended to produce models that will

be used in the real world. This is fair enough, as the process of

building and analyzing models can itself give very useful insights

into a problem. However, for many academic studies, the even-

tual goal is to produce an ML model that can be deployed in a

real-world situation. If this is the case, then it is worth thinking

early on about how it is going to be deployed. For instance, if it

is going to be deployed in a resource-limited environment,

such as a sensor or a robot, then this may place limitations on

the complexity of the model. If there are time constraints, e.g.,

a classification of a signal is required within milliseconds, then

this also needs to be taken into account when selecting a model.

If using deep learning, then energy costs and carbon footprint

may be a consideration, and if using large language models

(LLMs), there may be further operational costs for hosting or ac-

cessing foundation models. Another consideration is how the

model is going to be tied into the broader software system within

which it is deployed; this procedure is often far from simple.20

However, emerging approaches such as ML Ops aim to address

some of the difficulties; see Kreuzberger et al.21 for a review and

Shankar et al.22 for a discussion of common challenges when

operationalizing ML models.

HOW TO RELIABLY BUILD MODELS

Building models is one of the more enjoyable parts of ML. With

modern ML frameworks, it is easy to throw all manner of ap-

proaches at your data and see what sticks. However, this can

lead to a disorganized mess of experiments that is hard to justify

and write up. So, it is important to approach model building in an

organized manner, making sure you use data correctly and putt-

ing adequate consideration into the choice of models.

Do not allow test data to leak into the training process
It is essential to have data that you can use to measure how well

your model generalizes. A common problem is allowing informa-

tion about these data to leak into the configuration, training, or

selection of models (see Figure 1). When this happens, the

data no longer provide a reliable measure of generality, and

this is a common reason why published ML models often fail to

generalize to real-world data. There are a number of ways that

information can leak from a test set. Some of these seem quite

innocuous. For instance, during data preparation, when informa-

tion about the means and ranges of variables within the whole

dataset is used to carry out variable scaling or imputation—in
Patterns 5, October 11, 2024 3



Figure 1. See ‘‘do not allow test data to leak into the training process’’
(Left) How things should be, with the training set used to train the model and the test set used to measure its generality. (Right) When there is a data leak, the test
set can implicitly become part of the training process, meaning that it no longer provides a reliable measure of generality.

ll
OPEN ACCESS Tutorial
order to prevent information leakage, these statistics should be

calculated using only the training data. Other common examples

of information leakage are carrying out feature selection before

partitioning the data (see ‘‘do be careful where and how you

do feature selection’’), using the same test data to evaluate the

generality of multiple models (see ‘‘do avoid sequential overfit-

ting’’ and ‘‘do not always believe results from community bench-

marks’’), and applying data augmentation before splitting off the

test data (see ‘‘do not do data augmentation before splitting your

data’’). The best thing you can do to prevent these issues is to

partition off a subset of your data right at the start of your project

and only use this independent test set once to measure the gen-

erality of a single model at the end of the project (see ‘‘do save

some data to evaluate your final model instance’’). There are

also forms of data leakage that are specific to certain types of

data. Time-series data are particularly problematic since the or-

der of samples is significant, and random splits can easily cause

leakage and overfitting—see ‘‘do not ignore temporal depen-

dencies in time-series data’’ for more on this. Even for non-

time-series data, the experimental conditions used to generate

datasets may lead to temporal dependencies or other problem-

atic conditions such as duplicated or similar samples—see ‘‘do

use an appropriate test set’’ for an example. In order to prevent

leakage, these kinds of issues need to be identified and taken

into account when splitting data. For a broader discussion of

data leakage, see Kapoor and Narayanan.23

Do try out a range of different models
Generally speaking, there is no such thing as a single best ML

model. In fact, there is proof of this in the form of the ‘‘no free

lunch’’ theorem, which shows that no ML approach is any better

than any other when considered over every possible problem.24

So, your job is to find the ML model that works well for your

particular problem. There is some guidance on this. For example,

you can consider the inductive biases of ML models, that is, the

kind of relationships they are capable of modeling. For instance,

linear models, such as linear regression and logistic regression,

are a good choice if you know there are no important non-linear

relationships between the features in your data but a bad choice

otherwise. Good-quality research on closely related problems

may also be able to point you toward models that work particu-

larly well. However, a lot of the time, you are still left with quite a

few choices, and the only way to work out which model is best is
4 Patterns 5, October 11, 2024
to try them all. Fortunately, modern ML libraries, such as scikit-

learn25 in Python, tidymodels26 in R, and MLJ27 in Julia, allow

you to try out multiple models with only small changes to your

code, so there is no reason not to try them all out and find out

for yourself which one works best. However, do not use inappro-

priate models and use a validation set, rather than the test set, to

evaluate them (see ‘‘do avoid sequential overfitting’’). When

comparing models, do optimize your model’s hyperparameters,

evaluate amodelmultiple times tomake sure you are giving them

all a fair chance, and correct for multiple comparisons when you

publish your results.

Do not use inappropriate models
By lowering the barrier to implementation, modern ML libraries

also make it easy to apply inappropriate models to your data.

This, in turn, could look bad when you try to publish your results.

A simple example of this is applying models that expect categor-

ical features to a dataset containing numerical features, or vice

versa. Some ML libraries allow you to do this, but it may result

in a poor model due to loss of information. If you really want to

use such a model, then you should transform the features first;

there are various ways of doing this, ranging from simple one-

hot encodings to complex learned embeddings. Other examples

of inappropriate model choice include using a classification

model where a regression model would make more sense (or

vice versa), attempting to apply amodel that assumes no depen-

dencies between variables to time-series data, or using a model

that is unnecessarily complex (see ‘‘do not assume deep

learning will be the best approach’’). Also, if you are planning

to use your model in practice, do think about how your model

will be deployed, and do not use models that are not appropriate

for your use case.

Do keep up with progress in deep learning (and its
pitfalls)
While deep learningmay not always be the best solution (see ‘‘do

not assume deep learning will be the best approach’’), if you are

going to use deep learning, then it is advisable to try to keep up

with recent developments in this fast-moving field. Figure 2 sum-

marizes some of the important developments over time. Multi-

layer perceptrons and recurrent neural networks (particularly

long short-term memory [LSTM]) have been around for

some time but have largely been subsumed by newer models



Figure 2. See ‘‘do keep up with progress in deep learning (and its pitfalls)’’
A rough history of neural networks and deep learning showing what I consider to be the milestones in their development. For a far more thorough account of the
field’s historical development, take a look at Schmidhuber.37,38

ll
OPEN ACCESSTutorial
such as convolutional neural networks (CNNs)28,29 and trans-

formers.30 For example, transformers have become the go-to

model for processing sequential data (e.g., natural language)

and are increasingly being applied to other data types too,

such as images.31,32 A prominent downside of both transformers

and deepCNNs is that they havemany parameters and therefore

require a lot of data to train them. However, an option for small

datasets is to use transfer learning, where a model is pretrained

on a large generic dataset and then fine-tuned on the dataset of

interest.33 Larger pretrained models, many of which are freely

shared on websites such as Hugging Face, are known as foun-

dation models; see Zhou et al.34 for a survey. While powerful,

these comewith their own set of pitfalls. For example, their ability

to fully memorize input data is the cause of data security and pri-

vacy concerns.35 The use of opaque, often poorly documented,

training datasets also leads to pitfalls when fitting them into

broader ML pipelines (see ‘‘do combine models (carefully)’’ for

more info) andwhen comparing them fairly with otherMLmodels

(see ‘‘do not assume a bigger number means a better model’’

and ‘‘do not always believe results from community bench-

marks’’). For an extensive yet accessible guide to deep learning,

see Zhang et al.36

Do not assume deep learning will be the best approach
A common pitfall is to assume that deep neural networkswill pro-

vide the best solution to any problem and consequently fail to try

out other, possibly more appropriate, models. While deep

learning is great for certain tasks, it is not good at everything;

there are plenty of examples of it being outperformed by ‘‘old

fashioned’’ ML models, such as random forests and support

vector machines (SVMs). See, for instance, Grinsztajn et al.,39

who show that tree-based models often outperform deep

learners on tabular data. Certain kinds of deep neural network ar-

chitecture may also be ill-suited to certain kinds of data: see, for

example, Zeng et al.,40 who argue that transformers are not well-
suited to time-series forecasting. There are also theoretical rea-

sons why any one kind of model will not always be the best

choice (see ‘‘do try out a range of different models’’). In partic-

ular, a deep neural network is unlikely to be a good choice if

you have limited data, domain knowledge suggests that the un-

derlying pattern is quite simple, or the model needs to be inter-

pretable. This last point is particularly worth considering: a

deep neural network is essentially a very complex piece of deci-

sion-making that emerges from interactions between a large

number of non-linear functions. Non-linear functions are hard

to follow at the best of times, but when you start joining them

together, their behavior gets very complicated very fast. While

explainable AI (XAI) methods (see ‘‘do look at your models’’)

can shine some light on the workings of deep neural networks,

they can also mislead you by ironing out the true complexities

of the decision space.41 For this reason, you should take care

when using either deep learning or XAI for models that are going

to make high-stakes or safety-critical decisions; see Rudin19 for

more on this.

Do be careful where and how you do feature selection
A common stage of training a model is to carry out feature selec-

tion (surveyed by Cai et al.42). When doing this, it is important to

treat it as part of model training and not something more general

that you do before model training. A particularly common error is

to do feature selection on the whole dataset before splitting off

the test set, something that will result in information leaking

from the test set into the training process (see ‘‘do not allow

test data to leak into the training process’’). Instead, you should

only use the training set to select the features that are used in

both the training set and the test set (see Figure 3). The same

is true when doing dimensionality reduction. For example, if

you are using principal-component analysis, then the compo-

nent weightings should be determined by looking only at the

training data; the same weightings should then be applied to
Patterns 5, October 11, 2024 5



Figure 3. See ‘‘do be careful where and how you do feature selection’’
(Top) Data leakage due to carrying out feature selection before splitting off the test data (outlined in red), causing the test set to become an implicit part of model
training. (Middle) How it should be done. (Bottom) When using cross-validation, it is important to carry out feature selection independently for each iteration,
based only on the subset of data (shown in blue) used for training during that iteration.

ll
OPEN ACCESS

6 Patterns 5, October 11, 2024

Tutorial



Figure 4. See ‘‘do avoid learning spurious
correlations’’
The problem of spurious correlations in images as
illustrated by the tank problem. The images on the
left are tanks, and those on the right are not tanks.
However, the consistent background (blue for
tanks, gray for others)means that these images can
be classified by merely looking at the colors of
pixels toward the top of the images rather than
having to recognize the objects in the images, re-
sulting in a poor model.

ll
OPEN ACCESSTutorial
the test set. Special care should be taken when using autoen-

coders for dimensionality reduction—see ‘‘do combine models

(carefully).’’ If you are doing CV (see ‘‘do evaluate a model multi-

ple times’’) then it is important to carry out feature selection or

dimensionality reduction independently within each iteration,

each time using just the training folds (see Figure 3, bottom).

Do optimize your model’s hyperparameters
Many models have hyperparameters—that is, numbers or set-

tings that affect the configuration of themodel. Examples include

the kernel function used in an SVM, the number of trees in a

random forest, and the architecture of a neural network. Many

of these hyperparameters significantly affect the performance

of the model, and there is generally no one-size-fits-all approach

when selecting hyperparameters. That is, they need to be fitted

to your particular dataset in order to get the most out of the

model. While it may be tempting to fiddle aroundwith hyperpara-

meters until you find something that works, this is not likely to be

an optimal approach. It ismuch better to use some kind of hyper-

parameter optimization strategy, and this ismuch easier to justify

when youwrite it up. Basic strategies include random search and

grid search, but these do not scale well to large numbers of hy-

perparameters or to models that are expensive to train, so it is

worth using tools that search for optimal configurations in a

more intelligent manner. See Bischl et al.43 for further guidance.

It is also possible to use AutoML techniques to optimize both the

choice of model and its hyperparameters, in addition to other

parts of the ML pipeline—see Barbudo et al.44 for a review.

Do avoid learning spurious correlations
Spurious correlations are features within data that are correlated

with the target variable but have no semantic meaning. They are

basically red herrings, and it is not uncommon for ML models to

pick up on them in training and, consequently, fail to generalize

well. A classic example is the tank problem. Legend has it that

the US military was looking to train an ML model that could

recognize tanks (though there is some debate about whether

this actually happened45). However, because the tank pictures

used in training were taken during different weather conditions

than the non-tank pictures, the model ended up discriminating

based on features such as the number of blue pixels in the sky

rather than the presence of a tank (see Figure 4 for an illustration).

An ML model that uses such spurious correlations to perform

classification would appear to be very good in terms of its metric

scores but would not work in practice. More complex data tend
to contain more of these spurious correlations, and more com-

plex models have more capacity to overfit spurious correlations.

This means that spurious correlations are a particular issue for

deep learning, where approaches such as regularization (see

‘‘do keep up with progress in deep learning (and its pitfalls)’’)

and data augmentation (see ‘‘do make sure you have enough

data’’) can help mitigate against this. However, spurious correla-

tions can occur in all datasets and models, so it is always worth

looking at your trained model to see whether it is responding to

appropriate features within your data—see ‘‘do look at your

models.’’

HOW TO ROBUSTLY EVALUATE MODELS

In order to contribute to progress in your field, you need to have

valid results that you can draw reliable conclusions from. Unfor-

tunately, it is really easy to evaluate ML models unfairly and, by

doing so, muddy the waters of academic progress. So, think

carefully about how you are going to use data in your experi-

ments, measure the true performance of your models, and report

this performance in a meaningful and informative way.

Do use an appropriate test set
First of all, always use a test set to measure the generality of an

ML model. How well a model performs on the training set is

almost meaningless, and a sufficiently complex model can

entirely learn a training set yet capture no generalizable knowl-

edge. It is also important to make sure the data in the test set

are appropriate. That is, they should not overlap with the training

set, and they should be representative of the wider population.

For example, consider a photographic dataset of objects where

the images in the training and test set were collected outdoors on

a sunny day. The presence of the same weather conditions

means that the test set will not be independent, and by not

capturing a broader variety of weather conditions, it will also

not be representative. Similar situations can occur when a single

piece of equipment is used to collect both the training and test

data; if the model overlearns characteristics of the equipment,

it will likely not generalize to other pieces of equipment, and

this will not be detectable by evaluating it on the test set. If using

public datasets to test a model, be wary of Frankenstein data-

sets, which are assembled from other public datasets and risk

overlap with training data. Also, be careful when handling data-

sets that contain multiple data points for each subject; if using

these, it is important tomake sure that each subject’s data points
Patterns 5, October 11, 2024 7



ll
OPEN ACCESS Tutorial
are kept together when splitting off the test set or doing CV. See

Roberts et al.46 for a revealing account of how a number of these

pitfalls led to the failure of the vast majority of COVID-19 detec-

tion models to generalize beyond their test sets.

Do not do data augmentation before splitting your data
Data augmentation (see ‘‘do make sure you have enough data’’)

can be a useful technique for balancing datasets and boosting

the generality and robustness of ML models. However, it is

important to do data augmentation only on the training set and

not on data that are going to be used for testing. Including

augmented data in the test set can lead to a number of problems.

One problem is that the model may overfit the characteristics of

the augmented data rather than the original samples, and youwill

not be able to detect this if your test set also contains augmented

data. A more critical problem occurs when data augmentation is

applied to the entire dataset before it is split into training and test

sets. In this scenario, augmented versions of training samples

may end up in the test set, which, in the worst case, can lead

to a particularly nefarious form of data leakage in which the

test samples are mostly variants of the training samples. For

an interesting study of how this problem affected an entire field

of research, see Vandewiele et al.47,48

Do avoid sequential overfitting
Oddly, one of the most pernicious forms of data leakage does

not have a commonly agreed upon name (though Hosseini

et al.49,50 suggested ‘‘over-hyping,’’ from overfitting of hyper-

parameters), so I am going to refer to it as sequential overfitting.

This occurs when you train multiple models in succession using

knowledge gained about eachmodel’s performance to guide the

configuration of the next one, and you use the same test set to

evaluate each model. Often, this is done as an informal process,

trying out different models and different hyperparameters until

you get good performance on the test set. As such, it is rarely

documented, which is one reason why it is so pernicious. Specif-

ically, the problem lies in using the test set throughout this pro-

cess, as using the test set to choose between models means

that information about the test set implicitly leaks into the training

process. See Figure 5 for an illustration of this idea. The conse-

quence is that models gradually overfit the test set; the more

times you use the test set, the more the overfitting that occurs.

The solution is to either use a validation set (i.e., a separate set

of samples that are not directly used in training but are used to

guide training) or use a holdout dataset to test the final model.

See Cawley and Talbot51 and Hosseini et al.49,50 for more on this.

Do evaluate a model multiple times
Many ML models are stochastic or unstable. That is, if you train

them multiple times, or if you make small changes to the training

data, then their performance varies significantly. The same is

true of using LLMs at inference time. This means that a single

evaluation of a model can be unreliable and may either underes-

timate or overestimate the model’s true potential. For this

reason, it is common to carry out multiple evaluations. At training

time, there are numerous ways of doing this. For stochastic

models, the simplest way is to train the same model multiple

times using different random seeds and then look at the average

performance. A more robust approach is to also vary the data for
8 Patterns 5, October 11, 2024
eachmodel trained. CV is a particularly popular way of doing this

and comes in numerous flavors,52 most of which involve splitting

the data into a number of folds. When doing CV, it is important to

be aware of any dependencies within the data and take these

into account. Failure to do so can result in data leakage. For

instance, in medical datasets, it is commonplace to have multi-

ple data points for a single subject; to avoid data leakage, these

should be kept together within the same fold. Time-series data

are particularly problematic for CV; see ‘‘do not ignore temporal

dependencies in time-series data’’ for a discussion of how to

handle this. If you are carrying out hyperparameter optimization,

then you should use nestedCV (also known as double CV), which

uses an extra loop inside themain CV loop to avoid overfitting the

test folds. If some of your data classes are small, then you may

need to do stratification, which ensures that each class is

adequately represented in each fold. In addition to looking at

the average performance across multiple evaluations, it is also

standard practice to provide some measure of spread or confi-

dence, such as the standard deviation or the 95% confidence

interval.

Do save some data to evaluate your final model instance
I have used the term ‘‘model’’ quite loosely, but there is an impor-

tant distinction between evaluating the potential of a general

model (e.g., how well a neural network can solve your problem)

and the performance of a particular model instance (e.g., a spe-

cific neural network produced by one run of backpropagation).

CV (see ‘‘do evaluate a model multiple times’’) is good at the

former, but it is less useful for the latter. Say, for instance, that

you carried out 10-fold CV. This would result in ten model in-

stances. Say you then select the instance with the highest test

fold score as the model that you will use in practice. How do

you report its performance? Well, you might think that its test

fold score is a reliable measure of its performance, but it prob-

ably is not. First, the amount of data in a single fold is relatively

small. Second, the instance with the highest score could well

be the onewith the easiest test fold, so the evaluation data it con-

tains may not be representative. Consequently, the only way of

getting a reliable estimate of the model instance’s generality

may be to use another test set. This is also true in situations

where the independence of the existing test set may have

been compromised, e.g., by using it more than once (see ‘‘do

avoid sequential overfitting’’). So, if you have enough data, it is

better to keep some aside and only use them once to provide

an unbiased estimate of the final selected model instance. How-

ever, it is worth noting one other option when using CV:

ensemble the model instances (see ‘‘do combine models (care-

fully)’’). The resulting ensemble will have performance in line with

the average as measured through CV, so another test set is not

required to measure its performance. On the downside, it will

likely have poorer inference time, efficiency, and interpretability

than a single model instance, so this approach is generally

only worth considering if you have very few data.

Do choose metrics carefully
Be careful which metrics you use to evaluate your ML models.

For instance, in the case of classification models, the most

commonly used metric is accuracy, which is the proportion of

samples in the dataset that were correctly classified by the



Figure 5. See ‘‘do avoid sequential overfitting’’
(Top) Using the test set repeatedly during model selection results in the test set becoming an implicit part of the training process. (Bottom) A validation set should
be used instead during model selection, and the test set should only be used once to measure the generality of the final model.

ll
OPEN ACCESSTutorial
model. This works fine if your classes are balanced, i.e., if each

class is represented by a similar number of samples within the

dataset. But many datasets are not balanced, and in this case,

accuracy can be a very misleading metric. Consider, for

example, a dataset in which 90% of the samples represent one

class and 10% of the samples represent another class. A binary

classifier that always outputs the first class, regardless of its

input, would have an accuracy of 90% despite being completely

useless (see Figure 6). In this kind of situation, it would be pref-
erable to use a metric such as F1 score, Cohen’s kappa coeffi-

cient, or Matthew’s correlation coefficient, all of which are rela-

tively insensitive to class size imbalance. For a broader review

of methods for dealing with imbalanced data, see Haixiang

et al.18 There are also various pitfalls associated with regression

metrics, particularly within the context of time-series forecasting;

see Hewamalage et al.53 for a discussion of these. A well-known

example is relying only on the root-mean-square error, which

(a bit like accuracy) is susceptible to assigning high value to
Patterns 5, October 11, 2024 9



Figure 6. See ‘‘do choose metrics carefully’’
The problem with using accuracy as a performance
metric on imbalanced data. Here, a dummy model
that always predicts the same class label has an
accuracy of 50% or 90% depending on the distri-
bution of class labels within the data.

ll
OPEN ACCESS Tutorial
models that always predict no change. See also ‘‘do report per-

formance in multiple ways.’’
Do consider model fairness
Overall performance metrics are not the only important mea-

sures of how good a model is. If a model is to be deployed within

the real world, then another important measure is fairness. There

are various definitions of fairness, but in a nutshell, it is about

making sure that themodel does not treat its human subjects un-

equally with regard to characteristics such as gender, ethnicity,

income, or personal politics. This is also referred to as algo-

rithmic bias, and there are many examples of models being

biased toward or against particular groups of people. A common

source of unfairness is using an unrepresentative dataset to train

an ML model. For instance, if a medical diagnosis model is

trained on data from a single country, then the data may be

biased toward the majority ethnicity, and the model may not op-

erate fairly when exposed to users fromother ethnicities. Howev-

er, unfairness can also come from other sources, including sub-

conscious bias during data preparation and the inductive biases

of the model. Regardless of the source, it is important to under-

stand any resulting biases and, ideally, take steps to mitigate

against them (e.g., applying data augmentation to minority sam-

ples—see ‘‘do make sure you have enough data’’). There are

many different fairness metrics, so part of the puzzle is working

out which are most relevant to your modeling context; see Caton

and Haas54 for a review.
Do not ignore temporal dependencies in time-
series data
Time-series data are unlike many other kinds of data in that the

order of the data points is important. Many of the pitfalls in

handling time-series data are a result of ignoring this fact. Most

notably, time-series data are subject to a particular kind of

data leakage (see ‘‘do not allow test data to leak into the training

process’’) known as look-ahead bias. This occurs when some or
10 Patterns 5, October 11, 2024
all of the data points used to train the

model occur later in the time series than

those used to test the model. In effect,

this can allow knowledge of the future to

leak into training, and this can then bias

the test performance. A situation where

this commonly occurs is when standard

CV (see ‘‘do evaluate a model multiple

times’’) is applied to time-series data, as

it results in the training folds in all but

one of the CV iterations containing data

that are in the future relative to the test

fold. This can be avoided by using special

forms of CV that respect temporal depen-
dencies, such as blocked CV, though whether this is necessary

depends, to some extent, on the nature of the time-series data,

e.g., whether it is stationary or non-stationary. See Cerqueira

et al.55 and Wang and Ruf56 for more on this. Look-ahead bias

can also result from carrying out data-dependent preprocessing

operations before splitting off the test data; see Figure 7 for a

simple example of this, but also see ‘‘do be careful where and

how you do feature selection.’’

HOW TO COMPARE MODELS FAIRLY

Comparing models is the basis of academic research, but it is

surprisingly difficult to get it right. If you carry out a comparison

unfairly and publish it, then other researchers may subsequently

be led astray. So, do make sure that you evaluate different

models within the same context, explore multiple perspectives,

and make correct use of statistical tests.

Do not assume a bigger number means a better model
It is not uncommon for a paper to state something like ‘‘in previ-

ous research, accuracies of up to 94%were reported. Ourmodel

achieved 95% and is therefore better.’’ There are various rea-

sons why a higher figure does not imply a better model. For

instance, if themodels were trained or evaluated on different par-

titions of the same dataset, then small differences in perfor-

mance may be due to this. If the datasets had different degrees

of class imbalance, then the difference in accuracy could merely

reflect this (see ‘‘do choose metrics carefully’’). If they used

different datasets entirely, then this may account for even large

differences in performance. Another reason for unfair compari-

sons is the failure to carry out the same amount of hyperpara-

meter optimization (see ‘‘do optimize your model’s hyperpara-

meters’’) when comparing models; for instance, if one model

has default settings and the other has been optimized, then the

comparison will not be fair. For these reasons and others, com-

parisons based on published figures should always be treated

with caution. To be sure of a fair comparison between two



Figure 7. See ‘‘do not ignore temporal dependencies in time-series data’’
(Top) A time series is scaled to the interval ½0; 1� before splitting off the test data (shown in red). This could allow the model to infer that values will increase in the
future, causing a potential look ahead bias. (Bottom) Instead, the data should be split before doing scaling so that information about the range of the test data
cannot leak into the training data.

ll
OPEN ACCESSTutorial
approaches, you should freshly implement all themodels you are

comparing, optimize each one to the same degree, carry out

multiple evaluations (see ‘‘do evaluate a model multiple times’’),

and then use statistical tests (see ‘‘do use statistical tests when

comparingmodels’’) to determinewhether the differences in per-

formance are significant. A further complication when comparing

foundation models (see ‘‘do keep up with progress in deep

learning (and its pitfalls)’’) it that the original training data are

often unknown; consequently, it may be impossible to ensure

that the test set is independent of the training data and, there-

fore, a fair basis for comparison.
Do use meaningful baselines
When introducing a new modeling approach, it is essential to

compare against established approaches. These are commonly

referred to as baseline models or just baselines. It is important

that these baselines are selected so that they provide ameaning-

ful basis for comparison. Baselines are often simpler than

the new approach and are chosen to demonstrate that any

complexity in the new model is necessary. For example, if you

are extending model X, then it makes sense to use model X as

a baseline. However, it also makes sense to use other, simpler

models. For instance, if you are developing a deep learning
Patterns 5, October 11, 2024 11



ll
OPEN ACCESS Tutorial
approach that uses tabular data, then you should also compare

against simpler models like decision trees and SVMs to show

that a more complex approach is justified. If you are solving a

regression problem, then you should also consider using simple

baselines like logistic regression. The simplest baselines are

known as naive baselines and used to show that your model is

not doing something trivial. An illustrative example of why these

are necessary is described in Hewamalage et al.,53 where a com-

plex transformer model designed for time-series forecasting is

shown to perform worse than a naive baseline that always fore-

casts the next value in a time series to be the same as the previ-

ous value. This kind of naive baseline, in which there is no real de-

cision-making process, is also known as a dummy model.

Another example is a classifier that always outputs the most

frequent class label (as described in ‘‘do choose metrics care-

fully’’). In addition to simple baselines, it is also important to

compare against state-of-the-art models. Otherwise, you may

be asked something like ‘‘why are you extending model X

when model Y is known to be better than model X?’’

Do use statistical tests when comparing models
If you want to convince people that your model is better than

someone else’s, then a statistical test can be a useful tool.

Broadly speaking, there are two categories of tests for

comparing individual MLmodels. The first is used to compare in-

dividual model instances, e.g., two trained decision trees. For

example, McNemar’s test is a fairly common choice for

comparing two classifiers and works by comparing the classi-

fiers’ output labels for each sample in the test set (so do

remember to record these). The second category is tests that

are used to compare two models more generally, e.g., whether

a decision tree or a neural network is a better fit for the data.

These require multiple evaluations of each model (see ‘‘do eval-

uate a model multiple times’’), which you can get by using CV or

repeated resampling (or, if your training algorithm is stochastic,

multiple repeats using the same data). The test then compares

the two resulting distributions. The Student’s t test is a common

choice for this kind of comparison, but it is only reliable when the

distributions are normally distributed, which is often not the case.

A safer bet is Mann-Whitney’s U test, as this does not assume

that the distributions are normal. For more information, see

Raschka57 and Carrasco et al.58 See also ‘‘do correct for multiple

comparisons’’ and ‘‘do be careful when reporting statistical sig-

nificance.’’

Do correct for multiple comparisons
Things get a bit more complicated when you want to use statis-

tical tests to compare more than two models, as doing multiple

pairwise tests is a bit like using the test set multiple times—it

can lead to overly optimistic interpretations of significance. Basi-

cally, each time you carry out a comparison between twomodels

using a statistical test, there is a probability that it will discover

significant differences where there are not any. This is repre-

sented by the confidence level of the test, usually set at 95%:

meaning that 1 in 20 times, it will give you a false positive. For

a single comparison, this may be a level of uncertainty that you

can live with. However, it accumulates. That is, if you do 20 pair-

wise tests with a confidence level of 95%, then one of them is

likely to give you the wrong answer. This is known as the multi-
12 Patterns 5, October 11, 2024
plicity effect and is an example of a broader issue in data science

known (at least when done intentionally) as data dredging or

p-hacking.59 To address this problem, you can apply a correc-

tion formultiple tests. Themost common approach is the Bonfer-

roni correction, a very simplemethod that lowers the significance

threshold based on the number of tests that are being carried

out; see Salzberg60 for a gentle introduction. However, there

are numerous other approaches, and there is also some debate

about when and where these corrections should be applied; for

an accessible overview, see Streiner.61

Do not always believe results from community
benchmarks
In certain problem domains, it has become commonplace to use

benchmark datasets to evaluate newMLmodels. The idea is that

because everyone is using the same data to train and test their

models, then comparisons will be more transparent. Unfortu-

nately, this approach has somemajor drawbacks. First, if access

to the test set is unrestricted, then you cannot assume that peo-

ple have not used it as part of the training process. This is known

as ‘‘training to the test set’’ and leads to results that are heavily

overoptimistic. A more subtle problem is that even if everyone

who uses the data only uses the test set once, collectively, the

test set is being used many times by the community. In effect,

by comparing lots of models on the same test set, it becomes

increasingly likely that the best model just happens to overfit

the test set and does not necessarily generalize any better

than the other models (see ‘‘do correct for multiple compari-

sons’’ and ‘‘do avoid sequential overfitting’’). For these and other

reasons, you should be careful how much you read into results

from a benchmark dataset, and do not assume that a small in-

crease in performance is significant. This is particularly the

case where foundation models (see ‘‘do keep up with progress

in deep learning (and its pitfalls)’’) are used, as it is possible

that their training data included the test sets from community

benchmarks. See Paullada et al.11 for a wider discussion of is-

sues surrounding the use of shared datasets. See also ‘‘do report

performance in multiple ways.’’

Do combine models (carefully)
While this section focuses on comparing models, it is good to be

aware that ML is not always about choosing between models.

Often, it makes sense to use combinations of models. Different

ML models explore different trade-offs; by combining them,

you can sometimes compensate for the weaknesses of one

model by using the strengths of another model, and vice versa.

Ensembles are a well-established group of composite models.

There are lots of ensemble learning approaches—see Dong

et al.62 for a review—but they can be roughly divided into those

that form ensembles out of the same basemodel type (examples

include random forests, bagging, and boosting) and those that

combine different types of ML models. An example of the latter

is stacked generalization (or stacking), where a model is trained

to aggregate the outputs of a group of base models. However,

ensembles are not the only kind of composition. Another,

increasingly common form of composition occurs when embed-

ding models (such as autoencoders or foundation models such

as BERT) are used to provide input to other models. When using

stacking or embedding, it is important to ensure that no data



ll
OPEN ACCESSTutorial
leaks (see ‘‘do not allow test data to leak into the training pro-

cess’’) occur, i.e., that the test data used to measure the perfor-

mance of the composite model are not used in the training of any

of its components. This is a common pitfall, especially when the

model components are trained on overlapping data. To reduce

the likelihood of sequential overfitting (see ‘‘do avoid sequential

overfitting’’), it is also advisable to use a separate test set to eval-

uate the composite model.

HOW TO REPORT YOUR RESULTS

The aim of academic research is not self-aggrandizement but

rather having an opportunity to contribute to knowledge. In order

to effectively contribute to knowledge, you need to provide a

complete picture of your work, covering both what worked and

what did not. ML is often about trade-offs—it is very rare that

one model is better than another in every way that matters—

and you should try to reflect this with a nuanced and considered

approach to reporting results and conclusions.

Do be transparent
First of all, always try to be transparent about what you have

done and what you have discovered, as this will make it easier

for other people to build upon your work. In particular, it is

good practice to share your models in an accessible way. For

instance, if you used a script to implement all your experiments,

then share the script when you publish the results. This means

that other people can easily repeat your experiments, which

adds confidence to your work. It also makes it a lot easier for

people to compare models since they no longer have to reimple-

ment everything from scratch in order to ensure a fair compari-

son. Knowing that you will be sharing your work also encourages

you to be more careful, document your experiments well, and

write clean code, which benefits you as much as anyone else.

It is also worth noting that issues surrounding reproducibility

are gaining prominence in the ML community, so in the future,

you may not be able to publish work unless your workflow is

adequately documented and shared—for example, see Pineau

et al.63 Checklists (‘‘do use an ML checklist’’) are useful for

knowing what to include in your workflow. You might also find

experiment tracking frameworks, such as MLflow,64 useful for

recording your workflow.

Do report performance in multiple ways
One way to achieve better rigor when evaluating and comparing

models is to use multiple datasets. This helps to overcome any

deficiencies associated with individual datasets (see ‘‘do not al-

ways believe results from community benchmarks’’) and allows

you to present a more complete picture of your model’s perfor-

mance. It is also good practice to report multiple metrics for each

dataset since different metrics can present different perspec-

tives on the results and increase the transparency of your

work. For example, if you use accuracy, it is also a good idea

to include metrics that are less sensitive to class imbalances

(see ‘‘do choose metrics carefully’’). In domains such as medi-

cine and security, it is important to know where errors are being

made; for example, when your model gets things wrong, is it

more inclined to false positives or false negatives? Metrics that

summarize everything in one number, such as accuracy, give
no insight into this. So, it is important to also include partial met-

rics such as precision and recall or sensitivity and specificity, as

these do provide insight into the types of errors your model pro-

duces. Andmake sure it is clear which metrics you are using. For

instance, if you report F-scores, be clear whether this is F1 or

some other balance between precision and recall. If you report

AUC, indicate whether this is the area under the ROC curve or

the PR curve. For a broader discussion, see Blagec et al.65

Do not generalize beyond the data
It is important not to present invalid conclusions, as this can lead

other researchers astray. A common mistake is to make general

statements that are not supported by the data used to train and

evaluate models. For instance, if your model does really well on

one dataset, then this does not mean that it will do well on other

datasets. While you can get more robust insights by using multi-

ple datasets (see ‘‘do report performance in multiple ways’’),

there will always be a limit to what you can infer from any exper-

imental study. There are numerous reasons for this,11 many of

which are to do with how datasets are curated. One common

issue is bias, or sampling error: that the data are not sufficiently

representative of the real world. Another is overlap: multiple da-

tasets may not be independent and may have similar biases.

There is also the issue of quality, and this is a particular issue

in deep learning datasets, where the need for quantity of data

limits the amount of quality checking that can be done. So, in

short, do not overplay your findings, and be aware of their

limitations.

Do be careful when reporting statistical significance
I have already discussed statistical tests (see ‘‘do use statistical

tests when comparing models’’) and how they can be used to

determine differences between ML models. However, statistical

tests are not perfect. Some are conservative and tend to under-

estimate significance; others are liberal and tend to overestimate

significance. This means that a positive test does not always

indicate that something is significant, and a negative test does

not necessarily mean that something is not significant. Then,

there is the issue of using a threshold to determine significance;

for instance, a 95% confidence threshold (i.e., when p < 0.05)

means that 1 in 20 times a difference is flagged as significant,

it will not be significant. In fact, statisticians are increasingly

arguing that it is better not to use thresholds and instead just

report p values and leave it to the reader to interpret these.66

Beyond statistical significance, another thing to consider is

whether the difference between two models is actually impor-

tant. If you have enough samples, you can always find significant

differences, even when the actual difference in performance is

miniscule. To give a better indication of whether something is

important, you can measure effect size. There are a range of ap-

proaches used for this: Cohen’s d statistic is probably the most

common, but more robust approaches, such as Kolmogorov-

Smirnov, are preferable. For more on effect size and reporting

statistical significance, see Aguinis et al.67 You might also

consider using Bayesian statistics; although there is less guid-

ance and tool support available, these theoretically have a

lot going for them, and they avoid many of the pitfalls associated

with traditional statistical tests—see Benavoli et al.68 for

more info.
Patterns 5, October 11, 2024 13



Figure 8. See ‘‘do look at your models’’
Using saliencymaps to analyze vision-based deep
learning models. Imagine these two maps (in red)
were generated for the image shown in the center,
for two different deep learning models trained on
the kind of tank recognition data mentioned in ‘‘do
avoid learning spurious correlations.’’ Darker
colors indicate features that are of greater impor-
tance to the model, so the model on the left (which
predominantly focuses on the components of the
tank) is likely to generalize much better than the
one on the right (which predominantly focuses on
the background of the image).

ll
OPEN ACCESS Tutorial
Do look at your models
Trainedmodels contain a lot of useful information. Unfortunately,

many authors just report the performance metrics of a trained

model without giving any insight into what it actually learnt.

Remember that the aim of research is not to get a slightly higher

accuracy than everyone else. Rather, it is to generate knowledge

and understanding and share this with the research community.

If you can do this, then you are much more likely to get a decent

publication out of your work. So, do look inside your models and

try to understand how they reach a decision. For relatively simple

models like decision trees, it can also be beneficial to provide vi-

sualizations of your models, and most libraries have functions

that will do this for you. For more complex models, there are a

range of XAI techniques that can be used. Some of these are

model specific, and others are model agnostic. Well-established

examples of the latter are local-interpretable model-agnostic ex-

planations (LIME) and Shapley additive explanations (SHAP);

both give insights into which features are important for a model.

For CNNs and vision transformers, a common approach is to use

saliency maps, which show the importance of different parts of

an input image—see Figure 8 for an illustrative example. Grad-

CAM is a popular technique for generating these, but there are

plenty of other methods too. For non-vision transformers, a com-

mon approach is to visualize attention weights. See Dwivedi

et al.69 for a survey of XAI techniques and Ali et al.70 for a discus-

sion of the limitations of current approaches. While XAI tech-

niques can give you useful insights into a model’s behavior, it

is important to bear in mind that they are unlikely to tell you

exactly what a model is doing. This is particularly the case for

deep learning models (see ‘‘do not assume deep learning will

be the best approach’’), whose complexity makes their behavior

inherently difficult to analyze. For complex models, ablation

studies71 can also be useful. This involves successively

removing parts of the model to see what is important and can

result in a simpler model that is more amenable to analysis.

Do use an ML checklist
This guide aims to give an appreciation of the main things that

can go wrong during ML plus provide some guidance on how

to avoid these things from going wrong. Checklists, on the other

hand, are designed to take you more formally through the ML

pipeline and encourage you to document (and,more importantly,

think about) how your implementation decisions support a

meaningful outcome. In some domains, e.g., certain fields of

medicine, it is compulsory to complete a checklist before sub-

mitting a paper for publication. However, beyond their quality

assurance role, checklists are arguably most useful at the start
14 Patterns 5, October 11, 2024
of a study when it comes to planning an ML pipeline. Since I

am one of the authors, I would particularly encourage you to

look at REFORMS,72 which is a combined checklist and set of

consensus-based recommendations for doing ML-based sci-

ence (although much of it is also applicable to ML practice

more generally). Other, more domain-specific checklists are

also available.
CONCLUSIONS

ML is becoming an important part of people’s lives, yet the prac-

tice of ML is arguably in its infancy. There are many easy-to-

makemistakes that can cause anMLmodel to appear to perform

well when, in reality, it does not. In turn, this has the potential to

misinform when these models are published and the potential to

cause harm if these models are ever deployed. This guide de-

scribes the most common of these mistakes and also touches

upon more general issues of good practice in ML, such as fair-

ness, transparency, and the avoidance of bias. It also offers

advice on avoiding these pitfalls. However, new threats continue

to emerge as new approaches to ML are developed, and it is

therefore important for users of ML to remain vigilant. This is

the nature of a fast-moving research area—the theory of how

to do ML almost always lags behind the practice, practitioners

will always disagree about the best ways of doing things, and

what we think is correct today may not be correct tomorrow.
DECLARATION OF INTERESTS

The author declares no competing interests.
REFERENCES

1. Liao, T., Taori, R., Raji, I.D., and Schmidt, L. (2021). Are we learning yet?
A meta review of evaluation failures across machine learning. In Thirty-
Fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2) https://openreview.net/forum?
id=mPducS1MsEK.

2. Gibney, E. (2022). Is AI fuelling a reproducibility crisis in science? Nature
608, 250–251. https://doi.org/10.1038/d41586-022-02035-w.

3. Stevens, L.M., Mortazavi, B.J., Deo, R.C., Curtis, L., and Kao, D.P. (2020).
Recommendations for reporting machine learning analyses in clinical
research. Circ. Cardiovasc. Qual. Outcomes 13, e006556. https://doi.
org/10.1161/CIRCOUTCOMES.120.006556.

4. Whalen, S., Schreiber, J., Noble, W.S., and Pollard, K.S. (2022). Navigating
the pitfalls of applying machine learning in genomics. Nat. Rev. Genet. 23,
169–181. https://doi.org/10.1038/s41576-021-00434-9.

https://openreview.net/forum?id=mPducS1MsEK
https://openreview.net/forum?id=mPducS1MsEK
https://doi.org/10.1038/d41586-022-02035-w
https://doi.org/10.1161/CIRCOUTCOMES.120.006556
https://doi.org/10.1161/CIRCOUTCOMES.120.006556
https://doi.org/10.1038/s41576-021-00434-9


ll
OPEN ACCESSTutorial
5. Zhu, J.-J., Yang, M., and Ren, Z.J. (2023). Machine learning in environ-
mental research: common pitfalls and best practices. Environ. Sci. Tech-
nol. 57, 17671–17689. https://doi.org/10.1021/acs.est.3c00026.

6. Karande, P., Gallagher, B., and Han, T.Y.-J. (2022). A strategic approach
to machine learning for material science: How to tackle real-world chal-
lenges and avoid pitfalls. Chem. Mater. 34, 7650–7665. https://doi.org/
10.1021/acs.chemmater.2c01333.

7. Van Giffen, B., Herhausen, D., and Fahse, T. (2022). Overcoming the pit-
falls and perils of algorithms: A classification of machine learning biases
and mitigation methods. J. Bus. Res. 144, 93–106. https://doi.org/10.
1016/j.jbusres.2022.01.076.

8. Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressneg-
ger, C., Cavallaro, L., and Rieck, K. (2022). Dos and don’ts of machine
learning in computer security. In 31st USENIX Security Symposium
(USENIX Security 22), pp. 3971–3988. https://www.usenix.org/system/
files/sec22-arp.pdf.

9. Malik, M.M. (2020). A hierarchy of limitations in machine learning. Preprint
at arXiv. https://doi.org/10.48550/arXiv.2002.05193.

10. Lones, M.A. (2021). How to avoid machine learning pitfalls: a guide for ac-
ademic researchers. Preprint at arXiv. https://doi.org/10.48550/arXiv.
2108.02497.

11. Paullada, A., Raji, I.D., Bender, E.M., Denton, E., and Hanna, A. (2021).
Data and its (dis)contents: A survey of dataset development and use inma-
chine learning research. Patterns 2, 100336. https://doi.org/10.1016/j.
patter.2021.100336.

12. Cox, V. (2017). Exploratory data analysis. In Translating Statistics to Make
Decisions (Springer), pp. 47–74.

13. Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., and
Tabona, O. (2021). A survey on missing data in machine learning. J. Big
Data 8, 140. https://doi.org/10.1186/s40537-021-00516-9.

14. Côté, P.-O., Nikanjam, A., Ahmed, N., Humeniuk, D., and Khomh, F.
(2024). Data cleaning and machine learning: a systematic literature
review. Autom. Software Eng. 31, 54. https://doi.org/10.1007/s10515-
024-00453-w.

15. Côté, P.-O., Nikanjam, A., Ahmed, N., Humeniuk, D., and Khomh, F.
(2024). Data cleaning andmachine learning: a systematic literature review.
Preprint at arXiv. https://doi.org/10.48550/arXiv.2310.01765.

16. Wang, Z., Wang, P., Liu, K., Wang, P., Fu, Y., Lu, C.-T., Aggarwal, C.C.,
Pei, J., and Zhou, Y. (2024). A comprehensive survey on data augmenta-
tion. Preprint at arXiv. https://doi.org/10.48550/arXiv.2405.09591.

17. Iglesias, G., Talavera, E., González-Prieto, Á., Mozo, A., and Gómez-Can-
aval, S. (2023). Data augmentation techniques in time series domain: a sur-
vey and taxonomy. Neural Comput. Appl. 35, 10123–10145. https://doi.
org/10.1007/s00521-023-08459-3.

18. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., and Bing, G.
(2017). Learning from class-imbalanced data: Review of methods and ap-
plications. Expert Syst. Appl. 73, 220–239. https://doi.org/10.1016/j.eswa.
2016.12.035.

19. Rudin, C. (2019). Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nat. Mach.
Intell. 1, 206–215. https://doi.org/10.1038/s42256-019-0048-x.

20. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D.,
Chaudhary, V., Young, M., Crespo, J.-F., and Dennison, D. (2015). Hidden
technical debt in machine learning systems. Adv. Neural Inf. Process.
Syst. 28, 2503–2511. https://papers.nips.cc/paper/2015/file/86df7dcfd
896fcaf2674f757a2463eba-Paper.pdf.

21. Kreuzberger, D., K€uhl, N., and Hirschl, S. (2023). Machine learning opera-
tions (MLOps): Overview, definition, and architecture. IEEE Access 11,
31866–31879. https://doi.org/10.1109/ACCESS.2023.3262138.

22. Shankar, S., Garcia, R., Hellerstein, J.M., and Parameswaran, A.G. (2022).
Operationalizing machine learning: An interview study. Preprint at arXiv.
https://doi.org/10.48550/arXiv.2209.09125.

23. Kapoor, S., and Narayanan, A. (2023). Leakage and the reproducibility
crisis in machine-learning-based science. Patterns 4, 100804. https://
doi.org/10.1016/j.patter.2023.100804.
24. Wolpert, D.H. (2002). The Supervised Learning No-Free-Lunch Theorems.
In Soft Computing and Industry, R. Roy, M. Köppen, S. Ovaska, T. Furuha-
shi, and F. Hoffmann, eds. (Springer), pp. 25–42. https://doi.org/10.1007/
978-1-4471-0123-9_3.

25. Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., andMu-
eller, A. (2015). Scikit-learn: Machine learning without learning themachin-
ery. GetMobile: Mobile Comput. Commun. 19, 29–33. https://doi.org/10.
1145/2786984.2786995.

26. Kuhn, M., and Wickham, H. (2020). Tidymodels: a collection of packages
for modeling and machine learning using tidyverse principles. https://
www.tidymodels.org.

27. Blaom, A., Kiraly, F., Lienart, T., Simillides, Y., Arenas, D., and Vollmer, S.
(2020). MLJ: A Julia package for composable machine learning. J. Open
Source Softw. 5, 2704. https://doi.org/10.21105/joss.02704.

28. Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2022). A survey of convolu-
tional neural networks: analysis, applications, and prospects. IEEE Trans-
act. Neural Networks Learn. Syst. 33, 6999–7019. https://doi.org/10.1109/
TNNLS.2021.3084827.

29. Li, Z., Yang,W., Peng, S., and Liu, F. (2020). A survey of convolutional neu-
ral networks: analysis, applications, and prospects. Preprint at arXiv.
https://doi.org/10.48550/arXiv.2004.02806.

30. Lin, T., Wang, Y., Liu, X., and Qiu, X. (2022). A survey of transformers. AI
Open 3, 111–132. https://doi.org/10.1016/j.aiopen.2022.10.001.

31. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., and Shah, M.
(2022). Transformers in vision: A survey. ACM Comput. Surv. 54, 1–41.
https://doi.org/10.1145/3505244.

32. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., and Shah, M.
(2022). Transformers in vision: A survey. Preprint at arXiv. https://doi.
org/10.48550/arXiv.2101.01169.

33. Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang,
A., Zhang, L., et al. (2021). Pre-trainedmodels: Past, present and future. AI
Open 2, 225–250. https://doi.org/10.1016/j.aiopen.2021.08.002.

34. Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C., Yan, Q.,
He, L., et al. (2023). A comprehensive survey on pretrained foundation
models: A history from BERT to ChatGPT. Preprint at arXiv. https://doi.
org/10.48550/arXiv.2302.09419.

35. Li, H., Chen, Y., Luo, J., Kang, Y., Zhang, X., Hu, Q., Chan, C., and Song, Y.
(2023). Privacy in large language models: Attacks, defenses and future di-
rections. Preprint at arXiv. https://doi.org/10.48550/arXiv.2310.10383.

36. Zhang, A., Lipton, Z.C., Li, M., and Smola, A.J. (2023). Dive into Deep
Learning (Cambridge University Press). https://d2l.ai.

37. Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Network. 61, 85–117. https://doi.org/10.1016/j.neunet.2014.
09.003.

38. Schmidhuber, J. (2014). Deep learning in neural networks: An overview.
Preprint at arXiv. https://doi.org/10.48550/arXiv.1404.7828.

39. Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based
models still outperform deep learning on typical tabular data? Adv.
Neural Inf. Process. Syst. 35, 507–520. https://openreview.net/pdf?
id=Fp7__phQszn.

40. Zeng, A., Chen,M., Zhang, L., and Xu, Q. (2023). Are transformers effective
for time series forecasting? Proc. AAAI Conf. Artif. Intell. 37, 11121–11128.
https://ojs.aaai.org/index.php/AAAI/article/view/26317/26089.

41. Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck,
C.A., Casalicchio, G., Grosse-Wentrup, M., and Bischl, B. (2020). General
pitfalls of model-agnostic interpretation methods for machine learning
models. In International Workshop on Extending Explainable AI Beyond
Deep Models and Classifiers (Springer), pp. 39–68. https://doi.org/10.
1007/978-3-031-04083-2_4.

42. Cai, J., Luo, J., Wang, S., and Yang, S. (2018). Feature selection in ma-
chine learning: A new perspective. Neurocomputing 300, 70–79. https://
doi.org/10.1016/j.neucom.2017.11.077.

43. Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas,
J., Ullmann, T., Becker, M., Boulesteix, A.-L., et al. (2023). Hyperparameter
Patterns 5, October 11, 2024 15

https://doi.org/10.1021/acs.est.3c00026
https://doi.org/10.1021/acs.chemmater.2c01333
https://doi.org/10.1021/acs.chemmater.2c01333
https://doi.org/10.1016/j.jbusres.2022.01.076
https://doi.org/10.1016/j.jbusres.2022.01.076
https://www.usenix.org/system/files/sec22-arp.pdf
https://www.usenix.org/system/files/sec22-arp.pdf
https://doi.org/10.48550/arXiv.2002.05193
https://doi.org/10.48550/arXiv.2108.02497
https://doi.org/10.48550/arXiv.2108.02497
https://doi.org/10.1016/j.patter.2021.100336
https://doi.org/10.1016/j.patter.2021.100336
http://refhub.elsevier.com/S2666-3899(24)00188-0/sref12
http://refhub.elsevier.com/S2666-3899(24)00188-0/sref12
https://doi.org/10.1186/s40537-021-00516-9
https://doi.org/10.1007/s10515-024-00453-w
https://doi.org/10.1007/s10515-024-00453-w
https://doi.org/10.48550/arXiv.2310.01765
https://doi.org/10.48550/arXiv.2405.09591
https://doi.org/10.1007/s00521-023-08459-3
https://doi.org/10.1007/s00521-023-08459-3
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1038/s42256-019-0048-x
https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://doi.org/10.1109/ACCESS.2023.3262138
https://doi.org/10.48550/arXiv.2209.09125
https://doi.org/10.1016/j.patter.2023.100804
https://doi.org/10.1016/j.patter.2023.100804
https://doi.org/10.1007/978-1-4471-0123-9_3
https://doi.org/10.1007/978-1-4471-0123-9_3
https://doi.org/10.1145/2786984.2786995
https://doi.org/10.1145/2786984.2786995
https://www.tidymodels.org
https://www.tidymodels.org
https://doi.org/10.21105/joss.02704
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.48550/arXiv.2004.02806
https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.1145/3505244
https://doi.org/10.48550/arXiv.2101.01169
https://doi.org/10.48550/arXiv.2101.01169
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.48550/arXiv.2302.09419
https://doi.org/10.48550/arXiv.2302.09419
https://doi.org/10.48550/arXiv.2310.10383
https://d2l.ai
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.48550/arXiv.1404.7828
https://openreview.net/pdf?id=Fp7__phQszn
https://openreview.net/pdf?id=Fp7__phQszn
https://ojs.aaai.org/index.php/AAAI/article/view/26317/26089
https://doi.org/10.1007/978-3-031-04083-2_4
https://doi.org/10.1007/978-3-031-04083-2_4
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.neucom.2017.11.077


ll
OPEN ACCESS Tutorial
optimization: Foundations, algorithms, best practices, and open chal-
lenges. WIREs Data Min. &. Knowl. 13, e1484. https://doi.org/10.1002/
widm.1484.

44. Barbudo, R., Ventura, S., and Romero, J.R. (2023). Eight years of AutoML:
categorisation, review and trends. Knowl. Inf. Syst. 65, 5097–5149. https://
doi.org/10.1007/s10115-023-01935-1.

45. Branwen, G. (2011). The neural net tank urban legend. https://gwern.
net/tank.

46. Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S.,
Aviles-Rivero, A.I., Etmann, C., McCague, C., Beer, L., et al. (2021).
Common pitfalls and recommendations for using machine learning
to detect and prognosticate for COVID-19 using chest radiographs
and CT scans. Nat. Mach. Intell. 3, 199–217. https://doi.org/10.1038/
s42256-021-00307-0.

47. Vandewiele, G., Dehaene, I., Kovács, G., Sterckx, L., Janssens, O., Onge-
nae, F., De Backere, F., De Turck, F., Roelens, K., Decruyenaere, J., et al.
(2021). Overly optimistic prediction results on imbalanced data: a case
study of flaws and benefits when applying over-sampling. Artif. Intell.
Med. 111, 101987. https://doi.org/10.1016/j.artmed.2020.101987.

48. Vandewiele, G., Dehaene, I., Kovács, G., Sterckx, L., Janssens, O., Onge-
nae, F., De Backere, F., De Turck, F., Roelens, K., Decruyenaere, J., et al.
(2020). Overly optimistic prediction results on imbalanced data: a case
study of flaws and benefits when applying over-sampling. Preprint at ar-
Xiv. https://doi.org/10.48550/arXiv.2001.06296.

49. Hosseini, M., Powell, M., Collins, J., Callahan-Flintoft, C., Jones, W.,
Bowman, H., and Wyble, B. (2020). I tried a bunch of things: The
dangers of unexpected overfitting in classification of brain data. Neurosci.
Biobehav. Rev. 119, 456–467. https://doi.org/10.1016/j.neubiorev.2020.
09.036.

50. Powell, M., Hosseini, M., Collins, J., Callahan-Flintoft, C., Jones, W.,
Bowman, H., and Wyble, B. (2016). I tried a bunch of things: the dangers
of unexpected overfitting in classification. Preprint at bioRxiv. https://
doi.org/10.1101/078816.

51. Cawley, G.C., and Talbot, N.L. (2010). On over-fitting in model selection
and subsequent selection bias in performance evaluation. J. Mach. Learn.
Res. 11, 2079–2107. https://www.jmlr.org/papers/volume11/cawley10a/
cawley10a.pdf.

52. Arlot, S., and Celisse, A. (2010). A survey of cross-validation procedures
for model selection. Stat. Surv. 4, 40–79. https://doi.org/10.1214/
09-SS054.

53. Hewamalage, H., Ackermann, K., and Bergmeir, C. (2023). Forecast eval-
uation for data scientists: common pitfalls and best practices. Data
Min. Knowl. Discov. 37, 788–832. https://doi.org/10.1007/s10618-022-
00894-5.

54. Caton, S., and Haas, C. (2024). Fairness in machine learning: A survey.
ACM Comput. Surv. 56, 1–38. https://doi.org/10.1145/3616865.

55. Cerqueira, V., Torgo, L., and Mozeti�c, I. (2020). Evaluating time series
forecasting models: An empirical study on performance estimation
methods. Mach. Learn. 109, 1997–2028. https://doi.org/10.1007/
s10994-020-05910-7.

56. Ruf, J., and Wang, W. (2022). Information leakage in backtesting. SSRN.
https://doi.org/10.2139/ssrn.3836631.

57. Raschka, S. (2020). Model evaluation, model selection, and algorithm se-
lection in machine learning. Preprint at arXiv. https://doi.org/10.48550/ar-
Xiv.1811.12808.

58. Carrasco, J., Garcı́a, S., Rueda,M., Das, S., and Herrera, F. (2020). Recent
trends in the use of statistical tests for comparing swarm and evolutionary
computing algorithms: Practical guidelines and a critical review. Swarm
Evol. Comput. 54, 100665. https://doi.org/10.1016/j.swevo.2020.100665.

59. Stefan, A.M., and Schönbrodt, F.D. (2023). Big little lies: A compendium
and simulation of p-hacking strategies. R. Soc. Open Sci. 10, 220346.
https://doi.org/10.1098/rsos.220346.
16 Patterns 5, October 11, 2024
60. Salzberg, S.L. (1997). On comparing classifiers: Pitfalls to avoid and a rec-
ommended approach. Data Min. Knowl. Discov. 1, 317–328. https://doi.
org/10.1023/A:1009752403260.

61. Streiner, D.L. (2015). Best (but oft-forgotten) practices: the multiple prob-
lems of multiplicity—whether and how to correct for many statistical tests.
Am. J. Clin. Nutr. 102, 721–728. https://doi.org/10.3945/ajcn.115.113548.

62. Dong, X., Yu, Z., Cao, W., Shi, Y., andMa, Q. (2020). A survey on ensemble
learning. Front. Comput. Sci. 14, 241–258. https://doi.org/10.1007/
s11704-019-8208-z.

63. Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A.,
d’Alché Buc, F., Fox, E., and Larochelle, H. (2021). Improving reproduc-
ibility in machine learning research (a report from the NeurIPS 2019 repro-
ducibility program). J. Mach. Learn. Res. 22, 1–20. https://www.jmlr.org/
papers/volume22/20-303/20-303.pdf.

64. Chen, A., Chow, A., Davidson, A., DCunha, A., Ghodsi, A., Hong, S.A.,
Konwinski, A., Mewald, C., Murching, S., Nykodym, T., et al. (2020). Devel-
opments in MLflow: A system to accelerate the machine learning lifecycle.
In Proceedings of the Fourth InternationalWorkshop onDataManagement
for End-to-End Machine Learning, pp. 1–4. https://doi.org/10.1145/
3399579.3399867.

65. Blagec, K., Dorffner, G., Moradi, M., and Samwald, M. (2020). A critical
analysis of metrics used for measuring progress in artificial intelligence.
Preprint at arXiv. https://doi.org/10.48550/arXiv.2008.02577.

66. Betensky, R.A. (2019). The p-value requires context, not a threshold.
Am. Statistician 73, 115–117. https://doi.org/10.1080/00031305.2018.
1529624.

67. Aguinis, H., Vassar, M., andWayant, C. (2021). On reporting and interpret-
ing statistical significance and p values in medical research. BMJ Evid.
Based. Med. 26, 39–42. https://doi.org/10.1136/bmjebm-2019-111264.

68. Benavoli, A., Corani, G., Dem�sar, J., and Zaffalon, M. (2017). Time for a
change: a tutorial for comparing multiple classifiers through Bayesian
analysis. J. Mach. Learn. Res. 18, 2653–2688. https://jmlr.org/papers/
v18/16-305.html.

69. Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian, B.,
Wen, Z., Shah, T., Morgan, G., and Ranjan, R. (2023). Explainable AI
(XAI): Core ideas, techniques, and solutions. ACM Comput. Surv. 55,
1–33. https://doi.org/10.1145/3561048.

70. Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J.M.,
Confalonieri, R., Guidotti, R., Del Ser, J., Dı́az-Rodrı́guez, N., and Herrera,
F. (2023). Explainable Artificial Intelligence (XAI): What we know and what
is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 99, 101805.
https://doi.org/10.1016/j.inffus.2023.101805.

71. Meyes, R., Lu, M., de Puiseau, C.W., and Meisen, T. (2019). Ablation
studies in artificial neural networks. Preprint at arXiv. https://doi.org/10.
48550/arXiv.1901.08644.

72. Kapoor, S., Cantrell, E.M., Peng, K., Pham, T.H., Bail, C.A., Gundersen,
O.E., Hofman, J.M., Hullman, J., Lones, M.A., Malik, M.M., et al. (2024).
REFORMS: Consensus-based recommendations for machine-learning-
based science. Sci. Adv. 10, eadk3452. https://doi.org/10.1126/sciadv.
adk3452.

About the author
Michael Lones is a professor of computer science at Heriot-Watt University in
Edinburgh, UK. He completed his PhD at the University of York in 2003 and has
worked in machine learning and optimization for over 20 years, applying these
approacheswithin diverse areas, including biology, medicine, security, control
systems, computer vision, and robotics. This has given him ample experience
in the things that can go wrong. He has authored around 100 publications and
also writes for a more general audience at https://fetchdecodeexecute.
substack.com.

https://doi.org/10.1002/widm.1484
https://doi.org/10.1002/widm.1484
https://doi.org/10.1007/s10115-023-01935-1
https://doi.org/10.1007/s10115-023-01935-1
https://gwern.net/tank
https://gwern.net/tank
https://doi.org/10.1038/s42256-021-00307-0
https://doi.org/10.1038/s42256-021-00307-0
https://doi.org/10.1016/j.artmed.2020.101987
https://doi.org/10.48550/arXiv.2001.06296
https://doi.org/10.1016/j.neubiorev.2020.09.036
https://doi.org/10.1016/j.neubiorev.2020.09.036
https://doi.org/10.1101/078816
https://doi.org/10.1101/078816
https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf
https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf
https://doi.org/10.1214/09-SS054
https://doi.org/10.1214/09-SS054
https://doi.org/10.1007/s10618-022-00894-5
https://doi.org/10.1007/s10618-022-00894-5
https://doi.org/10.1145/3616865
https://doi.org/10.1007/s10994-020-05910-7
https://doi.org/10.1007/s10994-020-05910-7
https://doi.org/10.2139/ssrn.3836631
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.1016/j.swevo.2020.100665
https://doi.org/10.1098/rsos.220346
https://doi.org/10.1023/A:1009752403260
https://doi.org/10.1023/A:1009752403260
https://doi.org/10.3945/ajcn.115.113548
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/s11704-019-8208-z
https://www.jmlr.org/papers/volume22/20-303/20-303.pdf
https://www.jmlr.org/papers/volume22/20-303/20-303.pdf
https://doi.org/10.1145/3399579.3399867
https://doi.org/10.1145/3399579.3399867
https://doi.org/10.48550/arXiv.2008.02577
https://doi.org/10.1080/00031305.2018.1529624
https://doi.org/10.1080/00031305.2018.1529624
https://doi.org/10.1136/bmjebm-2019-111264
https://jmlr.org/papers/v18/16-305.html
https://jmlr.org/papers/v18/16-305.html
https://doi.org/10.1145/3561048
https://doi.org/10.1016/j.inffus.2023.101805
https://doi.org/10.48550/arXiv.1901.08644
https://doi.org/10.48550/arXiv.1901.08644
https://doi.org/10.1126/sciadv.adk3452
https://doi.org/10.1126/sciadv.adk3452
https://fetchdecodeexecute.substack.com
https://fetchdecodeexecute.substack.com

	Avoiding common machine learning pitfalls
	Do think about how and where you will use data
	Do take the time to understand your data
	Do not look at all of your data
	Do clean your data
	Do make sure you have enough data
	Do talk to domain experts
	Do survey the literature
	Do think about how your model will be deployed
	Do not allow test data to leak into the training process
	Do try out a range of different models
	Do not use inappropriate models
	Do keep up with progress in deep learning (and its pitfalls)
	Do not assume deep learning will be the best approach
	Do be careful where and how you do feature selection
	Do optimize your model’s hyperparameters
	Do avoid learning spurious correlations
	Do use an appropriate test set
	Do not do data augmentation before splitting your data
	Do avoid sequential overfitting
	Do evaluate a model multiple times
	Do save some data to evaluate your final model instance
	Do choose metrics carefully
	Do consider model fairness
	Do not ignore temporal dependencies in time-series data
	Do not assume a bigger number means a better model
	Do use meaningful baselines
	Do use statistical tests when comparing models
	Do correct for multiple comparisons
	Do not always believe results from community benchmarks
	Do combine models (carefully)
	Do be transparent
	Do report performance in multiple ways
	Do not generalize beyond the data
	Do be careful when reporting statistical significance
	Do look at your models
	Do use an ML checklist
	Declaration of interests
	References


